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Abstract

Deep incremental hashing has become a subject of consider-
able interest due to its capability to learn hash codes in an
incremental manner, eliminating the need to generate codes
for classes that have already been learned. However, accom-
modating more classes requires longer hash codes, and re-
generating database codes becomes inevitable when code ex-
pansion is required. In this paper, we present a unified deep
hash framework that can simultaneously learn new classes
and increase hash code capacity. Specifically, we design a
triple-channel asymmetric framework to optimize a new CNN
model with a target code length and a code projection ma-
trix. This enables us to directly generate hash codes for new
images, and efficiently generate expanded hash codes for
original database images from the old ones with the learned
projection matrix. Meanwhile, we propose a pairwise-label-
based incremental similarity-preserving loss to optimize the
new CNN model, which can incrementally preserve new sim-
ilarities while maintaining the old ones. Additionally, we de-
sign a double-end quantization loss to reduce the quantiza-
tion error from new and original query images. As a result,
our method efficiently embeds both new and original similar-
ities into the expanded hash codes, while keeping the orig-
inal database codes unchanged. We conduct extensive ex-
periments on three widely-used image retrieval benchmarks,
demonstrating that our method can significantly reduce the
time required to expand existing database codes, while main-
taining state-of-the-art retrieval performance.

Introduction
Hashing can encode visual data into compact binary codes
so that visually similar samples are mapped into similar bi-
nary codes. Traditional hashing methods using hand-crafted
features, for instance, Locality Sensitive Hashing (LSH)
(Gionis, Indyk, and Motwani 1999), Spectral Hashing (SH)
(Weiss, Torralba, and Fergus 2009) and Iterative Quantiza-
tion (Gong and Lazebnik 2011), perform worse in preserv-
ing the semantic similarities between visual samples com-
pared to deep hashing methods, which incorporate deep neu-
ral networks into the generation of hash codes for large-scale
visual search. The deep neural networks have powerful rep-
resentation abilities to maintain the underlying semantics of
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Figure 1: The framework of the conventional deep hashing
methods for new classes learning and code expansion. When
new classes emerge, conventional methods have to retrain
the models with new hash layers and new training images.
The new database images are required to be fed into the new
models to generate hash codes with target code length again.

visual data. As a result, deep hashing has shown much bet-
ter retrieval performance than traditional hashing methods.
Recently, a variety of deep hashing methods have been pre-
sented, which can be classified into two categories, i.e., sym-
metric hashing methods (Luo et al. 2019; Zhuang et al. 2016;
Tang et al. 2018; Zhang et al. 2018; Cui et al. 2019; Jin et al.
2020; Deng et al. 2018; Zhang et al. 2019; Doan, Yang, and
Li 2022; Cui et al. 2022; Tu et al. 2022; Zhang et al. 2021b,
2017; Zhao et al. 2021; Zhang et al. 2021c, 2020; Liu et al.
2018b) and asymmetric hashing methods (Chen et al. 2019;
Wu et al. 2019; Jiang and Li 2018; Wu et al. 2023; Song et al.
2022; Luo et al. 2018; Gu et al. 2019; Zhang et al. 2021a).

The explosive growth of web and sensor images has led to
a large number of new semantic concepts, imposing signif-
icant challenges to conventional deep hashing methods. To
accommodate new classes, conventional deep hashing meth-
ods require retraining the models and re-indexing the en-
tire database codes, which is time-consuming. To tackle this
problem, deep incremental hashing methods have been pro-
posed (Wu et al. 2019; Mandal and Biswas 2020; Tian, Ng,
and Xu 2023). These methods can incrementally learn hash
codes for training images from new categories while hold-
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ing the original ones invariant. However, with the constant
emergence of new classes, the feature space of these meth-
ods becomes crowded, which can adversely affect retrieval
performance. To increase capacity, as illustrated in Figure
1, similar to conventional deep hashing methods, deep in-
cremental hashing methods can only retrain the CNN model
with a target code length and re-index the entire database
codes. As the number of new concepts increases, the limited
capacity of hash codes may force deep incremental hashing
methods to degrade into conventional deep hashing meth-
ods.

