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Abstract

Knowledge graph completion (KGC) aims to study the em-
bedding representation to solve the incompleteness of knowl-
edge graphs (KGs). Recently, graph convolutional networks
(GCNs) and graph attention networks (GATs) have been
widely used in KGC tasks by capturing neighbor informa-
tion of entities. However, Both GCNs and GATs based KGC
models have their limitations, and the best method is to ana-
lyze the neighbors of each entity (pre-validating), while this
process is prohibitively expensive. Furthermore, the represen-
tation quality of the embeddings can affect the aggregation
of neighbor information (message passing). To address the
above limitations, we propose a novel knowledge graph com-
pletion model with mixed geometry message and trainable
convolutional attention network named MGTCA. Concretely,
the mixed geometry message function generates rich neigh-
bor message by integrating spatially information in the hyper-
bolic space, hypersphere space and Euclidean space jointly.
To complete the autonomous switching of graph neural net-
works (GNNs) and eliminate the necessity of pre-validating
the local structure of KGs, a trainable convolutional atten-
tion network is proposed by comprising three types of GNNs
in one trainable formulation. Furthermore, a mixed geome-
try scoring function is proposed, which calculates scores of
triples by novel prediction function and similarity function
based on different geometric spaces. Extensive experiments
on three standard datasets confirm the effectiveness of our in-
novations, and the performance of MGTCA is significantly
improved compared to the state-of-the-art approaches.

Introduction
Knowledge graphs (KGs) represent real-world data as fact
triples (head entity, relation, tail entity), which have shown
great research value and application prospect. KGs are
widely used in many downstream tasks, such as question
answering (Kaiser, Saha Roy, and Weikum 2021), dialogue
generation (Keizer et al. 2017), semantic search (Xiong,
Power, and Callan 2017), and recommender systems (Wang
et al. 2021b). Even though the scale of many public KGs
is noticeably large such as Yago3 (Mahdisoltani, Biega, and
Suchanek 2013) and Freebase (Bollacker et al. 2008), they
are still confronted with incompleteness because there are
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many missing relations among them. Therefore, knowledge
graph completion (KGC) has attracted extensive attention
and attempts to automatically find out missing facts. Knowl-
edge graph embedding (KGE) is an effective solution for
KGC task, and many of them have been proposed such
as (Bordes et al. 2013; Yang et al. 2015; Dettmers et al. 2018;
Vashishth et al. 2020a; Li et al. 2022; Ge et al. 2023). KGE
approaches aim to embed entities and relations into a low-
dimensional vector space and define scoring functions to as-
sess the plausibility of triples for link prediction. Although
these methods are simple and efficient, they are significantly
reliant on the pre-defined scoring function and rather chal-
lenging to encode structural information about an entity into
a single vector (Dai et al. 2022).

In order to capture the intrinsic graph structure of KGs,
graph neural networks (GNNs) (Gilmer et al. 2017; Javaloy
et al. 2023) have been used for KGC task. GNNs based
KGC models learn the hidden representation of each en-
tity by aggregating its corresponding local neighbors’ in-
formation (Dai et al. 2022; Wang et al. 2023). Recently,
many studies tend to model KGs by diverse types of
GNNs such as graph convolutional networks (GCNs) (Kipf
and Welling 2017) based models R-GCN (Schlichtkrull
et al. 2018), CompGCN (Vashishth et al. 2020b), and
LTE-ConvE (Zhang et al. 2022); graph attention net-
works (GATs) (Veličković et al. 2018) based models MR-
GAT (Dai et al. 2022), GreenKGC (Wang et al. 2023)
and Ae2KGR (Shang et al. 2023b). Although these ap-
proaches have shown promising performance, they still suf-
fer from several evident limitations as follows: (i) Data de-
pendence. Both GCNs and GATs based KGC models have
their strengths and limitations because they are data sensi-
tive, which results in the problem of data dependence. GCNs
based KGC approaches fully summarize neighbor messages
to endow the central entity with sufficient structural informa-
tion, while they tend to stack redundant information when
there are various neighbors. GATs based KGC approaches
introduces non-uniform score to each neighbors and can re-
duce the stacking of redundant information, while they tend
to focus on certain neighbor entities and weaken the struc-
tural information. Therefore, the local structure of each en-
tity can influence the performance of GCNs and GATs. The
best method is to analyze the neighbors of each entity be-
fore selecting GCNs or GATs (pre-validating), while this
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process is prohibitively expensive. (ii) Message limitation.
The message function in GNNs can be affected by repre-
sentation quality of embeddings, which results in the prob-
lem of message limitation. The message functions (MFs) are
used to generate neighbor information and is a crucial com-
ponent for the GNNs based KGC methods (Nathani et al.
2019; Dai et al. 2022). Existing MFs are designed only in
Euclidean space (zero curvature), which cannot fully capture
the intrinsic structural information of KGs and may lead to
insufficient neighbor message. Therefore, exploring a new
message function can help aggregate local information for
GNNs and improve the representation quality of entity em-
beddings.

