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Abstract

Matchmaking is a core task in e-sports and online games,
as it contributes to player engagement and further influences
the game’s lifecycle. Previous methods focus on creating
fair games at all times. They divide players into different
tiers based on skill levels and only select players from the
same tier for each game. Though this strategy can ensure
fair matchmaking, it is not always good for player engage-
ment. In this paper, we propose a novel Engagement-oriented
Matchmaking (EnMatch) framework to ensure fair games
and simultaneously enhance player engagement. Two main
issues need to be addressed. First, it is unclear how to mea-
sure the impact of different team compositions and confronta-
tions on player engagement during the game considering the
variety of player characteristics. Second, such a detailed con-
sideration on every single player during matchmaking will re-
sult in an NP-hard combinatorial optimization problem with
non-linear objectives. In light of these challenges, we turn to
real-world data analysis to reveal engagement-related factors.
The resulting insights guide the development of engagement
modeling, enabling the estimation of quantified engagement
before a match is completed. To handle the combinatorial op-
timization problem, we formulate the problem into a rein-
forcement learning framework, in which a neural combina-
torial optimization problem is built and solved. The perfor-
mance of EnMatch is finally demonstrated through the com-
parison with other state-of-the-art methods based on several
real-world datasets and online deployments on two games.

Introduction
Matchmaking is an essential part of e-sports and online
games. It pairs players into different combat teams and
helps maintain an enjoyable playing experience for all par-
ticipants. Previous research focuses on creating balanced
games, where closely skilled players are matched to cre-
ate competitive gameplay, assuming that balanced teams are
the most desired matchmaking outcome for players. They
hereby design an effective and efficient strategy— first di-
vide players into different tiers and then only select players
from the same tier to form opposing teams (Graepel and Her-
brich 2006; Herbrich, Minka, and Graepel 2007; Gong et al.
2020). Players in the same tier are supposed to have similar
gaming skills. Hence, through this approach, all the players
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in one combat have similar gaming skills so that the fairness
of games could be well ensured.

However, is game fairness the only critical factor for
player engagement? In most matchmaking scenes, the an-
swer is no, which has been demonstrated in EOMM (Chen
et al. 2017). Using churn rate as an indicator of player en-
gagement, EOMM analyzes the impact of match win-loss
outcomes on player retention in 1-vs-1 scenes and shows
that fair games are not sufficient to ensure player engage-
ment. However, it still remains unexplored in scenes that
contain multiple players in one team, i.e., k-vs-k mode. Two
key challenges exist for an engagement-oriented matchmak-
ing method in k-vs-k scenes:

What are the key factors that influence user engagement?
Estimating player engagement in advance is crucial for es-
tablishing the optimization objective of matchmaking. Previ-
ous works mostly emphasize win-loss outcomes, which may
not be sufficient in scenes with larger player counts. As the
number of players in a match increases, the impact of factors
such as players’ roles within a team and the interaction be-
tween players becomes gradually increases. When engage-
ment prediction relies on combinations of other players, the
feature space of the model can become exponentially large,
making model learning based solely on low-resolution user
satisfaction labels with limited data difficult (Adams and
Zemel 2011; Cao et al. 2007). To accurately predict player
engagement, it is essential to figure out what the key factors
are and quantify these factors together. This is especially im-
portant in our k-vs-k scene.

How to conduct matchmaking with careful consideration
on each individual player? Note that in our k-vs-k scene,
rather than selecting players from the same tier or form-
ing 1-vs-1 games as in previous works, each player needs
to be well estimated under multiple possible team composi-
tions. This results in an NP-hard combinatorial optimization
problem with non-linear objectives, which can not be effi-
ciently solved by tier-based heuristics or the graph matching
methods (Chen et al. 2017) proposed for 1-vs-1 games. Fur-
thermore, the complexity of player interactions necessitates
cross-tier matching, resulting in a significantly larger expo-
nential search space. In addition to considering the quality
of the match for a single game, we also need to take into
account the quality of the matches that can be formed with
the remaining players. Thus, when the focus shifts from fair
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game to engagement, a new combinatorial optimization so-
lution is required.