In this paper, we propose a unified deep hashing frame-
work, called Code Expansion enabled Deep Incremental
Hashing (CEDIH), to simultaneously achieve fast hash code
expansion and new class learning. CEDIH allows for fast
code expansion and efficient class learning without changing
the original database codes. The main challenge in CEDIH
is how to incrementally generate hash codes for new classes
with target code length and new bits for original classes,
while preserving three types of similarities: the similarities
between new images (new-new similarities), the similarities
between original images (original-original similarities), and
the similarities between original and new images (original-
new similarities). Note that during the process of preserv-
ing original-original similarities and original-new similar-
ities, the original database codes remain unchanged. An
overview of the proposed framework is illustrated in Fig-
ure 2. Specifically, CEDIH adopts a triple-channel asym-
metric design to optimize a new CNN model with a target
code length, a code projection matrix, and binary hash codes
for new training images in an end-to-end manner. The new
CNN model generates expanded hash codes for query im-
ages and new database images. By using the learned code
projection matrix, original database codes can be quickly
expanded through simple matrix multiplication. To optimize
the triple-channel framework, we design a pairwise-label-
based incremental similarity-preserving loss function. This
function can maintain the three types of similarities. In ad-
dition, the CEDIH quantization errors come from both new
and original query images. Therefore, we design a double-
end quantization loss to reduce the quantization errors. The
main contribution of this work can be summarized as fol-
lows.

• We propose a novel deep hashing framework, named
Code Expansion enabled Deep Incremental Hashing
(CEDIH), which targets at acquiring the capability of
learning new classes while enlarging the capacity of hash
codes simultaneously. To the best of our knowledge,
CEDIH is the first deep hashing approach that can do
both simultaneously.

• We design a pairwise-label-based incremental similarity-
preserving loss to guide the learning of a new CNN
model and the code projection matrix in an end-to-
end manner. This allows for the efficient embedding of
both the new and original similarities into the expanded
database codes, while keeping the original similarities
unchanged. We also propose a double-end quantization
loss function that separately considers the quantization

errors introduced by new and original query images. This
further improves the retrieval performance.

• Extensive experiments demonstrate that the proposed ap-
proach can significantly decrease code expansion time
when accommodating new concepts, with almost no loss
in retrieval accuracy compared to state-of-the-art meth-
ods. We validate that our CEDIH is compatible with a
variety of backbone deep hashing methods.

Related Work
Conventional deep hashing methods can be classified
into three categories based on the form of supervision:
pointwise-label-based methods (Fan et al. 2020; Yang, Lin,
and Chen 2018; Shen et al. 2019; Hoe et al. 2021; Yuan
et al. 2020; Liu et al. 2019), pairwise-label-based methods
(Liu et al. 2016; Li, Wang, and Kang 2016; Wu et al. 2017;
Cao et al. 2017; Xia et al. 2014; Lai et al. 2015; Cakir, He,
and Sclaroff 2018; Cakir et al. 2019; Shen et al. 2017; Jiang
and Li 2018), and listwise-label-based methods (Zhao et al.
2015; Yao et al. 2016; Liu et al. 2018a). Pointwise-label-
based methods optimize hash codes with classification ob-
jectives or pre-defined targets. CSQ (Yuan et al. 2020) and
OrthoHash (Hoe et al. 2021) are representative pointwise-
label-based methods that utilize the Hadamard matrix or
Bernoulli sampling to generate hash centers. Pairwise-label-
based methods try to push similar pairs together while dis-
similar ones apart only with a similarity matrix. DSH (Liu
et al. 2016) and DPSH (Li, Wang, and Kang 2016) are
two representative deep hashing methods that design effec-
tive loss functions with pairwise labels. DAPH (Shen et al.
2017) integrates feature learning and asymmetric hash func-
tion learning into the end-to-end deep learning framework.
Different from DAPH, ADSH (Jiang and Li 2018) trains a
CNN model only for query images and directly generates the
final binary database codes during the optimization process.
Listwise-label-based methods learn hash codes by preserv-
ing the supervised ranking list information, which is calcu-
lated based on the semantic labels. DSRH (Zhao et al. 2015)
learns hash functions by preserving semantic similarity be-
tween multi-label images.

