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Abstract

Multimodal event causality reasoning aims to recognize the
causal relations based on the given events and accompany-
ing image pairs, requiring the model to have a comprehen-
sive grasp of visual and textual information. However, exist-
ing studies fail to effectively model the relations of the objects
within the image and capture the object interactions across the
image pair, resulting in an insufficient understanding of visual
information by the model. To address these issues, we pro-
pose a Scene Graph Enhanced Interaction Network (SEIN)
in this paper, which can leverage the interactions of the gen-
erated scene graph for multimodal event causality reasoning.
Specifically, the proposed method adopts a graph convolu-
tional network to model the objects and their relations de-
rived from the scene graph structure, empowering the model
to exploit the rich structural and semantic information in the
image adequately. To capture the object interactions between
the two images, we design an optimal transport-based align-
ment strategy to match the objects across the images, which
could help the model recognize changes in visual information
and facilitate causality reasoning. In addition, we introduce a
cross-modal fusion module to combine textual and visual fea-
tures for causality prediction. Experimental results indicate
that the proposed SEIN outperforms state-of-the-art methods
on the Vis-Causal dataset.

Introduction

Understanding causality from multimodal daily events is a
challenging task and has attracted increasing attention from
the community. Take Fig. 1 as an example, the reasoning
model should be able to identify the causal relations between
the two events based on A girl throws a plate in the air and
A dog jumps to catch the plate as well as their associated
image pairs. This task exhibits extensive applications in text
and vision domains, including visual commonsense reason-
ing (Hildebrandt et al. 2020), dense video captioning (Iashin
and Rahtu 2020), and machine reading comprehension (Ra-
jani et al. 2019).

Recently, many studies have concentrated on this task.
Zhang et al. (2021) have embarked on extracting causal rela-
tions from time-consecutive images by incorporating event
descriptions and visual context representations. Chadha and
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Figure 1: An example of employing scene graph for multi-
modal event causality reasoning, which could provide rich
structural and semantic information for visual understand-
ing of the image.

Textual Description

Jain (2021) utilized both videos and natural language cap-
tions to infer visual-semantic commonsense knowledge with
causal rationalization. Afterward, Ma and Tong (2022) com-
bined visual perception and linguistic commonsense to en-
hance daily events causality reasoning and exploited object
features to refine visual perception. Despite promising ad-
vancements achieved by existing studies, they still tend to
overlook the importance of the following two critical con-
cerns:

(1) The relations between objects in the image. Previ-
ous works mainly focus on global features or object features
of the image, ignoring the significance of modeling the re-
lations between objects. We contend that the relations be-
tween paired objects are crucial for understanding the struc-
tural and semantic information of the image. As shown in
Fig. 1, for the first image, if the model could discern a girl
is holding a plate and a dog is near the girl, it would better
comprehend the visual semantic information conveyed by
this image. Recently, scene graph generation (SGG), which
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aims to express objects and relations between objects in the
image, has been gradually applied to various vision-based
tasks. As a result, adopting SGG to recognize the objects
and their relations can foster a more structured understand-
ing of the image. Nevertheless, how to effectively model the
objects and their relations remains to be studied.

(2) The object interactions across the image pair. Due
to the lack of object interactions, the model struggles to rec-
ognize the visual information variation between the images.
Intuitively, humans can identify the association between two
images by observing changes in objects and their relations
across the image pair. Inspired by this, it is desirable for our
model to capture the interactions of objects from the images.
For example in Fig. 1, through object alignment and inter-
action between the images, the model could understand the
changes in visual information from a girl is holding a plate
in the first image to a dog is holding a plate in the second
image, thus facilitating the identification of event causalities.
However, capturing such interactions is challenging, and di-
rectly combining objects in two images might lead to incon-
sistencies and introduce noise.

To address the above issues, we propose a novel Scene
Graph Enhanced Interaction Network (SEIN) in this paper,
which can leverage the interactions of the generated scene
graph for multimodal event causality reasoning. Concretely,
we first construct a scene graph for each image to obtain
a sufficient structured understanding, where the nodes rep-
resent objects or relations, and edges represent the connec-
tions between them. Then we employ a Graph Convolutional
Network (GCN) to model the objects and their relations to
obtain context-aware node embeddings. To capture the ob-
ject interactions across the two images, we propose optimal
transport-based alignment to match the objects in the im-
ages, which could recognize the changes in visual informa-
tion and enhance reasoning capability. And we combine the
object features from two images according to the transporta-
tion cost matrix. Besides, we adopt a cross-modal fusion
module based on the multi-head attention mechanism to in-
tegrate textual and visual features for causality prediction.
The main contributions of this paper can be summarized as
follows:

* This paper proposes a SEIN framework, the first work to
our knowledge that exploits the interactions of the scene
graph to recognize visual information changes for multi-
modal event causality reasoning.

e We adopt a GCN architecture to model the objects
and their relations in the image, and design an optimal
transport-based alignment strategy to capture the object
interactions across the image pair.

» Experimental results demonstrate that the proposed SEIN
achieves state-of-the-art performance on the Vis-Causal
dataset. Further analyses indicate the effectiveness and
generalization ability of SEIN.