It is due to these difficulties that we propose a novel
engagement-oriented matchmaking framework, named En-
Match. EnMatch includes a new engagement modeling
method that introduces players’ granular gameplay perfor-
mance (including player interactions, players’ roles within
a team, etc.) as additional supervision information, and a
team formation algorithm based on recently developed Neu-
ral Combinatorial Optimization (NCO). Overall, the main
contributions of this paper are summarized as follows:

• We address the common yet unresolved challenge of op-
timizing engagement-orient matchmaking in the context
of k-vs-k online games, which involves a combinatorial
optimization problem with nonlinear objectives.

• We propose EnMatch, which utilizes the latest work in
the intersection of neural combinatorial optimization and
reinforcement learning. Through this method, the devel-
opment of matchmaking systems can evolve from fair
game to player engagement.

• Exploratory data analysis is conducted to investigate the
factors that affect player engagement. Simulation exper-
iments on the industrial game datasets and live exper-
iments are conducted to verify the effectiveness of the
proposed method.

Related Work
Skill Modeling and Matchmaking
Many existing matchmaking algorithms are designed to
create fair games and are rooted in skill modeling, such
as Bradley-Terry (Bradley and Terry 1952), ELO (Elo
1978), and Glicko (Glickman 1999) for 1-vs-1 scenes,
and TrueSkill (Herbrich, Minka, and Graepel 2007; Minka,
Cleven, and Zaykov 2018) for k-vs-k scenes, along with
their extensions (DeLong et al. 2011; Makhijani and Ugan-
der 2019). The goal of skill modeling is to represent each
player’s strength as a scalar random variable and then as-
sign players heuristically to form comparable teams with
minimal differences in strength. Beyond representing player
strength as a real number, recent research (Semenov et al.
2016; Li et al. 2018; Sapienza, Goyal, and Ferrara 2018;
Gong et al. 2020) resort to predicting the game outcome
using a neural network, thus taking player profiles into ac-
count. Despite the efforts made in skill modeling and game
outcome prediction, the question of how to match players
into two competing teams is still largely under-explored.
While EOMM (Chen et al. 2017) is the first to address
this issue, the graph matching is only suitable for 1-vs-1
scenes. GloMatch (Deng et al. 2021) utilizes self-attention
to model team effects and employs reinforcement learning
(RL) to generate matchmaking results player by player, but
fails to beat heuristic methods in performance. Our paper in-
corporates the recent advancements in neural combinatorial
optimization to propose EnMatch. It successfully extends
the engagement optimization problem from 1-vs-1 to k-vs-k
scenes in industrial practices.

Neural Combinatorial Optimization
Recently, there has been a surge of interest in utilizing deep
learning, especially deep reinforcement learning, to learn ef-
fective solvers for CO (combinatorial optimization) prob-
lems from historical instances, which is termed Neural Com-
binatorial Optimization (NCO). Successful techniques in-
clude (1) GNN-based variable space representation (Khalil
et al. 2017; Joshi, Laurent, and Bresson 2019; Ma et al.
2019); (2) combining traditional generic combinatorial opti-
mization techniques, such as searching with pruning (Kwon
et al. 2020) and LNS (Wu et al. 2021a); (3) integrating learn-
ing models into problem-specific designed operators, such
as 2-opt (Chen and Tian 2019; Wu et al. 2021b) and Lin-
Kernighan-Helsgaun (LKH) (Xin et al. 2021); (4) model-
ing the problem as a sequential decision-making problem
(constructive heuristics that sequentially extend a partial so-
lution) and optimizing it using deep reinforcement learn-
ing (Vinyals, Fortunato, and Jaitly 2015a; Kwon et al. 2020;
Song et al. 2022). Leveraging the integration of the afore-
mentioned NCO techniques, EnMatch capably addresses the
intricate combinatorial optimization challenges that emerge
amidst the transition from a fair game model towards an
engagement-centric one. To the best of our knowledge, there
are no established NCO algorithms specifically designed for
resolving CO problems that employ a neural network as an
objective function. EnMatch presents a partial advancement
in the matchmaking scene.

