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Abstract

Link prediction is a fundamental task in network analysis,
with the objective of predicting missing or potential links.
While existing studies have mainly concentrated on single
networks, it is worth noting that numerous real-world net-
works exhibit interconnectedness. For example, individuals
often register on various social media platforms to access
diverse services, such as chatting, tweeting, blogging, and
rating movies. These platforms share a subset of users and
are termed multilayer networks. The interlayer links in such
networks hold valuable information that provides more com-
prehensive insights into the network structure. To effectively
exploit this complementary information and enhance link
prediction in the target network, we propose a novel cross-
network embedding method. This method aims to represent
different networks in a shared latent space, preserving prox-
imity within single networks as well as consistency across
multilayer networks. Specifically, nodes can aggregate mes-
sages from aligned nodes in other layers. Extensive experi-
ments conducted on real-world datasets demonstrate the su-
perior performance of our proposed method for link predic-
tion in multilayer networks.

Introduction
Link prediction (Kumar et al. 2020; Daud et al. 2020) is a
fundamental task in network analysis that aims to predict
missing or potential links in a network. It plays a crucial
role in various fields, including (i) social network analy-
sis (Kossinets and Watts 2006): suggesting new friendships;
(ii) recommender systems (Vahidi Farashah et al. 2021):
recommending relevant items or products to users; (iii) bi-
ological networks (Coşkun and Koyutürk 2021): predict-
ing protein-protein interactions; and (iv) pandemic forecast-
ing (Ma et al. 2022): predicting the spread of infectious dis-
eases. The objective of link prediction is to infer the likeli-
hood of a link between two nodes in a network based on the
observed network structural features and, if available, node
attribute features.

Numerous existing approaches have been developed for
link prediction, employing various techniques such as sim-
ilarity indices (Newman 2001; Zhou, Lü, and Zhang 2009),
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Figure 1: A example of multilayer networks. black lines rep-
resent intralayer links, blue lines represent interlayer links,
and black dashes represent non-observed intralayer links
that need to be predicted.

maximum likelihood models (Clauset, Moore, and New-
man 2008; Guimerà and Sales-Pardo 2009), matrix factor-
ization methods (Ding, Li, and Jordan 2010; Ma, Sun, and
Qin 2017), Skip-gram embedding (Grover and Leskovec
2016; Tang et al. 2015), deep learning models (Wang, Cui,
and Zhu 2016), and graph neural networks (GNNs) (Kipf
and Welling 2017; Hamilton, Ying, and Leskovec 2017;
Veličković et al. 2018). These methods have mainly focused
on single networks. However, there might be missing links
or noise in the single network, due to limitations in observa-
tion or sampling. This data insufficiency problem hinders the
performance of link prediction methods, which are sensitive
to network topology. Moreover, mining information from a
single network provides one-sided insights, as users exhibit
distinct characteristics and behavior patterns across differ-
ent networks. For example, the Facebook network captures
social friendships, the LinkedIn network focuses on employ-
ment relationships, the Douban network contains a common
interest in movies, and the DBLP network reveals coau-
thorship among scholars. We cannot tell if someone is gen-
uinely interested in the movie “Fast X” or just influenced by
their friends, using only the limited information revealed in
the movie rating network without knowledge of their social
friendships. To address these challenges, some researchers
have turned their attention to multilayer networks (Dickison,
Magnani, and Rossi 2016).

Interconnectedness is pervasive among real-world net-
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works. For example, individuals often register on multi-
ple social media platforms to access various services, such
as chatting, tweeting, blogging, and rating movies. Some
users display accounts from other platforms on their pro-
files, indicating cross-platform connections. Similarly, col-
laborative networks in different fields share a subset of re-
searchers, implying connections between these fields. Addi-
tionally, knowledge graphs share named entities across do-
mains. These interconnected networks are modeled as mul-
tilayer networks. The relationships between different net-
works hold valuable information that can enhance our un-
derstanding of the structure, patterns, and evolution of net-
works. By considering multilayer networks as complemen-
tary information, we can improve link prediction in the tar-
get network. While previous research has explored link pre-
diction in multilayer networks (Liu et al. 2017; Cao et al.
2018; Najari et al. 2019; Luo et al. 2022), these studies as-
sume complete knowledge of the correspondence between
nodes in all layers, e.g., multiplex networks. However, in
practice, obtaining complete interlayer relationships is chal-
lenging and expensive due to user privacy concerns and
platform policies. Consequently, researchers typically only
have access to a limited subset of interlayer links. Therefore,
this paper focuses on link prediction in multilayer networks,
where nodes in different layers are allowed to be partially
overlapped.