To address the above issues, in this paper, we propose
a Mixed Geometry message and Trainable Convolutional
Attention network based knowledge graph completion
model named MGTCA. In order to deal with the problem of
message limitation, MGTCA introduces a mixed geometry
message function (MGMF), which captures spatially infor-
mation in the hyperbolic space (negative curvature), hyper-
sphere space (positive curvature) and Euclidean space (zero
curvature) jointly. In addition, MGMF integrates these infor-
mation into message through geometric mapping and linear
transformation. In order to deal with the problem of data
dependence, MGTCA presents a trainable convolutional at-
tention network (TCAN), which comprises different types
of GNNs in one trainable formulation. TCAN aims to elim-
inate the necessity of pre-validating the local structure of
KGs, complete the autonomous switching of GNNs types,
and learn the amount of attention required for each local
structure. Furthermore, to calculate scores of triples, we pro-
pose a mixed geometry scoring function with novel predic-
tion function and similarity function based on the three geo-
metric spaces. Our contributions are summarized as follows:
• We propose a mixed geometry message function to gen-

erate rich neighbor message by integrating spatially in-
formation in the hyperbolic space, hypersphere space and
Euclidean space jointly. To the best of our knowledge, we
are the first to explore to generate mixed geometric mes-
sage in GNNs based KGC methods.

• We propose a trainable convolutional attention network
to complete the autonomous switching of GNNs types
and learn the amount of attention required for each lo-
cal structure by comprising different types of GNNs in
one trainable formulation. To the best of our knowledge,
we are the first to explore the autonomous switching of
GNNs types in KGC task.

• We propose a mixed geometry scoring function to cal-
culate scores of triples by novel prediction function and
similarity function based on three geometric spaces.

• We conduct extensive experiments on three benchmark
datasets. The results show that MGTCA achieves state-
of-the-art performance compared to existing models.

Related Work
Non-Euclidean KGC Models
Modeling KGs in non-Euclidean spaces has attracted con-
siderable attention, which can capture the complex struc-

tures of KGs by specific geometric space and improve
the representation quality of embeddings. ManifoldE (Xiao,
Huang, and Zhu 2016a) expands pointwise modeling in the
translation based principle to manifoldwise space (e.g., hy-
persphere space). MuRP (Balazevic, Allen, and Hospedales
2019) learns KG embeddings in hyperbolic space to cap-
ture the hierarchical structure in the KG. RotH (Chami et al.
2020) introduces the hyperbolic geometry on the basis of
the rotation. Meng’s (Meng et al. 2019) proposes a spher-
ical generative model and learns word and paragraph em-
beddings jointly. These works model the KG in only one
geometric space, which can not capture the complex spatial
structure of KGs. Recently, in order to make full use of the
advantages of each geometric space, M2 GNN (Wang et al.
2021a) constructs a generic graph neural network frame-
work to model multi-relational KG. HBE (Pan and Wang
2021) fine-tunes the operator and fix model in polar coor-
dinate system to embed KGs. GIE (Cao et al. 2022) is pro-
posed to embrace semantic matching between entities and
satisfy the key of relational representation learning.