Deep incremental hashing methods aim to efficiently
update deep hashing models when new classes emerge.
DIHN (Wu et al. 2019) is the first deep incremental hashing
method that can incrementally generate hash codes for im-
ages from new concepts while holding the original ones un-
changed. iCMH (Mandal and Biswas 2020) proposes a novel
incremental cross-modal hashing algorithm, whose model
parameters can be updated without suffering from catas-
trophic forgetting. DIH (Tian, Ng, and Xu 2023) considers
concept drift problems in the incremental setting.

Code expansion and compression oriented deep hash-
ing methods take into account the scalability of deep hash-
ing models. Conventional deep hashing methods can only
train models with pre-defined code length, and there are no
theories to guide how to set the proper code length. If the
code length is too long, both storage and computational ef-
ficiency would be affected, while retrieval accuracy would
not be guaranteed. CCDH (Zhao et al. 2020) is the first deep
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Figure 2: The triple-channel asymmetric framework of CEDIH. A new CNN model with target code length is trained as the
hash function for query images and new database images. The hash codes of new training images are directly generated through
discrete optimization. To generate new database codes from the original database images, we learn a projection matrix through
simple matrix multiplication while keeping the original database unchanged. Best viewed in color.

hashing method designed to compress hash codes efficiently.
CEDH (Wu et al. 2022) is the first deep hashing network at-
tempting to expand hash codes efficiently. Neither CCDH
nor CEDH requires regenerating the entire database’s hash
codes through CNN models, which significantly improves
the scalability of deep hashing models.

However, most of the aforementioned deep hashing meth-
ods focus on learning discriminative binary codes for a fixed
dataset with a specific code length. DIHN (Wu et al. 2019)
ignores the need for capacity expansion of hash codes when
new concepts are learned. CEDH (Wu et al. 2022) can-
not learn new classes when expanding hash codes. Growbit
(Mandal, Annadani, and Biswas 2019) attempts to integrate
new concepts and learn additional bits in a two-stage pro-
cess for cross-modal retrieval. Nevertheless, this approach
cannot scale to single-modal image retrieval due to its cross-
modal setting and two-stage framework. To achieve satisfac-
tory performance, new bits learning and hash function op-
timization must occur simultaneously. Though our method
and CEDH (Wu et al. 2022) share the similar idea of expand-
ing original database codes with a projection matrix, our pri-
mary challenge is how to embed the three types of similar-
ities into the new bits for original classes and the new hash
codes for new classes, while holding the original database
codes unchanged.

Methodology
Problem Definition
Consider the case that we have M database images of origi-
nal classes Lori, and database hash codes Bori = {bi}M

i=1 ∈

{−1,+1}M×k are trained, where k is the code length. As-
sume that a set of N incremental images emerges, in which
each image belongs to a new class set Linc. Note that Lori

and Linc are assumed to be disjoint, i.e. Lori ∩ Linc = ∅.
To accommodate more categories, we need to use longer
hash codes B = {bi}M+N

i=1 ∈ {−1,+1}(M+N)×k′
for all im-

ages, where k′ = k + c and c is the length of new bits. We
aim to directly learn the new hash bits Bnew = {b̃i}M

i=1 ∈
{−1,+1}M×c for original database images, while the hash
codes Binc = {bi}M+N

i=M+1 ∈ {−1,+1}N×k′
of new emerg-

ing images are learned from scratch.

Besides, assuming we have m original training images
and n new training images, their indices are denoted as
Ψ = {O1, ...,Om} and Φ = {I1, ..., In} respectively. To
construct the query set Q = {ai}qi=1, we randomly sample
q images from the training set. A CNN model is adopted
as the hash function to generate their hash codes BQ =