Preliminaries
Problem Definition
Let P = {pi|i = 1, 2, ..., N} be the matching pool, each pi
denotes a player who are waiting to start a k-vs-k match.
Players are associated with feature vectors F = {xi ∈
Rd|pi ∈ P}. A Match M consists of two opposing teams,
Ta and Tb. Each team T is an unordered subset selected from
the matching pool P , where |T | = K denotes the number of
players in the team. Supposing that N players can form L
matches (i.e., N = 2KL), our goal is to generate a match-
ing sequence L = {Tm

a , Tm
b }Lm=1, with the greatest gross

player engagement:

U(L) =
∑
m

Um(Ta, Tb) (1)

where Um(Ta, Tb) denotes the general engagement function
for team Ta and Tb in a match m ∈ {1, 2, .., L}.

Matchmaking as a CO Problem
Although it has not been explicitly stated in previous work,
the matchmaking problem based on skill modeling is actu-
ally a variant of the well-known CO problem, the Balanced
Number Partitioning Problem (Michiels et al. 2003), which
involves partitioning N numbers, each with a weight wi, into
L sets of size K as balanced as possible. The difference is
that matchmaking only requires a local balance between two
teams. Let A ∈ {0, 1}N×2L denotes the decision matrix, and
the binary decision variable aij is 1 if player i is assigned to
team j, and 0 otherwise, The CO model for this problem can
be expressed as:
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Figure 1. The framework of tier-based heuristic matchmaking system.

min

L−1∑
k=0

∣∣∣∣∣
N∑
i=1

wi · ai,2k −
N∑
i=1

wi · ai,2k+1

∣∣∣∣∣ (2a)

s.t. aij ∈ {0, 1}, ∀1 ≤ i ≤ N, ∀1 ≤ j ≤ 2L (2b)∑
i

aij = 1, ∀1 ≤ i ≤ N (2c)∑
j

aij = K, ∀1 ≤ j ≤ 2L (2d)

Here, wi could be the ability score of players, and the
objective function means we want to minimize the differ-
ences between two teams within a match. Constraint (2b)
ensures that each player is either included in a team or not).
Constraint (2c) ensures that each player is exactly assigned
to one team. Finally, constraints (2d) ensure that each team
consists of exactly K players.

Clearly, when the matchmaking objective shifts from fair
game to engagement, the optimization problem involves a
non-linear objective function (i.e., an engagement model
represented by a neural network in this paper), which ex-
ceeds the capabilities of integer programming and modern
operations research tools such as Gurobi1 and OR-Tools2.

Tier-Based Heuristic Matchmaking
The most widely used matchmaking strategy, which we
called tier-based heuristic matchmaking, mainly consists of
three stages: split, select, and enumeration, as shown in Fig-
ure 1. In the split phase, players in the matching pool are di-
vided into different tiers based on their historical abilities. To
create fair games, players from different tiers are not allowed
to team up. Within the same tier, assuming a k-vs-k scene,
2k players will be selected based on handcrafted rules in the
select phase. During the enumeration phase, various team
candidates are generated from these 2k players. For exam-
ple, in a 3-vs-3 scene, 6 players can form

(
6
3

)
= 20 different

matching team combinations. Based on expert heuristics or
game outcome prediction, the fairest team-ups are selected
and the chosen players will be removed from the matching
pool. The tier-based heuristics is a good heuristic approach
for solving combinatorial optimization problems with fair
game objectives by introducing additional tier constraints
and neighborhood search.

1https://www.gurobi.com/
2https://developers.google.com/optimization

Exploratory Data Analysis
To investigate the factors that influence player engagement
in k-vs-k scenes, we conduct exploratory data analysis on
an anonymized dataset from a popular 3-vs-3 game. As
the game does not have a sophisticated matchmaking sys-
tem, we can collect a diverse range of match data where
players from different tiers and with different attributes are
matched together. This ensures that both “fair teams” and
“diversity teams” exist. Fair teams are composed of play-
ers with the same tier, while diversity teams are composed
of one high-tier player and two low-tier players. A total of
10,000 matches are collected for each type of matchmaking
team. We analyze player interactions, including chat, up-
votes from teammates, and downvotes from teammates, to
assess collaboration engagement. Additionally, we investi-
gate long-term engagement by analyzing the churn rate of
different types of players, following the analysis made in
EOMM (Chen et al. 2017). For each game, we divide play-
ers into “main players” and “support players”. Game win-
loss results are also included in our analysis.