Euclidean KGC Models
Euclidean KGC Models capture the information of KGs
and prediction missing facts in Euclidean space. Gener-
ally, existing Euclidean KGC models can be divided into
four groups: (i) Translation-based models consider the rela-
tions as translation between head and tail entities and design
scoring function based on distances, such as TransE (Bor-
des et al. 2013), TransH (Wang et al. 2014), TransR (Lin
et al. 2015), TransG (Xiao, Huang, and Zhu 2016b), RotatE
(Sun et al. 2019), RotatE-IAS (Yang et al. 2022), HousE (Li
et al. 2022), and CompoundE (Ge et al. 2023). (ii) Seman-
tic matching models design scoring function by similarity
matching of vector or matrix, such as RESCAL (Nickel,
Tresp, and Kriegel 2011), DistMult (Yang et al. 2015), Com-
plEx (Trouillon et al. 2016), TuckER (Balažević, Allen, and
Hospedales 2019), and HAKE (Zhang et al. 2020). (iii) Con-
volutional neural networks (CNNs) based Models employ
multi-layer CNNs to generate more expressive embeddings,
such as ConvKB (Nguyen et al. 2018), ConvE (Dettmers
et al. 2018), and InteractE (Vashishth et al. 2020a). (iv)
Graph neural networks (GNNs) based models utilize GNNs
to update the embeddings of entities and relations based on
the structural information of the knowledge graph, such as
R-GCN (Schlichtkrull et al. 2018), KBGAT (Nathani et al.
2019), CompGCN (Vashishth et al. 2020b), ATTH (Chami
et al. 2020), HittER (Chen et al. 2021), Rot-Pro (Song,
Luo, and Huang 2021), SE-GNN (Li et al. 2022), LTE-
ConvE (Zhang et al. 2022), MRGAT (Dai et al. 2022),
HADC (Shang et al. 2023a), ConKGC (Shang et al. 2023c),
and GreenKGC (Wang et al. 2023).

Although the aforementioned GNNs based models have
achieved satisfactory performance, they use a single type
of GNNs to learn embeddings, which will degrade the rep-
resentation quality of embeddings because both GCNs and
GATs have their limitations when aggregating neighbor in-
formation. Furthermore, the message function of them are
in Euclidean space, which cannot fully capture the intrinsic
structural information of KGs.
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Preliminaries
Geometric Space
Geometric spaces are distinguished according to the value
of the curvature. Specifically, the curvature c is negative for
hyperbolic space H, positive for hypersphere space S, and
zero for Euclidean space E. The Poincaré ball is a popu-
lar model for describing the geometric space in mathemat-
ical language (Nickel and Kiela 2017; Chami et al. 2020;
Xiao et al. 2022), which has basic mathematical operations
(e.g., addition, multiplication) and provides closed-form ex-
pressions for many basic objects such as distance and an-
gle (Ganea, Bécigneul, and Hofmann 2018). The principled
generalizations of basic operations in hypersphere space are
similar to operations in hyperbolic space, except that the cur-
vature c > 0. Therefore, here we only introduce the opera-
tion of hyperbolic space, the operation of hypersphere space
can be obtained by analogy.

The hyperbolic space can be formalized as an approxi-
mated vectorial structure by the framework of gyrovector
space (Ungar 2008). For two points x,y ∈ Hd

c in the hy-
perbolic space, the Möbius addition (Ganea, Bécigneul, and
Hofmann 2018) is used as the vector addition in Hd

c :

x⊕c y =
(1 + 2cxy + c||y||2)x + (1− c||x||2)y

1 + 2cxy + c2||x||2||y||2
, (1)

then the distance between these two points is measured
along a geodesic (shortest path between them) as follows:

dc(x,y) =
2√
c

arctanh(
√
c|| − x⊕c y||). (2)

The practical computations (addition, multiplication, etc)
in the hyperbolic space are often implemented using the tan-
gent space. For x ∈ Hd

c , the associated tangent space TxHd
c

is a d-dimensional Euclidean space. Exponential map and
logarithmic map can achieve the mutual transformation be-
tween the local hyperbolic space and the tangent space of
the point. The logarithmic map logcx transforms the point
to the tangent space, and the exponential map expcx trans-
forms back to the hyperbolic space. Specifically, these two
maps have more appealing forms when x = 0, namely for:
v ∈ T0Hd

c \ {0}, y ∈ Hd
c \ {0}:

expc0(v) = tanh(
√
c||v||) v√

c||v||
, (3)

logc0(y) = artanh(
√
c||y||) y√

c||y||
. (4)

Furthermore, the multiplication in hyperbolic space can
be defined by Möbius scalar multiplication between vectors
r ∈ E and x ∈ Hd

c :

r ⊗c x =
1√
c

tanh
(
rtanh−1(

√
c||x||)

) x

||x||
, (5)