We propose a novel cross-network embedding model for
link prediction in multilayer networks, which represents dif-
ferent networks in a shared latent space based on GNNs.
Specifically, a random-walk-based objective function is em-
ployed to preserve proximity within each single network. To
leverage interlayer relationships as complementary informa-
tion, nodes aggregate messages not only from their neigh-
bors within the same layer but also from aligned nodes in
the other layer. Furthermore, consistency across multilayer
networks is maintained by minimizing the distance between
aligned nodes, which allows networks to be close in the em-
bedding space. The contributions of our work are summa-
rized as follows:

• We introduce a GNN-based model that enables nodes
to simultaneously aggregate messages from both their
neighbors in the same layer and aligned nodes in the
other layer. Each layer learns complementary informa-
tion from its counterpart layer.

• We develop a joint objective function to train the model,
which effectively preserves both the proximity within
single networks and consistency across multilayer net-
works.

• We extend some state-of-the-art methods designed for
single networks and compare them with our proposed
model in multilayer networks. Extensive experiments
conducted on real-world datasets demonstrate that our
proposed method outperforms the baselines for link pre-
diction in multilayer networks, especially with few inter-
layer links.

Related Works
Link Prediction
Various link prediction methods have been developed which
can be categorized into several types.

Similarity-based metrics assign a similarity score for each
non-observed link. Common Neighbors (CN) assumes that
two individuals with more common friends are more likely
to establish a friendship, and it calculates the number of
common neighbors for a given pair of nodes (Newman
2001). Resource Allocation Index (RA) considers the re-
source allocation process in networks and calculates the
amount of resource transported through the common neigh-
bors of two nodes (Zhou, Lü, and Zhang 2009).

Maximum likelihood models evaluate the likelihood of
each non-observed link, which may not be suitable for large-
scale networks due to their complexity and time-consuming
nature. Hierarchical structure model (HSM) suggests that
many real-world networks are hierarchically structured, and
it infers the likelihood of a hierarchical random graph to
predict missing links (Clauset, Moore, and Newman 2008).
Stochastic block model (SBM) distributes nodes into blocks
or communities and computes the link reliability (Guimerà
and Sales-Pardo 2009).

Matrix factorization methods extract the latent features
of each node and are considered dimensionality reduction
techniques. Some authors apply the Singular Value De-
composition (SVD), which maintains important information
based on the eigenvalues (Ding, Li, and Jordan 2010). Non-
negative matrix factorization has also been used to learn la-
tent structural features incorporating additional node/link at-
tribute information (Ding, Li, and Jordan 2010; Ma, Sun,
and Qin 2017).

Embedding-based methods have gained significant atten-
tion. Node2vec is a Skip-gram model that preserves neigh-
borhoods of nodes through biased random walks, taking
into account both exploration and exploitation (Grover and
Leskovec 2016). LINE preserves both first- and second-
order proximity (Tang et al. 2015). SDNE is a semi-
supervised deep autoencoder model that jointly preserves
local and global structure features (Wang, Cui, and Zhu
2016). GNN-based methods have achieved great success in
recent years. GCN aggregates information from a node’s lo-
cal neighborhood (Kipf and Welling 2017, 2016). Graph-
SAGE generates embeddings in an inductive manner and
is capable of handling large-scale graphs (Hamilton, Ying,
and Leskovec 2017). GAT introduces self-attention to as-
sign different importance to each pair of nodes (Veličković
et al. 2018). Chen et al. generalized GCN to simplicial com-
plexes by integrating interactions among multiple higher-
order graph structures (Chen, Gel, and Poor 2022).

Multilayer Link Prediction
Above works are modeled for link prediction in single-layer
networks having homogeneous links. However, many real-
world networks might be heterogeneous, developing differ-
ent types of links in multiple layers. Compared to single-
layer networks, multilayer networks can express richer in-
formation, thus drawing more attention recently.
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Similarity-based metrics: Hristova et al. extended Jac-
card Coefficient and Adamic/Adar Index to a multilayer sce-
nario (Hristova et al. 2016). Yao et al. proposed NSILR
which aggregates inter-layer and intra-layer similarity scores
based on layer-wise correlations (Yao et al. 2017). Najari et
al. developed LPIS synthesizing probability that combines
intra-layer and inter-layer information (Najari et al. 2019).
Aleta et al. generalized the Adamic-Adar Index to multiplex
networks via triadic closure (Aleta et al. 2020). Luo et al.
introduced EMLP algorithm that integrates similarity scores
from all layers using evidence theory (Luo et al. 2022).

Embedding based methods: Liu et al. proposed layer co-
analysis which modifies node2vec to multilayer networks,
traversing between layers by leveraging interactions among
layers (Liu et al. 2017). Cao et al. trained multiple neural
networks (MNN) targeting heterogeneous feature channels
and assigned the same embedding for aligned nodes (Cao
et al. 2018). Zhan et al. proposed collective link fusion
(CLF) to predict link probability using collective random
walk with restart (Zhan, Zhang, and Yu 2019). Jiang pro-
posed partially aligned GCNs that jointly learn embeddings
incorporating interlayer information (Jiang 2021). Du et al.
trained a Skip-gram embedding model CELP via a biased
random walk based on intra-network and cross-network dis-
tributions (Du et al. 2022). Alnaimy et al. employed matrix
factorization to obtain embeddings on the expanded graph
(EG) (Alnaimy and Desouki 2022).