Collaboration Engagement. We present player interac-
tion results in Table 1. It shows that diversity teams have
a 12.3% decrease in downvotes when they win the game.
Meanwhile, regardless of game win-loss results, diversity
teams have a higher chat frequency (by 19.2% and 7.1%, re-
spectively) and a higher upvotes rate (by 15.8% and 10.3%,
respectively). These statistics provide a strong indication
that players of diverse teams are more likely to establish
collaboration relationships, thereby improving in-game en-
gagement. On the other hand, the results also show that en-
suring fair games alone is not sufficient to maintain a good
user experience, and cross-tier matchmaking is necessary to
optimize player engagement.

Long-Term Engagement. After every three games, we
inspect whether the player will quit the game. We calculate
averaged churn rate and present results in Table 2. Firstly, for
the players winning three consecutive games, i.e., the play-
ers in “WWW” rows, the results show that the main players
have a lower churn rate when compared with support players
(4.9% and 5.9%, respectively). Conversely, for the “LLL”
games where players lose three consecutive games, the main
players have an obviously larger churn rate than the support
players (8.4% and 6.2%, respectively). These reflect that, be-
sides game results, the player role in the game is also an im-
portant factor for long-term engagement. Moreover, we also
find an interesting phenomenon that main players with three
consecutive winning games (“WWW” + “MMM”) do not
have significantly lower churn rates than all other scenes: the
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Team Type #Teams #Chats #Upvotes #Downvotes

Fair win 10,000 31,824 6,185 970
Diversity win 10,000 37,934 7,162 851

Diver.%−Fair% / 19.2% 15.8% -12.3%

Fair lose 10,000 56,828 3,510 1,423
Diversity lose 10,000 60,863 3,872 1,467

Diver.%−Fair% / 7.1% 10.3% 3.1%

Table 1. Player engagement-related behavior statistics for
different kinds of teams under win/loss situations.

ID Last 3 Outcomes Last 3 Roles Churn Rate

1 2W+L | W+2L MMM 4.0%− 5.1%
2 2W+L | W+2L 2M+S | M+2S 4.2%− 5.2%
3 2W+L | W+2L SSS 4.9%− 5.7%
4 WWW MMM 4.9%
5 WWW 2M+S | M+2S 3.9%− 5.3%
6 WWW SSS 5.9%
7 LLL MMM 8.4%
8 LLL 2M+S | M+2S 6.9%− 7.7%
9 LLL SSS 6.2%

Table 2. The impact of player states on their engagement.
Data is from a popular PvP game. Average churn risks
vary drastically upon players’ recent three match outcomes
((W)in or (L)ose) and player role ((M)ain or (S)upport).
”2A+B” refers to all possible sequences of three matches
that consist of two A and one B.

lowest churn rates in ID 1, 2, and 5 are similar or even better
than the churn rate of ID 4. This suggests that diverse win-
loss experiences and diverse game roles can lead to higher
game engagement of players. Therefore, maximizing player
engagement through matchmaking is not a trivial task.

Method
In this section, we introduce our EnMatch framework, which
aims to match players across different tiers and attributes
to make diverse game experiences and maximize player en-
gagement in k-vs-k scenes.

Overview
The overall framework is presented in Figure 2(a) and there
are five major components:

• Matching Pool refers to the set of all players who have
not been selected. In each step of matching, the matching
pool removes the selected 2K players.

• Encoder extracts representations for players in the
matching pool, considering the potential interactions be-
tween players with diverse characteristics.

• Masked Decoder generates 2K players autoregressively
based on the inputted player representations from the
encoder. The generated 2K players can be directly di-
vided into two teams, which are odd-index and even-
index teams.