{b̂i}qi=1 ∈ {−1,+1}q×k′
. We use ψ = {o1, ..., oq∗} ⊂ Ψ

and ϕ = {i1, ..., iq′} ⊂ Φ to denote the indices of the sam-
pled query images of original and incremental classes. The
corresponding indices of ψ and ϕ in Q are denoted as ψ∗

and ϕ∗. The similarity matrix S ∈ {−1,+1}q×(m+n) be-
tween query and training images is available during train-
ing. Sij = 1 indicates that query image ai and training
image dj are similar, while Sij = −1 indicates the op-
posite. Furthermore, SΨ ∈ {−1,+1}q×m is the similarity
matrix between query and original training images, while
SΦ ∈ {−1,+1}q×n is the similarity matrix between the
query and new training images.
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Proposed Framework
Our goal is to embed both new and original similarities into
the expanded hash codes while keeping the original database
codes unchanged. To this end, we decouple the learning of
the CNN model and the training codes of new and original
images. Specifically, we design a triple-channel asymmetric
framework to train the CNN model with sampled new and
original training images for query images, directly optimize
discrete codes for new training images, and learn a projec-
tion matrix to expand existing database codes. As shown in
Figure 2, CEDIH consists of four parts: triple-channel input
part, projection matrix learning part, hybrid learning part of
CNN model and training codes, and three types of similari-
ties preserving part.

Incremental Similarity-Preserving Loss
Incremental similarity-preserving loss aims to incrementally
preserve new-new and original-new similarities while main-
taining original-original ones, which can be formulated as:

R = ∥BQ(BΨ)T − k′(SΨ)∥22 + ∥BQ(BΦ)T − k′(SΦ)∥22 (1)

where BQ = {sign(fi(θ))}qi=1 , and f(·) is the output of
the last fully connected layer and θ denotes the parameters
of the new CNN model. The first term aims at preserving
similarities between query images and original training im-
ages, while the second term aims at preserving similarities
between query images and new training images. Note that
query images are sampled from new training images and
original training images. Therefore, the similarity preserv-
ing loss can preserve three types of similarities. Since BΨ

is generated by concatenating the fixed BΨ
ori and the learned

BΨ
new, the loss function can be reformulated as :

R = ∥BQ1
(BΨ
ori)

T + BQ2
(BΨ
new)

T − k′SΨ∥22
+ ∥BQ(BΦ)T − k′SΦ∥22

(2)

where BQ1
= {sign(fi(θ1))}qi=1 denotes the first k columns

of BQ, while BQ2
= {sign(fi(θ2))}qi=1 represents the last c

columns. θ1 and θ2 share the parameters of the backbone and
only differ in the last fully connected layer. As the sign(·)
function is difficult to directly optimize. Hence, we approx-
imate it with the function tanh(·), bringing the new formu-
lation by replacing BQ with U:

R = ∥U1(BΨ
ori)

T + U2(BΨ
new)

T − k′SΨ∥22
+ ∥U(BΦ)T − k′SΦ∥22

(3)

where U = {ui = tanh(fi(θ))}qi=1, U1 = {ui1 =
tanh(fi(θ1))}qi=1 and U2 = {ui2 = tanh(fi(θ2))}qi=1.
Note that BΨ

new is generated from BΨ
oriW, W ∈ Rk×c.

Double-End Quantization Loss
Double-end quantization loss aims at reducing quantization
errors produced by both new and original query images. As
shown in Figure 3, the quantization errors come from four
parts: original bits of original query images (Term 1), new
bits of original query images (Term 2), and hash codes of

Figure 3: The illustration of the double-end quantization
loss.

new query images (Term 3). The quantization loss can be
formulated as:

Q = ∥Uψ
∗

1 − Bψori∥
2
2︸ ︷︷ ︸

Term 1

+ ∥ŨΨ
2 − Z∥22 + ∥Z − BΨ

oriW∥22︸ ︷︷ ︸
Term 2

+ ∥Uϕ
∗
− Bϕ∥22︸ ︷︷ ︸

Term 3

(4)

where Z = {zi}mi=1 ∈ {−1,+1}m×c, Ũ
Ψ

2 = {ũi|i ∈ Ψ} ∈
[−1,+1]m×c, and ũi is defined as:

ũi =

{
ui∗2, if i∗ ∈ ψ∗

0, otherwise
(5)

Note that a one-to-one mapping exists between i and i∗ if
i∗ ∈ ψ∗. The final loss function is formed as:

min
θ,W,BΦ,Z

L = R + λQ

s.t. BΦ ∈ {−1,+1}n×k
′
,Z ∈ {−1,+1}m×c.