Preliminaries
In this section, we will define some terminology and nota-
tions used in this paper, and provide the problem formulation
of link prediction in multilayer networks.

Definition 1. Multilayer networks: For simplicity, we
consider two undirected and unweighted networks Gs =
(Vs, Es) and Gt = (Vt, Et), where Vs, Vt are the sets of
nodes, and Es, Et are the sets of edges (intralayer links), re-
spectively. Gs, Gt can be referred to as layers, and they share
some nodes belonging to the same entities, i.e., Vs∩Vt ̸= ∅.
S = {(vi, vj)|vi ∈ Vs, vj ∈ Vt} is the set of interlayer
links between Gs and Gt. For ∀vi ∈ Vs ∪ Vt, at most one
interlayer link exists, i.e., |S| ≤ min(|Vs|, |Vt|). The mul-
tilayer networks can be defined by a triplet (Gs, Gt, S), as
Figure 1 shows. Note that multiplex networks are a special
case of general multilayer networks, where Vs = Vt = V ,
and |S| = |V |.

Definition 2. Link prediction: For the target network G =

(V,E), |V |·(|V |−1)
2 is the number of all possible links, de-

noted as the universal set U . The set of non-existing links
is U − E, and there may be some missing or potential links
in the set U − E. The aim of link prediction is to find such
missing or potential links. In the above multilayer network,
G ∈ {Gs, Gt}.

To evaluate the effectiveness of link prediction methods,
E is randomly divided into two parts ET and EP , named
the training set and the probe set (i.e. test set) respectively.
In general, a link prediction algorithm provides a similar-
ity score or linkage probability for each non-observed link
(x, y) ∈ U − ET .

Proposed Method
Cross-Network Embedding
GNNs can learn node representations by aggregating infor-
mation from neighbors, thereby capturing the underlying
connectivity patterns, which is beneficial for the link predic-
tion task. Multilayer networks provide valuable information
to enhance link prediction. In light of this, our approach in-
volves utilizing GNNs in multilayer networks, which learn
a cross-network embedding simultaneously integrating in-
tralayer and interlayer structural features.

General GNN Layer Various GNNs have been developed
for node representation. In general, a typical GNN layer fol-
lows the form:

hk
u ← θ(W k

1 · h
k−1
u +W k

2 ·
∑
v∈Nu

auvh
k−1
v ), (1)

where hk
u represents the output vector of node u in the k-

th layer, ∀k ∈ {1, . . . ,K}. θ denotes an activation function
(e.g., ReLU). W k

1 and W k
2 are matrices that weight the con-

tributions of the node itself and its neighbors, respectively.
auv indicates the importance of link (u, v). In the case of
GCN (Kipf and Welling 2017), auv corresponds to an ele-
ment of the symmetrically normalized adjacency matrix, and
auv = 1√

|Nu|·|Nv|
; for GAT (Veličković et al. 2018), auv

represents attention coefficients; for GraphSAGE (Hamil-
ton, Ying, and Leskovec 2017), auv = 1

|Nu| when using
a mean aggregator. Tang et al. argued that intralayer links
connected with small degree nodes have the most significant
impact on capturing interlayer features (Tang et al. 2022).
This observation might be explained from a resource al-
location perspective (Zhou, Lü, and Zhang 2009). For in-
stance, an individual who is popular in school may have
many friends, but due to time constraints (e.g., having only
2.5 hours for daily social activities on average), they have
less opportunity to interact with each specific friend. Con-
versely, an individual with few friends may share more at-
tention with each friend. In other words, intralayer links con-
nected with small degree nodes are more important for cap-
turing both intralayer and interlayer features. Therefore, we
adopt the GCN form for auv that suppresses the contribu-
tions of neighbors with large degrees. It indicates that nodes
with larger degrees transmit fewer messages to each of their
neighbors.

Cross-GNN Layer We assume that different layers of
multilayer networks have inherent structural consistency to
some extent, which is a prerequisite for link prediction in
multilayer networks. Aggregating messages from other lay-
ers will help complement node information, which enhances
the understanding of connectivity patterns. A cross-GNN
layer integrating interlayer information is formulated as fol-
lows:

hk
u ←θ(W k

1 · h
k−1
u +W k

2 ·
∑
v∈Nu

1√
|Nu| · |Nv|

hk−1
v

+W k
3 · buu′hk−1

u′ ),
(2)
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Figure 2: An illustration of the cross-GNN layer. Nodes 2,
3, and 4 are neighbors of 1, denoted as N1. 1′ is the aligned
node of 1. Information from node 1 itself, neighbors, and
aligned node is aggregated with different weights.