• Heuristic Operator is a specially designed CO operator
aimed at further enhancing the matching results obtained
through decoder output.

• Engagement Model provides engagement prediction for
each selected player with the players’ features and team-
up information as input.

As a typical reinforcement learning loop, in EnMatch, the
engagement model (i.e., the environment) provides a predic-
tion of user engagement (i.e., the reward signal) and updates
the matching pool (i.e., the state) which is subsequently
used to generate 2K players (i.e., the action). The decoder’s
matchmaking results and those obtained by the heuristic op-
erator are jointly optimized to encourage the decoder to out-
put good results from the beginning and be more heuristic
operator friendly.

MDP Formulation
In one episode of solving a user request (i.e., the matching
pool), the discrete-time MDP can be described as follows:
• State st ∈ S represents the matching pool Pt at time step
t. The matching pool is dynamic and each matchmaking
process removes 2K matched players.

• Action at ∈ A2k = {p |p ∈ Pt, | p |= 2K} of the agent
is to generate 2K players from all valid players.

• Transition P is deterministic here. Next state st+1 is ob-
tained by removing the selected players at from the cur-
rent matching pool st, i.e., st+1 = (Pt \ at).

• Reward rt is directly related to the estimated engage-
ment in the environment. Specifically, the reward is de-
fined as the sum of individual engagement of the two
competing teams Ta and Tb of match Mt at the t-th
step: rt =

∑
pi∈Mt

e
(
f i,fMt

)
, where e(·, ·) is the en-

gagement model, f i represents the features of player pi,
while fM represents the features of all players in a k-vs-
k match. Given the step limit T of the interaction between
the agent and environment, the return (i.e., cumulative re-
wards) from step t of the episode is Rt =

∑T
k=t γ

k−trk,
with the discount factor γ ∈ [0, 1].

• Policy π represents a conditional probability distribution
over all possible team compositions given a state.

Engagement Model
The engagement model of EnMatch, depicted in Figure 2(c),
predicts each player’s engagement by taking into account
their granular in-game performance. To aid in representa-
tion learning, an auxiliary task is integrated into the ini-
tial stages of model training, following the principles of
multi-task learning (Caruana 1997) and curriculum learn-
ing (Pentina, Sharmanska, and Lampert 2015), where mul-
tiple related tasks are learned simultaneously to enhance the
model’s generalization (Ruder 2017). Please refer to the Ap-
pendix for a comprehensive description of the network ar-
chitecture.

Policy Learning
In this subsection, we introduce the policy network used to
select an action given the state.
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Pruned Player Graph. The matching pool is described
by a pruned graph G = (V, E), where V = {v1, · · · , vn}
denotes players P with features V ∈ Rn×dv and edges E
indicate whether two players can be matched together. Ex-
pert knowledge can be included here to prune this graph.
For example, we may not want a very large tier gap within
a game and specify a maximum acceptable tier gap as 3.
As shown in Figure 2(b), in this scene, edges among play-
ers with tier gaps larger than 3 will be removed. These prior
rules can to some extent ensure game fairness and directly
prevent extremely poor gaming experiences, and are taken
into consideration again in the masked decoder.

Graph Encoder. The Graph Neural Network (GNN) is
widely employed in the NCO field for variable space rep-
resentation due to its potential to process instances of any
size by sharing parameters across all variables (Khalil et al.
2017; Joshi, Laurent, and Bresson 2019; Ma et al. 2019).
We parametrize the encoder part of policy πθ (at | st) by a
graph attention network (GAT), a GNN variant broadly used
in various tasks (Kipf and Welling 2016; Duvenaud et al.
2015; Yao, Mao, and Luo 2019), with the graph convolution
layer expressed as below:

h
(0)
i = W0xi + b0 (3)

h
(l+1)
i = σ

LN

 n∑
j=1

1√
didj

Aijh
(l)
j W (l) + b(l)


(4)

Where the W0 and b0 are linear projection parameters for
the input feature vector xi, LN(·) represents the layer nor-
malization operation, h(l+1)

i is the output feature vector of
the i-th node in the (l + 1)-th layer, σ(·) is the Tanh activa-
tion function, Aij is the adjacency matrix, h(l)

j is the feature
vector of the j-th node in the l-th layer, W (l) is the weight
matrix, b(l) is the bias vector, di and dj are the degrees of
the i-th and j-th nodes, respectively.