Knowledge Graph Completion
A knowledge graph (G) can be formulated as G =
{E ,R, T }, where E and R represent the set of enti-
ties (nodes) and relations (edges), respectively. T =
{(h, r, t)|h, t ∈ E , r ∈ R} is triple set in G, and r ∈ R

is the relation between entity h and t. KGC approaches
first project entities h ∈ E onto entity embedding matrix
{h ∈ E | E ∈ R|E|×d} and relations r ∈ R onto rela-
tion embedding matrix {r ∈ R | R ∈ R|R|×d}, where
|E| and |R| represent the total number of entities and rela-
tions respectively, d is the embedding dimension. The link
prediction task aims to predict the tail entity t for a query
(h, r, ?) or head entity for a query (?, r, t). Such a goal
is achieved by designing and learning a scoring function
Φ(h, r, t) = ξ(ϕ(h, r), t). ϕ(h, r) is prediction function,
which predicts the tail entity embedding t′. ξ(t′, t) is simi-
larity function, which measures the similarity between the
predicted tail entity embedding t′ and the true tail entity
embedding t. The scoring function also directly affects the
model performance. Furthermore, The goal of the optimiza-
tion is to score a correct triple higher than incorrect triples.

Methodology
In this section, we show the formal description and imple-
mentation details of our proposed model MGTCA. We start
by introducing the mixed geometry message function. Then
we describe the trainable convolutional attention network.
Next, we present the mixed geometry scoring function. In
the end, we provide loss function. The overall framework of
MGTCA is shown in Figure 1.

Generally, the whole model contains L layers, the input to
l-th layer (l = 1,...,L) are two embedding sets: (1) the output
entity embedding matrix El−1 =

{
el−11 , el−12 , ..., el−1|E|

}
∈

R|E|×d from (l-1)-th layer, where |E| is the number of enti-
ties, and d is the dimension of embeddings. (2) the output re-
lation embedding matrix Rl−1 =

{
rl−11 , rl−12 , ..., rl−1|R|

}
∈

R|R|×d from (l-1)-th layer, where |R| is the number of re-
lations. The l-th layer then produces the corresponding new
output embedding matrices (of potentially different cardi-
nality), El ∈ R|E|×d and Rl ∈ R|R|×d. Specifically, we
describe the l-th layer of our model.

Mixed Geometry Message Function
Graph neural networks (GNNs) (Gilmer et al. 2017) have
been widely used in knowledge graph completion tasks,
which can update the embeddings of entities by aggregat-
ing the information from their neighbors based on message
function (MF). In this way, the entity embeddings can ob-
tain structural information. The message function is used to
generate neighbor information and is a crucial component
for the GNNs based KGC methods (Nathani et al. 2019; Dai
et al. 2022). Recently, many MF for KGC task have been
proposed and achieved satisfactory results in the Euclidean
space (zero curvature). However, KGs usually contain rich
structural information and they cannot be captured in the Eu-
clidean space, which leads to insufficient neighbor informa-
tion passed by MF. To alleviate this problem, we propose a
mixed geometry message function to integrate spatially in-
formation in diverse geometric spaces (hyperbolic, hyper-
sphere and Euclidean spaces).

Specifically, given a central entity hi and its neighbor set
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Figure 1: The overall framework of MGTCA. The embeddings are learned by multi layer trainable convolutional attention
network with mixed geometry message function, and then are fed into mixed geometry scoring function for link prediction. H,
S, and E represent hypersphere space, hypersphere space, and Euclidean space respectively.

Ni = {(rj , tj) | (hi, rj , tj) ∈ T }, which denotes all neigh-
bors of entity hi. The messages in the three geometric spaces
can be defined as follows:

El
j = rl−1j tl−1j ,

H l
j = rl−1j ⊗cl1

expc
l
1

0 (tl−1j ),

Sl
j = rl−1j ⊗cl2

expc
l
2

0 (tl−1j ),

(6)

where rl−1j and tl−1j denote the embeddings of relation rj
and tail entity tj in Euclidean space in (l-1)-th layer respec-
tively, cl1 < 0 and cl2 > 0 are two trainable curvatures for
hyperbolic and hypersphere spaces in l-th layer respectively,
the operation⊗ is related to Eq. (5) and expc0 is the exponen-
tial map (Eq. (3)). Messages El

j , H l
j , and Sl

j in l-th layer
are from different geometric spaces, we combine them and
define our mixed geometry message function as follows:

φl(rl−1j , tl−1j ) = W l
m

[
El

j ‖ logc
l
1

0 (H l
j) ‖ logc

l
2

0 (Sl
j)
]
,

(7)
where W l

m ∈ Rd×3d is a trainable transformation matrix, ‖
denotes the concatenation of embeddings, logc0 is logarith-
mic map (Eq. (4)). It should be noted that the input and out-
put of φl(rl−1j , tl−1j ) are in Euclidean space, but the output
message contain rich spatially information from the three
geometric spaces. In this way, we can improve embedding
representation quality without burdening vector storage.