where u′ is aligned with u, buu′ denotes the importance of u′

to u, and buu′ = σ(hk−1
u

T
· hk−1

u′ ), σ(x) = 1/(1 + exp−x)

is the sigmoid function. W k
1 ,W

k
2 ,W

k
3 are matrices weight-

ing the contribution of the node itself, its neighbors, and the
aligned nodes, respectively. An example can be seen in Fig-
ure 2. Note that if u is not aligned with any nodes in the
other network (i.e. u′ = None), then hk−1

u′ = 0.
As the aggregator functions are defined, we employ them

to the multilayer network (Gs, Gt, S). It is essential that
hk−1
u and hk−1

u′ have the same dimensions. To achieve this,
we use the GCN-form aggregator to capture first-order prox-
imity and ensure consistent output dimensions for both lay-
ers. Subsequently, the cross-network aggregator captures
higher-order proximity and information from the aligned
nodes. The input node features are denoted as X , which can
be the adjacency matrix in attribute-free networks. The rep-
resentation vectors are formulated as follows:

H1 = θ(XW 1
1 + ÃXW 1

2)

Hk = θ(Hk−1W k
1 + ÃHk−1W k

2 +BkHk−1
∗ W k

3).
(3)

Here, Hk ∈ Rn×ck represents the output representation
vectors of the k-th layer, ∀k ∈ {2, . . . ,K}. The symmet-
rically normalized adjacency matrix is denoted as Ã =

D− 1
2AD− 1

2 , where A is the adjacency matrix, and D is the
degree matrix. Additionally, Bk is the importance matrix of
Hk−1

∗ to Hk−1, defined as Bk = σ(I(Hk−1 ⊙Hk−1
∗ )T ),

where ⊙ represents the Hadamard product. The matrix I ∈
Rn×ck is filled with 1 to summarize the Hadamard prod-
uct of each aligned pair (hk−1,hk−1

∗ ) and broadcast. The
aligned representation matrix Hk−1

∗ has the same shape as
Hk−1, and it can be rewritten as:

Hk−1
∗ [u] =

{
hk−1
u′ , if (u, u′) ∈ S

0, otherwise.
(4)

The model defined as Eq. (3) is a K-layer GNN, where the
first layer is a GCN-form layer, and the following are cross-
GNN layers. The model is trained for both Gs and Gt, and
parameters in cross-GNN layers are shared. Notably, there
is no activation function in the last layer of the GNN model.
The final output vectors HK are denoted as Z.

Objective Functions
The objective function includes intralayer and interlayer
loss, in which intralayer loss mainly retains intralayer struc-
tural features, and interlayer loss retains interlayer structural
features. Then the total loss is jointly optimized to unify the
two networks to the same latent space better.

Intralayer Loss Random walks are often employed to link
prediction tasks. If two nodes co-occur on fixed-length ran-
dom walks frequently, it indicates a higher probability of a
link between them. Random walks thus capture higher-order
proximity and provide insights into the connectivity patterns
and potential links within a network. Therefore, to learn em-
bedding zi, ∀i ∈ V , we apply a random-walk-based objec-
tive function in an unsupervised setting:

Lr =− log(σ(zT
i · zj))

−Q · Ek∼Pn(v) log(1− σ(zT
i · zk)),

(5)

where j is a node that co-occurs with i in a window from
sequences of random walks, σ is the sigmoid function,
Pn(v) is the negative sampling probability distribution, and
Q defines the number of negative samples. Proximity nodes
are encouraged to have similar embeddings, while discrete
nodes are distinct in the embedding space. The intralayer
loss is the sum of the random-walk-based loss of Gs and
Gt:

Lintra = Ls
r + Lt

r. (6)
By minimizing the intralayer loss, the intralayer structural
features of both networks can be preserved.

Interlayer Loss Besides intralayer structural features, in-
terlayer structural features are crucial to multilayer net-
works. We assume that the multilayer networks are consis-
tent to some extent, and aligned nodes should be close in the
latent space, i.e., they share similar embeddings. Therefore,
we can build an anchor-aware loss to minimize the distance
of aligned nodes.

Obviously, the number of non-interlayer links is far more
than interlayer links (i.e., |Vs| · |Vt| − |S| ≫ |S|). To over-
come the sample imbalance problem, we adopt undersam-
pling, which selects the several nearest non-interlayer links
for each interlayer link. These non-interlayer links termed
hard negatives are more informative and helpful for main-
taining consistency between multilayer networks. In detail,
for each interlayer link (vsi , v

t
j), we randomly sample η non-

interlayer links (vsi , v
t
k) for vsi , where vtk ∈ N (vtj), indicat-

ing that vtk is chosen from the neighbors of vtj . The same
selection is performed for vtj . The set of interlayer links is
called S+ with the label 1, while the set of these sampled
non-interlayer links is called S− (i.e., |S−| = 2η|S+|) with
the label −1. The interlayer loss is defined as follows:

Linter =
1

|S+|
∑

(vs
i ,v

t
j)∈S+

(1− cos(zs
i , z

t
j))+

1

|S−|
∑

(vs
k,v

t
l )∈S−

max(cos(zs
k, z

t
l))− ϵ, 0),

(7)
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Algorithm 1: CGNN
Input: Training multilayer networks (Gs, Gt, S