Masked Decoder. Recently, RNNs (Gong et al. 2019),
Transformer Decoder (Vaswani et al. 2017), and GPT De-
coder (Radford et al. 2019) have been widely used to map

the encoder embeddings to a correlated output sequence in
an autoregressive manner, so does in our proposed frame-
work. As shown in Figure 2(e), we employ Transformer De-
coder to decode the action at =

{
a0t , . . . , a

2K−1
t

}
, where

ait refers to a specific player. The structure of our masked
decoder is similar to the pointer network (Vinyals, Fortu-
nato, and Jaitly 2015b; Bello et al. 2016) and well simplified
for faster online predicting. Instead of working on large dis-
crete action spaces like the pointer network, we address it
with a continuous action space and combine policy gradi-
ents with a KNN (K-Nearest Neighbor) search, i.e., finding
the K closest vectors from a set of vectors to a query vector
h. The cosine similarity metric is used to measure the simi-
larity between the vectors. In order to take into account the
constraints between players, at each decoding step, we ap-
ply a masked softmax on the cosine similarity scores oi to
output the action probabilities corresponding to unselected
player pi, which can be done by simple masking:

Mask(x) =
{
xi, if pi is a valid player,
0, otherwise.

(5)

MaskedSoftmax(x) = softmax(Mask(x)) (6)

ĥi =

{
cell(HL, ĥ0), if i = 0,

cell(HL, ĥi−1, . . . , ĥ0), if i > 0.

(7)

oi = TopK(cosine(ĥi, H
L)) (8)

ai ∼ Categorical(MaskedSoftmax(oi))
(9)

a = (a0, a1, . . . , a2K−1) (10)

where HL is the player embeddings of the last GCN layer,
the cell is the Transformer Decoder which consists of two
MHA layers, ĥi is the hidden state of the decoder at step i,
cosine is the cosine similarity operator which is followed by
TopK operation to truncate the top K optimal results, and ai

is the selected player at step i obtained by weighted sam-
pling or an argmax operation. The Mask function is used
to set the mask for invalid players to 0, which ensures that
the MaskedSoftmax only considers valid players. The action
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a = (a0, a1, . . . , a2K−1) is then enhanced by the heuristic
operator, and the engagement model provides the reward r.

Heuristic Operator. One of the main reasons for NCO’s
success is integrating learning models into problem-specific
heuristic operators. As shown in Figure 2(d), inspired by
the tier-based heuristic method, we design a heuristic oper-
ator for matchmaking based on Large Neighborhood Search
(LNS) (Wu et al. 2021a), which iteratively destroys and
repairs an initial solution. Unlike reinforcement learning,
which optimizes player allocation across multiple matches,
the heuristic operator focuses on enhancing the search capa-
bility of EnMatch within a single match. The operator takes
the initial assignment as input and iteratively destroys and
repairs the solution while searching neighborhood solutions
with a destroy probability p. Expert rules or the engagement
model then sorts these candidate solutions to obtain the op-
timal one. The algorithm is elaborately described in Algo-
rithm 1 located in the Appendix.

Policy Learning. Proximal Policy Optimization (Schul-
man et al. 2017) is an algorithm that integrates an estima-
tor of the policy gradient into a stochastic gradient ascent
algorithm for an agent following a stochastic policy πθ. The
commonly used gradient estimator, denoted as ĝ, takes the
form:

ĝ = Êt

[
Ât∇θlogπθ(at|st)

]
(11)

where Ât(st, at) is an estimator of the advantage function at
timestep t (Schulman et al. 2017; Wang et al. 2016), and is
utilized to reduce the variance of policy gradient algorithms.
The expectation Êt[·] represents the empirical average over
a finite batch of samples.