(6)

where λ > 0 is a hyper-parameter.

Optimization
We adopt an alternating strategy to optimize the parameters
θ, W, BΦ, and Z in Eqn. (6). We optimize one parameter
with the other three fixed.
θ-step: When W, BΦ, and Z are fixed, we use the standard

back-propagation algorithm to optimize θ.
W-step: We learn W with other parameters fixed. The

problem becomes:

min
W

L =∥U1(BΨ
ori)

T + U2(BΨ
oriW)T − k′SΨ∥22

+ λ∥Z − BΨ
oriW∥22

(7)

Let ∂L
∂W = 0, we can get the closed-form solution of W:

W =[(BΨ
ori)

TBΨ
ori + γI]−1J[UT

2U2 + λI]−1 (8)

where J = (BΨ
ori)

T(PTU2 + λZ), P = k′SΨ − U1(BΨ
ori)

T and
γ > 0 is a hyper-parameter.

Z-step: When fixing θ, W and BΦ, we can rewrite Eqn.
(6) as:

min
Z

L = ∥ŨΨ
2 − Z∥22 + ∥Z − BΨ

oriW∥22

s.t. Z ∈ {−1,+1}m×c
(9)
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Finally, we have the solution:

Z = sign(ŨΨ
2 + BΨ

oriW) (10)

BΦ-step: Given the fixed θ, W and Z, the objective in
problem (6) can be rewritten into the formulation of:

min
BΦ

L =∥U(BΦ)T − k′SΦ∥22 + λ∥Uϕ
∗
− Bϕ∥22

s.t. BΦ ∈ {−1,+1}n×k
′
.

(11)

It is not straightforward to update BΦ. We first denote
ŨΦ

= {ũi|i ∈ Φ} ∈ [−1,+1]n×k
′

, where

ũi =

{
ui∗ , if i∗ ∈ ϕ∗

0, otherwise
(12)

Note that a one-to-one mapping exists between i and i∗ if
i∗ ∈ ϕ∗, and the Eqn. (11) can be rewritten into follows:

min
BΦ

L =∥U(BΦ)T − k′SΦ∥22 + λ∥ŨΦ − BΦ∥22

=∥BΦUT∥22 + tr(BΦVT) + const

s.t. BΦ ∈ {−1,+1}n×k
′
.

(13)

where V = −2k′(SΦ)TU − 2λŨΦ. Then we adopt the dis-
crete cyclic coordinate descent (DCC) algorithm proposed
in (Shen et al. 2015) to optimize BΦ column by column. Fi-
nally, we can get the optimal solution of the above equation
as follows:

BΦ
∗i =− sign(2B̂

Φ

i Û
T
i U∗i + V∗i) (14)

where BΦ
∗i denotes as the ith column of BΦ and B̂

Φ

i repre-
sents the matrix of BΦ excluding BΦ

∗i. V∗i denotes the ith
column of V. U∗i denotes the ith column of U and Ûi de-
notes the matrix of U excluding U∗i.

Experiments
Datasets
We conduct extensive experiments on three public bench-
mark image retrieval datasets: CIFAR-10 (Krizhevsky and
Hinton 2009), NUS-WIDE (Chua et al. 2009) and ImageNet
(Lin et al. 2014).
• CIFAR-10 is a dataset containing 60,000 color images in

10 classes, and each class contains 6,000 images with a
resolution of 32×32. Following (Lai et al. 2015), we ran-
domly select 1,000 images (100 images per class) as the
test query set, and 5,000 images (500 images per class)
as the training set.

• NUS-WIDE is a large multi-label dataset containing
269,648 images across 81 classes. Following (Li, Wang,
and Kang 2016), we select a subset of 195,834 images
belonging to the 21 most frequent classes. To create
query set, we randomly selected 2,100 images, ensur-
ing that each class is represented by 100 images. For the
training set, we randomly chose 10,500 images from the
remaining images, ensuring that each class is represented
by 500 images.