Trainable Convolutional Attention Network
Recently, many GNNs based KGC models have been pro-
posed. Graph convolutional networks (GCNs) (Kipf
and Welling 2017) and graph attention networks
(GATs) (Veličković et al. 2018) are two important and
widely used GNNs. For a given central entity hi, the
message passing function of GCNs for KGC task can be
defined as follows:

h̄
l
i = σ(ĥ

l

i) where ĥ
l

i =
1

|Ni|
∑
j∈Ni

φl(rl−1j , tl−1j ), (8)

where h̄
l
i represents the generated embedding of entity hi

in l-th layer, σ(·) is an activation function, Ni denotes the
neighbors of hi, φl(rl−1j , tl−1j ) is our proposed mixed ge-
ometry message function (Eq. (7)). And the message passing
function of GATs for KGC task is defined as follows:

h̄
l
i = σ(ĥ

l

i) where ĥ
l

i =
∑
j∈Ni

αl
ijφ

l(rl−1j , tl−1j ),

αl
ij =

exp(ψl(hl−1
i , rl−1j , tl−1j ))∑

k∈Ni
exp(ψl(hl−1

i , rl−1k , tl−1k ))
,

ψl(hl−1
i , rl−1j , tl−1j ) =

LeakyRelu(al>[W l
qh

l−1
i ‖W l

kφ
l(rl−1j , tl−1j )]),

(9)

where W l
q ∈ Rdh×d, and W l

k ∈ Rdh×d are trainable
transformation matrices in l-th layer, dh is the dimension
of hidden embedding, al is the attention vector in l-th
layer, ‖ denotes the concatenation of two embeddings, and
ψl(hl−1

i , rl−1j , tl−1j ) is the attention function in l-th layer.

GCNs based KGC models treat the neighbors of enti-
ties equally and can fully summarize neighbor messages
to endow the central entity with sufficient structural infor-
mation, while they may stack redundant information when
there are various neighbors. GATs based KGC models intro-
duces non-uniform score to each neighbors and can reduce
the stacking of redundant information, while they tend to fo-
cus on certain neighbor entities and weaken the structural
information. Based on the above observations, we can con-
clude that both GCNs and GATs based KGC approaches are
sensitive to KG structures (properties of entity neighbors).
The best method to deal this problem is to analyze the neigh-
bors of each entity (pre-validating), while this process is
prohibitively expensive. Therefore, we propose a knowledge
graph convolutional attention network (KGCAT), which ap-
plies the convolutional operation to the attention function
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based on Eq. (9):

ψl(hl−1
i , rl−1j , tl−1j ) =

LeakyRelu(al>[W l
qh̃

l

i ‖W
l
kφ

l(rl−1j , t̃
l

j)]),

h̃
l

i =
1

1 + |Ni|

(
hl−1
i +

∑
k∈Ni

φl(rl−1k , tl−1k )

)
,

(10)

where h̃
l

i and t̃
l

j are the convolved embeddings of the cen-
tral entity hi and neighbor entity tj in l-th layer respectively.
Using the convolution operation before the attention mech-
anism can give the central entity sufficient structural infor-
mation while avoiding redundant information stacking. But
this method is a compromise, which may cover up the origi-
nal advantages of GCNs and GATs. To this end, we propose
a trainable convolutional attention network (TCAN), and its
attention function is defined as follows:

ψl(hl−1
i , rl−1j , tl−1j ) =

αlLeakyRelu(al>[W l
qh̃

l

i ‖W
l
kφ

l(rl−1j , t̃
l

j)]),

h̃
l

i =
hl−1
i + βl

∑
k∈Ni

φl(rl−1k , tl−1k )

1 + βl|Ni|
,

(11)

where αl, βl ∈ [0, 1] are two trainable coefficients in l-
th layer. According to these two coefficients, TCAN can
be transformed into GCNs (αl = 0), GATs (αl = 1 and
βl = 0), and KGCAT (αl = 1 and βl = 1). TCAN elim-
inates the necessity of pre-validating the local structure of
KGs by comprising three types of GNNs in one trainable for-
mulation. Furthermore, it completes the autonomous switch-
ing of GNNs types and can learn the amount of attention
required for each local structure.

Our model contains L layers, each of them has a train-
able convolutional attention network and mixed geometry
message function. The output of the final layer is the gener-
ated embeddings of entities with rich structural information,
which are fed into scoring function for link prediction.