Discussion of Time Performance
After the model is trained, it must be deployed online while
satisfying certain latency requirements. A typical match-
making service request involves between 102 to 103 play-
ers and must be responded to in 300 milliseconds or less.
Some RL-based methods, such as GloMatch, define the ac-
tion as selecting one player, which results in high latency. A
commonly used time-saving approach is to divide the player
pool into several groups based on player tier, each having
nm players. However, as we have analyzed, engagement-
oriented matchmaking requires a larger and more diverse
player pool than a fair game one. Compared to methods
like GloMatch, EnMatch supports cross-tier matchmaking
and two to three times the number of players, and achieves
a three to four times speedup. During the online planning
phase, the optimal candidate generated by the heuristic op-
erator will be used as the final matchmaking assignment.

Simulation Experiments on Datasets
As existing public datasets lack player identity information
necessary to measure individual engagement, we first con-
duct an artificial experiment to address the balanced match-
making problem described in the preliminaries, which is
postponed to the appendix due to its length and complexity.

Dataset Matches Players Features Match Mode

SPG 851,648 33,873 22 3-vs-3
RPGPVP 400,985 185,232 36 15-vs-15

Table 3. Summary Statistics of the Datasets

EnMatch is effective in handling large combination spaces,
indicating its potential to support the modification of the
matchmaking objective from fair game to user engagement.
We further conduct several simulation experiments on two
industrial datasets to evaluate our framework.

Experimental Settings
The statistics of two industrial datasets are given in Table 3,
which are SPG dataset, collected from a popular online bas-
ketball game, and RPGPVP dataset (Deng et al. 2021), col-
lected from a well-known MMORPG game. Following the
setting of EOMM (Chen et al. 2017) and GloMatch (Deng
et al. 2021), the engagement is measured by the probability
of players remaining active within 30 minutes, and we as-
sume a matching pool of 120 candidate players, i.e., build-
ing 20 and 4 matches for these two datasets, respectively.
The Tier-based Heuristics and EnMatch limit the number
of scoring candidate sets to 100 and 1,000 for these two
datasets, respectively. For all the experiments, we are using a
single GeForce GTX 2080 Ti GPU, 8CPU, and 64GB mem-
ory. More experiment details, including data process, data
split, feature design, hyperparameters, and simulation pro-
cess are listed in the Appendix.

Baselines
We consider the following baselines, including match out-
come predictors (EOMM, OptMatch (Gong et al. 2020),
and MBNet (Deng et al. 2021)), heuristic matchmaking
approaches (Tier-based Heuristics), general NCO methods
(PointerNetwork (Bello et al. 2016)), and deep learning
based matchmaking (GloMatch (Deng et al. 2021)). A de-
tailed description of baselines is listed in the Appendix.

Results and Analysis
The results of the engagement modeling on the two datasets
are shown in Table 4. We can find that EnMatchNet without
auxiliary achieves similar results compared to MBNet (i.e.,
GloMatch) and OptMatchNet, while EnMatchNet achieves
the best performance in both accuracy and AUC metrics
with an improvement of 3.23%/2.57% and 2.86%/2.92%,
respectively, over the second-best method. It suggests that
the use of high-resolution intermediate labels as auxiliary
tasks can enhance the accuracy and efficiency of the engage-
ment prediction, which is consistent with our data analysis
results. Using the learned engagement model as a reward
function, we report the matchmaking performance on the av-
erage reward per episode (120 players) on the simulation set-
tings, which is summarized and shown in Table 5. EnMatch
achieves higher rewards in both datasets, with improvements
of 2.15% and 11.76%, respectively. The performance gain is
particularly significant in 15-vs-15 scenes where the search
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SPG RPGPVP

ACC AUC ACC AUC

EOMM 0.679 0.606 0.725 0.681
OptMatchNet 0.703 0.657 0.755 0.744
MBNet 0.711* 0.663 0.769 0.752*

EnMatchNet w/o aux. 0.708 0.664* 0.778* 0.751
EnMatchNet 0.734 0.683 0.798 0.774
Improvement 3.23% 2.86% 2.57% 2.92%

Table 4. Classification metrics of the player engagement pre-
diction model for two datasets, where * denotes the second
best result.