+)
Parameter: Batch size of random walks br, batch size of
interlayer links bs, margin ϵ, weight parameter α, numbers
of negative samples Q, η
Output: Embedding vectors Zs for Gs, Zt for Gt

1: Obtain node attribute vectors Xs for Gs, Xt for Gt

2: Initialize set of model parameters W
3: while not converged do
4: Sample a batch of positive and negative pairs from

random walks
5: Sample a batch of interlayer links from S+ and non-

interlayer links from S−

6: Generate embedding vectors Zs, Zt by Eq. (3)
7: Calculate the total loss by Eq. (8)
8: Update W with Adam optimizer
9: end while

10: return Zs, Zt

where ϵ is a margin parameter: if cos(zs
k, z

t
l) > ϵ, non-

interlayer link (zs
k, z

t
l) is hard to be distinguished from in-

terlayer link (zs
i , z

t
j), therefore cos(zs

k, z
t
l) is encouraged to

decrease; otherwise, it is not taken into account. By mini-
mizing interlayer loss, we can preserve interlayer structural
information.

Total Loss The total objective function is defined as a lin-
ear combination of both intralayer and interlayer loss, so that
we can preserve intralayer and interlayer structural informa-
tion by jointly optimizing this:

L = α · Lintra + (1− α) · Linter. (8)

Here, α is the weight parameter to tradeoff the two compo-
nents of the objective function. We employ Adam optimizer
to update the parameters of the GNN layers.

For convenience, we denote our proposed model as
CGNN (Cross-network Graph Neural Networks). The pseu-
docode is shown as Algorithm 1.

Link Prediction
To calculate the probability of the existence of each non-
observed link (x, y) ∈ U − ET , we can simply use cosine
similarity. To leverage the latent information contained in
the node embeddings, we employ the Logistic Regression
classifier to predict the linkage probability. The input feature
is edge embedding, which is a concatenation of two node
embeddings and the Hadarmard product of them (Qu et al.
2016):

I(x, y) = concat(zx, zx ⊙ zy, zy). (9)

Complexity Analysis
Notations The depth of GNN layers K is set to 2. f, c, d
are the dimensions of the input feature vectors, hidden vec-
tors and output vectors, respectively. |Es|, |Et| are the num-
bers of edges of Gs, Gt. For random walks, the walk length
is l, window size is w, walks per node are m.

Datasets Nodes# Edges# Anchors#
Facebook 1043 4734 1043Twitter 1043 4860

Twitter 2562 6967 2177YouTube 2409 7862

Table 1: Structural statistics of the datasets.

GNN Layers For a single GNN layer, the convolutional
operation has complexity O(|E|fc). For the 2-layer GNN
defined above, the complexity isO(|E|c(f+d)), where E =
max(|Es|, |Et|).

Intralayer Loss The number of fixed-length random
walks from batch sampling is brm(l − w). Then the com-
plexity of intralayer loss is O(brm(l − w)wd).

Interlayer Loss The batch size of interlayer links bs is |S|,
i.e. full batch. The complexity of interlayer loss is O(|S|d),
where |S| = max(|S+|, |S−|).

Experiments
Datasets
We select two real-world datasets: (i) Facebook/Twitter (Du
et al. 2022); (ii) Twitter-YouTube (Dickison, Magnani, and
Rossi 2016). The detailed statistics of these datasets are
shown in Table 1. More real-world datasets are shown in
the Appendix.

Baselines
We compare our proposed model with the following state-
of-the-art baseline methods.

Single-Layer Methods
• Common Neighbors (CN): Similarity-based metric cal-

culating the size of common neighbors for a given pair of
nodes x and y (Newman 2001).

• Resource Allocation Index (RA): Similarity-based met-
ric calculating the resources sent from node x to y
through the common neighbors (Zhou, Lü, and Zhang
2009).

• SVD: Matrix factorization-based method applying the
singular value decomposition technique to generate low-
dimensional vectors (Ding, Li, and Jordan 2010).

• node2vec (n2v): Skip-gram embedding method using a
biased random walk to preserve higher-order proxim-
ity (Grover and Leskovec 2016).

• GAE: GNN-based method using a GCN encoder and a
simple inner product decoder (Kipf and Welling 2016).

• GAT: GNN-based method using a GAT encoder and a
simple inner product decoder (Veličković et al. 2018).