Mixed Geometry Scoring Function
For a triple (h, r, t), the scoring function Φ(h, r, t) =
softmax(ξ(ϕ(h, r), t)) is composed of prediction function
t′ = ϕ(h, r) and similarity function ξ(t′, t). In this work,
we propose a novel prediction function as follows:

t′ = ϕ(h, r) = W p [h ‖ r] + bp, (12)

where W p ∈ Rd×2d is a trainable transformation matrix, bp

is bias, t′ is the predicted embedding of tail entity t. Con-
sidering that the embeddings contain the information from
hyperbolic, hypersphere and Euclidean spaces, we propose
a novel geometric similarity function as follows:

ξ(t′, t) = d0(t′, t) + dc1(expc1
0 (t′), expc10 (t))+

dc2(expc2
0 (t′), expc20 (t)),

(13)

where dc(·) is the distance function (Eq. (2)), c1 < 0 and
c2 > 0 are two trainable curvatures for hyperbolic and hy-
persphere spaces. Finally, the softmax function is employed
on the absolute score calculated by the similarity function to
get the relative score of each triple.

Datasets Entities Relations
Train
triples

Validation
triples

Test
triples

FB15k-237 14,541 237 272,115 17,535 20,466
YAGO3-10 123,182 37 1,079,040 5,000 5,000
WN18RR 40,943 11 86,835 3,034 3,134

Table 1: Statistics of the datasets used in this paper.

Training and Optimization
Our objective is to minimize the Bernoulli negative log-
likelihood, based on which the loss function of MGTCA is
defined as follows:

L =
∑

(h,r,t)∈T

− 1

N

N∑
i=1

(y(h, r, ti)log(pi)

+ (1− y(h, r, ti))log(1− pi)),

(14)

where y(h, r, ti) is the label (1 or 0) of the triple (h, r, ti),
pi = Φ(h, r, ti) is the score calculated by scoring func-
tion, N denotes the number of candidates for the tail en-
tity. We use Adam (Kingma and Ba 2015) as optimizer, and
label smoothing (Szegedy et al. 2016), Dropout (Srivastava
et al. 2014), Batch normalization (Ioffe and Szegedy 2015)
to lessen overfitting.

Experiments
Experimental Setup
Datasets We evaluate our proposed model by three stan-
dard datasets: FB15k-237 (Toutanova et al. 2015), YAGO3-
10 (Dettmers et al. 2018), and WN18RR (Dettmers et al.
2018). FB15k-237 is a subset of FB15k (Bordes et al. 2013),
in which the inverse relations are removed. YAGO3-10 is
a subset of YAGO3 (Mahdisoltani, Biega, and Suchanek
2013), which constitutes entities with at least 10 relations.
WN18RR is a subset of WN18 (Bordes et al. 2013) and the
main relation patterns are symmetry/antisymmetry and com-
position. The details of them are summarized in Table 1.

Evaluation Metrics Following previous work (Dettmers
et al. 2018), our model is evaluated with link prediction task:
ranking all entities to predict the tail entity in query (h, r, ?)
or the head entity in query (?, r, t). We adopt four evaluation
metrics: the average inverse rank of the test triples mean re-
ciprocal rank (MRR), and the proportion of correct entities
ranked in top k Hits@k (k ∈ {1, 3, 10}). We follow the
standard evaluation protocol in the filtered setting: all true
triples in the KG are filtered out during evaluation.

Baselines We compare results with the following SOTA
models: Euclidean approaches TransE (Bordes et al. 2013),
ConvE (Dettmers et al. 2018), RotatE (Sun et al. 2019),
CompGCN (Vashishth et al. 2020b), HittER (Chen et al.
2021), LTE-ConvE (Zhang et al. 2022), RotatE-IAS (Yang
et al. 2022), MRGAT (Dai et al. 2022), GreenKGC
(Wang et al. 2023), and CompoundE (Ge et al. 2023).
Non-Euclidean approaches MuRP (Balazevic, Allen, and
Hospedales 2019), MuRS (Wang et al. 2021a), MuRMP
(Wang et al. 2021a), HBE (Pan and Wang 2021), Rot-Pro
(Song, Luo, and Huang 2021), and GIE (Cao et al. 2022).
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Model
FB15k-237 YAGO3-10 WN18RR