Reward SPG RPGPVP

Random 49.3 (±4.4) 40.1 (±7.6)
Tier-based Heuristics 64.7 (±0.3) 51.9 (±0.6)
PointNetwork 62.3 (±1.2) 47.6 (±2.7)
GloMatch 61.9 (±1.6) 52.7* (±3.1)
OptMatch 65.1* (±0.4) 51.2 (±0.8)
EnMatch 66.5 (±0.9) 58.9 (±1.5)
Improvement 2.15% 11.76%

Table 5. Performance comparison for different matchmak-
ing methods in the two simulation environments in terms of
the cumulative reward per episode (a larger value means a
higher player retention).

space is larger. The results prove the applicability of En-
Match to act as an engagement optimizer. RL-based Glo-
Match and search-based methods, including OptMatch and
tier-based heuristics, show different performance strengths.
Search-based methods are better for local search within a
single game, making it effective in SPG, while GloMatch
is better for making decisions for multiple games simulta-
neously, which determines its effectiveness in the RPGPVP
dataset. EnMatch combines the strengths of both RL and
search heuristics by incorporating NCO for optimal perfor-
mance in both scenes.

Online Deployment
We applied our proposed engagement-oriented matchmak-
ing system to industrial matchmaking services in SPG and
RPGPVP, with the system primarily running three fair
game algorithms: tier-based heuristic method, OptMatch-
fair, and GloMatch-fair. In a two-week online A/B testing,
we compare EnMatch’s performance with OptMatch-fair
and GloMatch-fair, as well as the three baselines adjusted
to optimize for player engagement.

Results
To account for the impact of different algorithms on play-
ers’ daily retention, we use the total number of matches
played under the same A/B testing traffic as an engage-
ment metric, instead of the average number of matches per
player. This metric is equivalent to the sum of player reten-
tion events, where a retention event is defined as a player

Num. of matches SPG RPGPVP

OptMatch-fair 197,862 50,637
GloMatch-fair 195,993 50,795
Tier-based Heuristics 216,720 53,671
OptMatch 219,284* 54,924
GloMatch 214,973 55,133*

EnMatch 222,880 59,097
Improvement 1.64% 7.19%

Table 6. Online performance comparison on two games.

participating in the next match within 30 minutes. As ex-
pected, engagement-oriented algorithms, such as OptMatch
and GloMatch, resulted in more match sessions for play-
ers compared to their fair counterparts, OptMatch-fair and
GloMatch-fair. Tier-based heuristics and OptMatch perform
well in the SPG scene for 3-vs-3 matches with a small com-
bination space. However, in the large search space RPGPVP
scene (15-vs-15), GloMatch outperforms heuristics and Opt-
Match, but still lagged behind EnMatch, which is consistent
with our simulation experiments. EnMatch achieves larger
numbers of matches in both games, indicating higher player
retention. Although our optimization goal is the retention of
the next match, the metric which has considered daily player
retention still achieved significant growth. It shows that en-
gagement matchmaking is also meaningful in the long term.

System Performance
Our policy network’s single inference time is 20-30 millisec-
onds with a GPU device and 200-300 milliseconds with a
CPU device. Based on online service logs, matchmaking re-
quests typically involve less than 400 players, and the En-
Match based system takes less than 200 milliseconds on av-
erage to respond to one matchmaking request using a GPU.
Our method can handle more players at once than state-of-
the-art methods like OptMatch and GloMatch, without re-
quiring grouping, due to its powerful capacity for solving
combinatorial optimization.

Conclusion
We propose EnMatch, a novel framework for engagement-
optimized matchmaking in more general k-vs-k scenes from
the view of neural combinatorial optimization. EnMatch
consists of three components: an engagement predictive
model, a heuristic operator, and an encoder-decoder net-
work, which are independent and can be tuned or replaced
for specific applications. Moreover, not limited to match-
making in games, the formulation and optimization tech-
niques of EnMatch are general and can be further applied
to combinatorial optimization (CO) problems, particularly
assignment problems, with non-linear objectives, which are
left as future work.
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