Multilayer Methods
• MAA: Similarity-based metric generalizing the Adamic-

Adar method (Adamic and Adar 2003) to multiplex net-
works via triadic relationships within a single layer and
across different layers (Aleta et al. 2020).
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Dataset Method Ratio of Interlayer Links
0 30% 60% 90%

CN 0.7642 / 0.7880 0.7699 / 0.7913 0.7722 / 0.7984 0.7863 / 0.8057
RA 0.7649 / 0.7885 0.7708 / 0.7917 0.7725 / 0.7992 0.7878 / 0.8077

SVD 0.8100 / 0.8330 0.8197 / 0.8384 0.8331 / 0.8581 0.8528 / 0.8827
n2v 0.8120 / 0.8319 0.8304 / 0.8514 0.8642 / 0.8800 0.9313 / 0.9470

Facebook GAE 0.8352 / 0.8488 0.8492 / 0.8608 0.8660 / 0.8851 0.9123 / 0.9326
GAT 0.8328 / 0.8545 0.8364 / 0.8529 0.8640 / 0.8878 0.9213 / 0.9344

↕ MAA 0.7649 / 0.7889 0.7692 / 0.7920 0.7753 / 0.7986 0.7814 / 0.8064

Twitter LPIS 0.7721 / 0.7929 0.7444 / 0.7759 0.7449 / 0.7638 0.8287 / 0.8306
CLF 0.8637 / 0.8787 0.8875 / 0.8996 0.9122 / 0.9169 0.9365 / 0.9341
n2v-e 0.8120 / 0.8319 0.8481 / 0.8543 0.8792 / 0.8795 0.9013 / 0.9073

EG-mini 0.7977 / 0.8559 0.8164 / 0.8729 0.8499 / 0.8908 0.8920 / 0.9202
CELP 0.8150 / 0.8371 0.8697 / 0.8464 0.8983 / 0.9132 0.9588 / 0.9684
CGNN 0.8989 / 0.9125 0.9105 / 0.9164 0.9444 / 0.9550 0.9653 / 0.9740

CN 0.7381 / 0.7512 0.7490 / 0.7568 0.7882 / 0.7715 0.8048 / 0.7828
RA 0.7559 / 0.7529 0.7667 / 0.7597 0.8073 / 0.7740 0.8227 / 0.7914

SVD 0.6458 / 0.7103 0.6537 / 0.7086 0.6641 / 0.7220 0.6725 / 0.7044
n2v 0.6276 / 0.6594 0.6332 / 0.6619 0.6687 / 0.7057 0.7130 / 0.7266

Twitter GAE 0.6887 / 0.7225 0.6996 / 0.7403 0.7000 / 0.7567 0.7159 / 0.7782
GAT 0.7065 / 0.7715 0.7260 / 0.7967 0.7302 / 0.7858 0.7582 / 0.8174

↕ MAA 0.7551 / 0.7531 0.7602 / 0.7551 0.7740 / 0.7646 0.7741 / 0.7782

YouTube LPIS 0.7093 / 0.8975 0.6824 / 0.8811 0.6199 / 0.8508 0.5304 / 0.8069
CLF 0.8194 / 0.8920 0.8244 / 0.8850 0.8235 / 0.8800 0.8318 / 0.8752
n2v-e 0.6276 / 0.6594 0.7332 / 0.8001 0.7418 / 0.8033 0.7656 / 0.8138

EG-mini 0.7859 / 0.7345 0.7942 / 0.7505 0.8000 / 0.7764 0.8104 / 0.7758
CELP 0.8942 / 0.8737 0.8908 / 0.8635 0.8965 / 0.8735 0.9042 / 0.8569
CGNN 0.9300 / 0.9095 0.9327 / 0.9094 0.9353 / 0.9125 0.9353 / 0.9108

Table 2: AUC with different ratios of interlayer links.

• LPIS: This model predicts intralayer link probability us-
ing Logistic regression classifier with intralayer features
and then calculates interlayer link probability with inter-
layer similarity. The total link probability is a combina-
tion of them (Najari et al. 2019).

• CLF: A collective link fusion model predicting both in-
tralayer and interlayer links (Zhan, Zhang, and Yu 2019).
It can be seen as random walks with restart (Tong, Falout-
sos, and Pan 2006) across multilayer networks.

• EG-mini: For multilayer networks (Gs, Gt, S), we con-
struct an expanded graph Ge = (Ve, Ee), where Ve =
Vs∪Vt, Ee = Es∪Et∪S (Alnaimy and Desouki 2022).
Then we use matrix factorization on the adjacency matrix
of the expanded graph to obtain node embeddings.

• CELP: Cross-network Skip-gram embedding method
employing a biased random walk strategy, which is a bal-
ance of intra-network and cross-network empirical distri-
butions (Du et al. 2022).

• n2v-e: We employ node2vec on the above expanded
graph, called n2v-e. It can be seen as a simplified ver-
sion of CELP.

For a fair comparison, we extend the single-layer methods
to multilayer methods. We apply two strategies respectively,
then report the best performances of them.
• Network Extension: The assumption for this strategy is

that different layers in a multilayer network share similar
connection patterns. Based on this, if a pair of nodes are

not linked in one layer, but their aligned pairs are linked
in the other layer, we can add an edge between them
to complement the present network structure (Liu et al.
2017). Formally, given a multilayer network (Gs, Gt, S),
the extension of Gt = (Vt, Et) can be formulated as:

Et ← Et ∪ {(u, v)|(u, v) /∈ Et, (u
′, v′) ∈ Es,

(u, u′), (v, v′) ∈ S}.