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
Euclidean approaches

TransE .294 - - .465 - - - - .226 - - .501
ConvE .325 .237 .356 .501 .440 .350 .490 .620 .430 .400 .440 .520
RotatE .338 .241 .375 .533 .495 .402 .550 .670 .476 .428 .492 .571
CompGCN .355 .264 .390 .535 .489 .395 .500 .582 .479 .443 .494 .546
HittER .373 .279 .409 .558 - - - - .503 .462 .516 .584
LTE-ConvE .355 .264 .389 .535 - - - - .472 .437 .485 .544
RotatE-IAS .339 .242 .374 .532 - - - - .483 .467 .502 .570
MRGAT .358 .266 .386 .542 .552 .439 .561 .698 .481 .443 .501 .568
GreenKGC .345 .265 .369 .507 .453 .361 .509 .629 .411 .367 .430 .491
CompoundE .357 .264 .393 .545 - - - - .491 .450 .508 .576

Non-Euclidean approaches
MuRP .335 .243 .367 .518 .354 .249 .400 .567 .481 .440 .495 .566
MuRS .338 .249 .373 .525 .351 .244 .382 .562 .454 .432 .482 .550
MuRMP .345 .258 .385 .542 .358 .248 .389 .566 .473 .435 .485 .552
HBE .336 .239 .372 .534 - - - - .488 .448 .502 .570
Rot-Pro .344 .246 .383 .540 .542 .443 .596 .699 .457 .397 .482 .577
GIE .362 .271 .401 .552 .579 .505 .618 .709 .491 .452 .505 .575
MGTCA .393 .291 .428 .583 .586 .514 .629 .721 .511 .475 .525 .593

Table 2: Link prediction results of MRR and Hits@k on FB15k-237, YAGO3-10, and WN18RR datasets. The best score is in
bold and second best score is underlined.

Implementation Details We set layer number L = 5, at-
tention head number is 3, and dimension d = 200. Co-
efficients αl and βl (l = 1, ..., L) are initially set to 0.5.
For each dataset, the best performing hyper-parameters are
found by grid search on the validation set. All experiments
are performed on single NVIDIA GeForce RTX2080Ti
GPU, and are implemented by the PyTorch framework.

Results on Link Prediction
Main Results Table 2 presents the link prediction re-
sults on FB15k-237, YAGO3-10, and WN18RR datasets.
We strictly follow the experimental setting and data split-
ting of the previous work (Dettmers et al. 2018) and report
the results in the original papers for some baselines. It is
clear that our proposed model MGTCA achieves the best
performance on the vast majority of datasets by compar-
ing with existing state-of-the-art (SOTA) models. MGTCA
improves the four evaluation metrics by 2%-3% compared
to the SOTA results (underlined results) on the FB15k-237
dataset. Particularly, MRR and Hits@10 are improved from
0.373 to 0.393 and 0.558 to 0.583, respectively. On YAGO3-
10 and WN18RR datasets, MGTCA yields a significant im-
provement for Hits@3 and Hits@10 compared with SOTA
baselines. Furthermore, compared with GNNs based KGC
models such as MRGAT and GreenKGC, MGTCA achieves
definitive improvement on all datasets, which demonstrate
that our proposed trainable convolutional attention network
facilitates the exploration of local structures as well as the
learning of embeddings. Finally, MGTCA outperforms ex-
isting non-Euclidean approaches, the reason is that MGTCA
designs its unique mixed geometry message function and

1-1 1-N N-1 N-N
MRR H10 MRR H10 MRR H10 MRR H10

TransE .217 .407 .183 .399 .254 .381 .323 .510
ConvE .195 .401 .212 .410 .271 .397 .352 .531
MRGAT .178 .395 .237 .413 .294 .432 .371 .562
MGTCA .219 .411 .246 .421 .312 .447 .382 .572

Table 3: Link prediction results of MRR and Hits@10 from
different relation types on FB15k-237 dataset.

scoring function. These two functions integrate the spatially
information from three geometric spaces for message pass-
ing and link prediction respectively.