Datasets #Original/#Incremental
S1 S2 S3 S4

CIFAR-10 4/6 6/4 7/3 8/2
NUS-WIDE 10/11 17/4 18/3 19/2
ImageNet 40/60 60/40 70/30 80/20

Table 1: Split details of three datasets.

• ImageNet is a single-label dataset containing over 1.2
million images from ILSVRC. Each image is associ-
ated with one of the 1,000 classes. As described in (Li,
Wang, and Kang 2016), we randomly select 100 classes
to constitute the retrieval set. The validation set is utilized
to form the query set. Furthermore, we randomly select
10,000 images (100 images per class) for the training set.

Baselines
We choose some representative and also competitive deep
hashing methods like ADSH (Jiang and Li 2018), HashNet
(Cao et al. 2017), DSDH (Li et al. 2017), DPSH (Li, Wang,
and Kang 2016) as our backbone methods. Note that for a
fair comparison, we choose pairwise-label-based deep hash-
ing methods as our baselines. In real applications, a simi-
larity matrix is more likely to be generated than pointwise
labels, especially for multi-label images. For shallow meth-
ods, we choose SH (Weiss, Torralba, and Fergus 2009), ITQ
(Gong and Lazebnik 2011), LFH (Zhang et al. 2014) and
SDH (Shen et al. 2015). We try our best to re-implement the
previous methods and implement our CEDIH based on the
corresponding backbone methods.

Incremental Learning Setting
We split the datasets into two parts, i.e., the original and in-
cremental sets. Split details are shown in Table 1. For each
dataset, we design four split settings separately. In single-
label datasets CIFAR-10 and ImageNet, for example, “7/3”
represents the images in the original set are from 7 classes
while the incremental set includes images from the other
3 classes. In multi-label dataset NUS-WIDE, for example,
“18/3” denotes the images in the original set are associated
with at most 18 concepts, while the images in the incremen-
tal set are associated with at least one concept of the remain-
ing 3 concepts. To explore the capability boundaries of our
CEDIH, we further design three challenging settings (S1), in
which the number of incremental classes is larger than that
of the original classes.

Evaluation Metrics
We report the Mean Average Precision (mAP) and
Precision-Recall curves (PR curves) to evaluate the re-
trieval performances. Regarding mAP results computation,
for NUS-WIDE and ImageNet, the mAP results are calcu-
lated based on Top-5K and Top-1K returned samples, re-
spectively. For CIFAR-10, the mAP results are obtained
based on all returned images. Notably, we list the mAP re-
sults of CEDIH under different incremental learning set-
tings. To verify the time efficiency of CEDIH, we further
report the code expansion time.
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Methods CIFAR-10@ALL NUS-WIDE@5000 ImageNet@1000
24 bits 32 bits 48 bits 24 bits 32 bits 48 bits 24 bits 32 bits 48 bits

SH 0.1912 0.1892 0.2044 0.5886 0.6402 0.6309 0.2421 0.2806 0.3235
ITQ 0.2215 0.2308 0.2386 0.7016 0.7186 0.7280 0.2732 0.3296 0.3751
LFH 0.4032 0.4047 0.4302 0.6903 0.7131 0.7321 0.2999 0.3738 0.4327
SDH 0.5209 0.5373 0.5311 0.7745 0.7932 0.7912 0.4790 0.5096 0.5429
DPSH 0.7274 0.7551 0.7510 0.8283 0.8360 0.8427 0.4006 0.4433 0.4622
CEDIH+DPSH 0.7622 0.7701 0.7790 0.8479 0.8558 0.8614 0.4904 0.5423 0.5776
HashNet 0.7561 0.7649 0.7726 0.8210 0.8278 0.8351 0.4099 0.4653 0.5311
CEDIH+HashNet 0.7631 0.7857 0.7897 0.8476 0.8514 0.8618 0.5259 0.5734 0.6171
DSDH 0.7441 0.7497 0.7530 0.8257 0.8316 0.8394 0.3967 0.4267 0.4718
CEDIH+DSDH 0.7657 0.7667 0.7698 0.8466 0.8563 0.8644 0.4719 0.4966 0.5655
ADSH 0.7716 0.7740 0.7787 0.8169 0.8280 0.8396 0.5790 0.6157 0.6653
CEDIH+ADSH 0.7782 0.7811 0.7898 0.8328 0.8398 0.8481 0.6078 0.6413 0.6728

Table 2: Comparison of mAP w.r.t different number of bits on three datasets. The best accuracy is shown in bold.