• Score Extension: Link prediction on each layer of a mul-
tilayer network can generate different similarity scores
or link probabilities, which contain valuable information
from different networks. It can be seen as a simplified
version of LPIS (Najari et al. 2019). Formally, given a
multilayer network (Gs, Gt, S), the link probability of
(x, y) ∈ Et can be formulated as:

pt(x, y)←c · pt(x, y) + (1− c) · ps(x′, y′),

s.t. (x, x′), (y, y′) ∈ S.

Experiment Settings
Parameter Setup For SVD, the embedding dimension is
32. For node2vec and n2v-e, p = 1, q = 1, window size
is 10, the number of walks per node is 20, walk length is
80, and the embedding dimension is 128. For GAE, the hid-
den dimension is 32, the embedding dimension is 16, and
learning rate is 0.01. For GAT, the first layer consists of 4
attention heads computing 8 features each (for a total of 32
features), the embedding dimension is 16, and learning rate
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Method Facebook Twitter

CGNN 0.9653 0.9740
W/o cross-GNN layer 0.8967 0.9106
W/o degree-discount 0.9281 0.9392
W/o intralayer loss 0.5639 0.5793
W/o interlayer loss 0.8859 0.8965
W/o weight-sharing 0.9629 0.9723
W/o negative sampling 0.9648 0.9732

Table 3: Ablation study on Facebook/Twitter dataset.

is 0.01. For CGNN, the hidden dimension is 256, the em-
bedding dimension d = 128, α = 0.05, ϵ = 0.7, window
size is 10, walks per node is 10, walk length is 20, batch size
br = 512, and learning rate is 0.001.

Evaluation Metric We use AUC (Area Under the Curve)
as the evaluation metric. Each layer from the multilayer net-
work is divided into the training set and the test set. We pre-
dict the linkage probability on each layer respectively.

Hardware SVD, GAE, GAT, and CGNN were run on a
Linux server with an NVIDIA A100-40G GPU. These codes
are implemented in Python with PyTorch and PyTorch Ge-
ometric libraries. All experiments in this paper were carried
out 10 times and averaged.

Experimental Results
For each dataset, we randomly select 90% edges as the train-
ing set, and the rest 10% edges as the test set. Then we ran-
domly sample negative test edges of the same size as the test
set for evaluation. The proposed model is compared with
the baselines, and the performance in Facebook/Twitter and
Twitter/YouTube is shown in Table 2. One can see that al-
most all methods perform better with a higher ratio of inter-
layer links. It proves that interlayer information can indeed
enhance link prediction. The improvement of embedding-
based methods is greater than that of similarity-based met-
rics, indicating that embedding-based methods have a bet-
ter capability of leveraging interlayer information. CGNN is
the best, showing the effectiveness of our proposed method.
Compared to CELP, CGNN performs better with fewer in-
terlayer links. Results on more real-world datasets are shown
in the Appendix.

Ablation Study To investigate the importance of the dif-
ferent components in our proposed model, we conduct an
ablation study on the Facebook-Twitter dataset, with 90%
training edges and 90% interlayer links. We compare our
model CGNN with 6 ablated variants: (i) CGNN without
the cross-GNN layer, which replaces the cross-GNN layer
with a GCN-form layer (W/o cross-GNN layer); (ii) CGNN
without degree-discount, where auv = 1 (W/o degree-
discount); (iii) CGNN without the intralayer loss, where α =
0 (W/o intralayer loss); (iv) CGNN without the interlayer
loss, where α = 1 (W/o interlayer loss); (v) CGNN without
weight-sharing in the 2-nd layer (W/o weight-sharing); (vi)
CGNN without negative sampling in interlayer loss, where
ϵ = 1 (W/o negative sampling). The results are shown in
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Figure 3: Performance with different hyperparameters.
(a) AUC vs. α; (b) AUC vs. ϵ.

Table 3, where black means the optimal results. We can ob-
serve that CGNN outperforms most variants, indicating the
importance of these components.

Parameter Sensitivity Study To analyze the sensitivity
of important parameters in our proposed method, we con-
duct experiments on the Facebook-Twitter dataset with 90%
training edges and 90% interlayer links. Figure 3(a) shows
the impact of the weight parameter α that tradeoffs the in-
tralayer loss and interlayer loss. α = 0 means only consider
interlayer loss, and α = 1 means only consider intralayer
loss. One can observe that the performance of the Twitter
network arrives highest when α = 0.05, where interlayer
loss is more important. Performance at α = 0 is extremely
low, indicating that intralayer loss is necessary for link pre-
diction. Figure 3(b) depicts the impact of the margin pa-
rameter ϵ that selects indistinguishable interlayer links from
non-interlayer links in the embedding space. ϵ = 1 means
no negative samples are used. One can observe that perfor-
mance is better when ϵ becomes larger before arriving 1 and
achieves best when ϵ = 0.7. It illustrates the effectiveness
of negative sampling. More experiments can be seen in the
Appendix.