Analysis of Relations Generally, the number of relations
is much smaller than the number of entities in KGs, so the
same relation is usually connected to multiple entities, which
leads to multiple relation types. Following (Bordes et al.
2013), relations can be classified into four categories: one-
to-one (1-1), one-to-many (1-N), many-to-one (N-1), and
many-to-many (N-N). In order to verify whether MGTCA
can effectively deal with the challenge brought by different
relation types, we classify the relations in FB15k-237 into
the four types mentioned above. The link prediction results
of them is shown in Table 3. It can be found that MGTCA
is more advantageous for modeling KGs with various rela-
tion types. Specifically, MGTCA can better model complex
relations such as 1-N, N-1, and N-N types, the reason is that
the proposed mixed geometry message function is able to
capture the interactions between entities and relations.
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FB15k-237 YAGO3-10 WN18RR
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

w/o MGMF .377 .275 .411 .567 .568 .497 .610 .704 .496 .459 .509 .578
w/o H .380 .278 .413 .570 .570 .501 .613 .706 .499 .463 .511 .580
w/o S .381 .280 .414 .571 .571 .502 .612 .708 .501 .466 .513 .582
w/o E .380 .279 .412 .572 .571 .501 .613 .706 .501 .466 .513 .581
w/o MGSF .380 .280 .414 .569 .572 .499 .611 .706 .499 .465 .510 .581
MGTCA-GCN .381 .280 .415 .571 .574 .500 .612 .709 .501 .467 .512 .582
MGTCA-GAT .384 .284 .417 .573 .577 .503 .616 .712 .503 .470 .516 .585
MGTCA-KGCAT .387 .287 .421 .576 .580 .507 .620 .715 .506 .474 .520 .588
MGTCA .393 .291 .428 .583 .586 .514 .629 .721 .511 .475 .525 .593

Table 4: Ablation study results on three datasets. w/oMGMF represents removing mixed geometry message function (MGMF)
from MGTCA. w/o H, w/o S and w/o E denote removing hyperbolic, hypersphere and Euclidean space respectively. w/o
MGSF denotes removing mixed geometry scoring function (MGSF). MGTCA-M denotes that the proposed trainable convolu-
tional attention network (TCAN) is replaced by M .
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Figure 2: Values of α and β over layers.

Effect of α and β
The two coefficients α and β are important for our proposed
trainable convolutional attention network (TCAN). TCAN
can be transformed into GCNs (α = 0), GATs (α = 1 and
β = 0), and KGCAT (α = 1 and β = 1). The values
of these two coefficients reflect the characteristics of each
layer. Therefore, we observe their values in each layer on
FB15k-237 dataset, and the experimental results are shown
in Figure 2. It can be found that the value of α of the first
layer and the last layer are close to 0, so both layers can
be regarded as GCNs. The attention of the third layer plays
the largest role, and this layer has been approximately trans-
formed into KGCAT. The second and fourth layers are close
to GATs. Overall, the results fully verify the advantage of
MGTCA, that is, each layer of it can autonomously learn α
and β to adjust its GNNs type.

Ablation Study
Table 4 shows the ablation study results of our proposed
MGTCA on the three datasets, where we evaluate the inno-
vations of our model to judge their contribution. The com-
parison results indicate that our proposed mixed geometry

message function (MGMF), trainable convolutional atten-
tion network (TCAN) and mixed geometry scoring function
(MGSF) are all valid, that is, removing any of them will
make the model less effective. Specifically, we use the mes-
sage function from MRGAT (Dai et al. 2022) for removing
MGMF. The hyperbolic, hypersphere and Euclidean space
can be removed directly from our model, and the scoring
function is defined according to the rest spaces. For remov-
ing MGSF, we use the scoring function of ConvE (Dettmers
et al. 2018) for link prediction. MGMF integrates the spa-
tially information to generate rich neighbor message, TCAN
comprises different types of GNNs in one trainable formula-
tion, and MGSF designs novel prediction function and sim-
ilarity function based on the three geometric spaces. These
three innovations are important components of our model,
and the ablation results have verify their contribution. Fur-
thermore, removing any of geometric spaces in MGTCA
leads to a decline in model performance, which demonstrate
that they all contribute significantly to the message passing
and link prediction.

Conclusion
In this paper, we propose a mixed geometry message and
trainable convolutional attention network for knowledge
graph completion named MGTCA. MGTCA introduces a
mixed geometry message function to enrich the neighbor
message by integrating the spatially information in the hy-
perbolic space (negative curvature), hypersphere space (pos-
itive curvature) and Euclidean space (zero curvature) jointly.
To eliminate the necessity of pre-validating the local struc-
ture of KGs, complete the autonomous switching of GNNs
types, and learn the amount of attention required for each
local structure, MGTCA presents a trainable convolutional
attention network (TCAN) by comprising different types of
GNNs in one trainable formulation. Moreover, MGTCA de-
signs a mixed geometry scoring function to calculate scores
of triples by novel prediction function and similarity func-
tion based on the three geometric spaces. Empirical exper-
imental evaluations on three well-established datasets show
that MGTCA can achieve the state-of-the-art performance.
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