Methods 24 bits 32 bits 48 bits 64 bits
DIHN+ADSH 0.8228 0.8329 0.8403 0.8488
CEDIH+ADSH 0.8328 0.8398 0.8481 0.8556

Table 3: Comparison to the deep incremental hashing
method DIHN on NUS-WIDE under the setting 3.

Setting CIFAR-10 NUS-WIDE ImageNet
- 0.7787 0.8396 0.6653
1 0.7799 0.8554 0.6278
2 0.8013 0.8474 0.6616
3 0.7898 0.8481 0.6728
4 0.7796 0.8414 0.6665

Table 4: Comparison of mAP w.r.t different split settings on
three datasets. The backbone method is ADSH. The original
length is 44 and the expanded length is 48.

Methods c=8 c=12 c=16 c=20
ADSH 0.8424 0.8393 0.8433 0.8456
CEDIH+ADSH 0.8503 0.8468 0.8498 0.8512

Table 5: Comparison of mAP w.r.t different length of new
hash codes on NUS-WIDE under the setting 3. The original
length is 44.

Accuracy Comparison
Comparison to the state-of-the-art methods. Table 2 lists
the mAP results of our CEDIH and the state-of-the-art
deep hashing methods (SOTA) with different bits on three
datasets. For the incremental learning setting, we adopt the
setting 3 (S3). For CEDIH, we set c = 4, meaning that
CEDIH with k′ bits is expanded from the corresponding
backbone methods with k′ − 4 bits (k′ = 24, 32, 48). In all
cases, the retrieval performances of CEDIH are better than
the corresponding backbone methods with the same code
length. Besides, CEDIH with a better backbone method will
achieve better retrieval performances, which is in line with
expectations. The results also demonstrate that our method

is compatible with a variety of deep hashing methods.
Comparison to the deep incremental hashing method.

We further compare our method with the representative deep
incremental hashing method DIHN (Wu et al. 2019), the re-
sults are listed in the Table 3. As DIHN cannot achieve code
expansion, we directly train backbone method ADSH with
the target length k′ and adopt DIHN to incrementally learn
new classes. For CEDIH, we still set c = 4. As shown in the
table, our method can gain stable advantages, verifying the
effectiveness of the simultaneous learning of new bits and
the new classes.

Performance under different incremental learning set-
tings. To fully verify the effectiveness of CEDIH, we list
the mAP results of CEDIH under different settings on three
datasets in Table 4. The first line lists the mAP results
of the corresponding backbone method ADSH. In most
cases, CEDIH can achieve advantages over ADSH on three
datasets. However, for the setting 1 and 2 on ImageNet, we
are inferior to the backbone method ADSH. We argue that
the new bits are directly generated from the fixed original
database codes, the semantic capacity of which is limited.

Performance with different length of new bits. Table
5 lists the mAP results of CEDIH with different length of
new bits on ImageNet under the setting 3. The original code
length is 44. As shown in the table, our method can still gain
obvious advantages against the backbone method ADSH.

We attribute our advantages to the guidance of fixed
original database codes and the asymmetric framework.
On the one hand, the fixed original database codes can serve
as the pre-defined target for both original and new images.
On the other hand, as observed in (Neyshabur et al. 2013),
the asymmetric framework can benefit the learning of hash
codes. In CEDIH, the projection matrix for expanding orig-
inal database codes and the new CNN model for learning
new classes are optimized asymmetrically.

Code Expansion Time
Table 6 lists the code expansion time of CEDIH and the cor-
responding backbone methods with GPU on ImageNet un-
der the setting 3. The original code length is 44 and the ex-
panded code length is 48. For our CEDIH, the code expan-
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Figure 4: Parameter sensitivity on three datasets. The backbone model is ADSH and the code length is 48. Best viewed in color.