Conclusion
In this paper, we focus on link prediction in multilayer net-
works. Multilayer networks provide a more comprehensive
view of network analysis. To take advantage of the valu-
able information in multilayer networks, we present a cross-
network GNN model for link prediction in multilayer net-
works. More specifically, nodes are capable of aggregating
messages not only from their immediate neighbors within
the same layer but also from corresponding nodes in the
other layer. Evidently, each layer learns complementary in-
formation from its counterpart layer. For joint model train-
ing, we utilize both the intralayer loss based on random
walks, which maintains proximity within single layers, and
interlayer loss which ensures consistency across the multi-
layer network. Therefore, different layers of the multilayer
network are embedded into the same latent space. Some
single-layer state-of-the-art methods are extended to multi-
layer networks for comparison. Experiments on real-world
datasets indicate that our proposed model outperforms base-
lines for link prediction in multilayer networks, particularly
under conditions of limited interlayer links.
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Guimerà, R.; and Sales-Pardo, M. 2009. Missing and spu-
rious interactions and the reconstruction of complex net-
works. Proceedings of the National Academy of Sciences,
106(52): 22073–22078.
Hamilton, W. L.; Ying, R.; and Leskovec, J. 2017. Induc-
tive representation learning on large graphs. In Proceedings
of the 31st International Conference on Neural Information
Processing Systems (NeurIPS-17), 1025–1035.
Hristova, D.; Noulas, A.; Brown, C.; Musolesi, M.; and Mas-
colo, C. 2016. A multilayer approach to multiplexity and

link prediction in online geo-social networks. EPJ Data Sci-
ence, 5: 1–17.
Jiang, M. 2021. Cross-Network Learning with Partially
Aligned Graph Convolutional Networks. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discov-
ery & Data Mining (SIGKDD-21), 746–755.
Kipf, T. N.; and Welling, M. 2016. Variational graph auto-
encoders. arXiv preprint arXiv:1611.07308.
Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Clas-
sification with Graph Convolutional Networks. In Interna-
tional Conference on Learning Representations (ICLR-17).
Kossinets, G.; and Watts, D. J. 2006. Empirical analysis of
an evolving social network. Science, 311(5757): 88–90.
Kumar, A.; Singh, S. S.; Singh, K.; and Biswas, B. 2020.
Link prediction techniques, applications, and performance:
A survey. Physica A: Statistical Mechanics and its Applica-
tions, 553: 124289.
Liu, W.; Chen, P.-Y.; Yeung, S.; Suzumura, T.; and Chen, L.
2017. Principled multilayer network embedding. In 2017
IEEE International Conference on Data Mining Workshops
(ICDMW-17), 134–141.
Luo, H.; Li, L.; Dong, H.; and Chen, X. 2022. Link pre-
diction in multiplex networks: An evidence theory method.
Knowledge-Based Systems, 257: 109932.
Ma, X.; Sun, P.; and Qin, G. 2017. Nonnegative matrix
factorization algorithms for link prediction in temporal net-
works using graph communicability. Pattern Recognition,
71: 361–374.
Ma, Y.; Gerard, P.; Tian, Y.; Guo, Z.; and Chawla, N. V.
2022. Hierarchical spatio-temporal graph neural networks
for pandemic forecasting. In Proceedings of the 31st
ACM International Conference on Information & Knowl-
edge Management (CIKM-22), 1481–1490.
Najari, S.; Salehi, M.; Ranjbar, V.; and Jalili, M. 2019. Link
prediction in multiplex networks based on interlayer similar-
ity. Physica A: Statistical Mechanics and its Applications,
536: 120978.
Newman, M. E. 2001. Clustering and preferential attach-
ment in growing networks. Physical Review E, 64(2):
025102.
Qu, Y.; Cai, H.; Ren, K.; Zhang, W.; Yu, Y.; Wen, Y.; and
Wang, J. 2016. Product-based neural networks for user re-
sponse prediction. In Proceedings of the 16th IEEE Interna-
tional Conference on Data Mining (ICDM-16), 1149–1154.
Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; and Mei, Q.
2015. Line: Large-scale information network embedding. In
Proceedings of the 24th International Conference on World
Wide Web (WWW-15), 1067–1077.
Tang, R.; Jiang, S.; Chen, X.; Wang, W.; and Wang, W. 2022.
Network structural perturbation against interlayer link pre-
diction. Knowledge-Based Systems, 250: 109095.
Tong, H.; Faloutsos, C.; and Pan, J.-Y. 2006. Fast random
walk with restart and its applications. In Proceedings of the
6th International Conference on Data Mining (ICDM-06),
613–622.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8946



Vahidi Farashah, M.; Etebarian, A.; Azmi, R.; and
Ebrahimzadeh Dastjerdi, R. 2021. A hybrid recommender
system based-on link prediction for movie baskets analysis.
Journal of Big Data, 8: 1–24.
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