Methods 24 bits 32 bits 48 bits 64 bits
DPSH 153.31 153.59 154.06 154.18
DSDH 153.62 153.72 154.30 154.50
HashNet 152.75 153.31 153.63 154.50
ADSH 153.02 153.64 153.70 153.80
CEDIH+DPSH 46.21 46.36 46.49 46.62
CEDIH+DSDH 46.18 46.38 46.48 46.62
CEDIH+HashNet 46.22 46.25 46.31 46.41
CEDIH+ADSH 46.30 46.39 46.50 46.81

Table 6: Comparison of code expansion time on ImageNet
(in seconds).

sion time includes two parts: original database code expan-
sion time and new database code generation time. For the
corresponding backbone methods, the code expansion time
only includes database code generation time. As shown in
the table, our CEDIH is nearly four times faster than the cor-
responding backbone methods on GPU. Note that the origi-
nal database code expansion time of our CEDIH can almost
be ignored. Our time costs are mainly from the images from
new classes, which are much less than the corresponding
backbone methods. As the traditional deep hashing methods
have to regenerate hash codes for all database images.

Parameter Sensitivity
To investigate the sensitivity of λ, γ, and q, we further con-
duct experiments under different values of λ, γ, and q on
three datasets under the setting 3. The backbone method
is ADSH, the original code length is 44 and the expanded
code length is 48. The mAP results are illustrated in Fig-
ure 4. We tune λ in the range of [0.1, 1000] by fixing {γ =
1, q = 2000} for CIFAR-10, NUS-WIDE, and ImageNet.
Similarly, we set {λ = 1, q = 2000} for CIFAR-10, NUS-
WIDE, and ImageNet when tuning γ. When tuning q, we
set {λ = 1, γ = 1} for CIFAR-10, NUS-WIDE, and Ima-
geNet. In general, λ and γ have a wide range of [0.1, 1000].
For q, sampling more query images can achieve better re-
trieval performance at first. When q reaches a certain value,
the mAP results will converge.

Ablation of Double-End Quantization Loss
To fully investigate the effectiveness of each term in the pro-
posed double-end quantization loss (DEQ loss), we conduct

DEQ loss Datasets
T1 T2 T3 CIFAR-10 NUS-WIDE ImageNet

0.7804 0.8398 0.6659
✔ ✔ 0.7836 0.8398 0.6716
✔ ✔ 0.7830 0.8420 0.6705

✔ ✔ 0.7823 0.8403 0.6690
✔ ✔ ✔ 0.7898 0.8481 0.6728

Table 7: Ablation studies on the double-end quantization
loss under the setting 3. The backbone method is ADSH,
the original length is 44 and the expanded length is 48. T is
short for Term.

experiments to evaluate the performances of CEDIH with
different quantization terms. The results are listed in Table
7. Specifically, we report the mAP results of CEDIH without
the proposed double-end quantization loss (the first line) or
with one quantization term removed (the second line to the
fifth line). As shown in the table, on the one hand, the pro-
posed double-end quantization loss plays an important role
in our method. For example, without the double-end quan-
tization loss, the mAP result of CEDIH on CIFAR-10 drops
to 0.7804 (1.2% decrease). On the other hand, each quanti-
zation term also more or less contributes to the final perfor-
mance of CEDIH.

Conclusion
This paper introduces a unified deep hashing framework,
called Code Expansion enabled Deep Incremental Hashing
(CEDIH), for simultaneous new classes and expanded hash
code learning. To the best of our knowledge, CEDIH is the
first deep incremental hashing method equipped with fast
code expansion ability. Benefiting from the asymmetric de-
sign of CEDIH and the proposed pairwise-label-based incre-
mental similarity-preserving loss, the similarities between
new and original images can be incrementally preserved and
embedded into the expanded original database codes with
the original ones unchanged. Furthermore, we comprehen-
sively consider the quantization errors introduced by the new
and original query images, and we carefully design a double-
end quantization loss, thus further boosting retrieval perfor-
mance. Extensive experiments demonstrate that our CEDIH
can achieve fast code expansion while incrementally learn-
ing new classes with no loss of accuracy.
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