Related Work
Multimodal Event Causality Reasoning

Previous approaches for event causality identification pri-
marily focus on textual modality (Cao et al. 2021; Wei et al.
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2021; Liu et al. 2023b). They seek to leverage external
knowledge (Liu, Chen, and Zhao 2020; Cao et al. 2021; Wei
et al. 2022) or prompt-tuning technique (Shen et al. 2022;
Liu et al. 2023a; Wang et al. 2022b) to identify event causal-
ities. Although these methods have achieved some success,
their reliance on a single modality limits their applicability
in real-world scenarios. Recently, multimodal event causal-
ity reasoning has garnered increasing attention. Zhang et al.
(2021) first extract event causalities from time-consecutive
images and natural language descriptions using event and vi-
sual context representations. Chadha and Jain (2021) utilize
both videos and natural language captions to infer visual-
semantic commonsense knowledge with causal rationaliza-
tion. After that, Ma and Tong (2022) leverage visual percep-
tion and linguistic commonsense for this task and exploit
object features to refine visual perception. However, these
methods do not consider the rich structural and semantic in-
formation in the scene graph and the interactions of objects
between images, making it challenging to adequately exploit
the visual information.

Scene Graph Generation

Scene Graph Generation (SGG) has gained substantial in-
terest in the field of computer vision since proposed in Xu
etal. (2017). The purpose of SGG is to recognize objects and
the relations between paired objects within an image, and
then construct a graph where the objects serve as nodes and
the relations between them serve as either nodes (Zareian,
Karaman, and Chang 2020) or edges (Li, Zhang, and He
2022). It can provide valuable structural and semantic in-
formation for a range of downstream tasks, such as image
retrieval (Yoon et al. 2021), visual commonsense reasoning
(Wang et al. 2022c), and multimodal information extraction
(Wang et al. 2022a). Various approaches have emerged to
generate scene graphs in different ways (Wang et al. 2019;
Lu et al. 2021), and some studies extend SGG from images
to videos (Ji et al. 2020; Cong et al. 2021). Nevertheless,
since multimodal event causality reasoning focuses on iden-
tifying causal relations between two events, it is not feasible
to directly introduce SGG for this task.

Optimal Transport

Optimal Transport (OT) mainly studies how to achieve the
optimal allocation of resources between two probability dis-
tributions, which has a wide range of applications in many
areas such as self-supervision learning (Wu et al. 2022), do-
main adaptation (Xu et al. 2022), and label assignment (Wei
et al. 2023). The fundamental idea behind OT is to determine
the most efficient way to transform one distribution into an-
other, taking into account the costs associated with the trans-
portation plan. An influential work in OT is the fast solver
proposed by Cuturi (2013), which adopted Sinkhorn’s ma-
trix scaling algorithm with an entropic regularization term to
solve the OT problem orders of magnitude faster than trans-
port solvers. Building upon this, Xie et al. (2019) optimized
the Sinkhorn algorithm and proposed an IPOT solver that
leveraged an inexact proximal point method with proximal
operator approximately evaluated at each iteration. Li et al.
(2022) seeks to capture event argument structures with event
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Figure 2: The overview of the proposed SEIN framework.

graph alignment. In this paper, we employ optimal transport
to enhance the global alignments and semantic interactions
of the scene graphs.

Task Formulation

The goal of multimodal event causality reasoning is to rec-
ognize causality between two given events, which contain
images cropped from the videos and corresponding natural
language descriptions. Following Zhang et al. (2021), this
task is formally defined as follows:

(1) The input of the model is two time-consecutive images
and candidate event sets. The images Z are cropped from
the daily life video at equal time intervals. Each image pair
consists of two images I1,I» € Z in temporal order (i.e.,
I, appears before I, and I7 and I5 correspond to cause and
effect images, respectively). The event set associated with I3
is denoted as &; and the event set encompassing all images
sampled from the video is denoted as &,.

(2) Given an image pair I1, I> and event set &1, for each
E; € &, the objective is to find all events Fy € &, that
E causes Es. The output of the model is a causality score
indicating the probability that £ leads to the occurrence of
B, for each By € E,,.

Methodology

The overview of the proposed method is illustrated in Fig.
2. For the text modality, we concatenate the two event de-
scriptions and encode them into hidden representations with
BERT architecture. For the visual modality, we first con-
struct scene graph for each image and employ a GCN ar-
chitecture to model the objects and relations between paired
objects. To capture the object interactions across the two im-
ages, we adopt optimal transport-based alignment to match
the objects from the scene graphs. Then we combine the text
and image representations with a multi-head attention mech-
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anism and integrate the object features based on the cost ma-
trix. Finally, in order to obtain the overall prediction results,
we introduce an adaptive prediction strategy to fuse the out-
puts from textual and multimodal classifiers.

In this section, we first introduce the acquisition of text
and visual representations. Then we introduce the opti-
mal transport-based alignment strategy. Subsequently, we
present the cross-modal fusion module. Finally, we elucidate
model training and prediction processes.

Textual Representation

To acquire a textual comprehension of the events, we first
concatenate the two event descriptions with [SEP] token
and add a [CLS] token at the beginning. Then we adopt pre-
trained BERT (Devlin et al. 2019) architecture to encode the
sequence into hidden states:

H, = BERT([CLS] E, [SEP] E; [SEP]) (1)

where H, € R"*4_( is the dimension of hidden states. Note
that we pre-train BERT with event pairs from ATOMIC (Sap
et al. 2019) knowledge base to improve the reasoning ability
of the model before fine-tuning.

Scene Graph

In this work, we adopt the technique of SGG to extract ob-
jects and relations between the paired objects, which could
enable the model to grasp a higher-level visual understand-
ing of the image. Specifically, we first leverage the object de-
tector Faster R-CNN (Ren et al. 2015) pre-trained on Visual
Genome (Krishna et al. 2017) to detect a set of objects for
each image. Then the public Scene Graph Diagnosis toolkit
(Tang et al. 2020) is utilized to recognize relations between
each pair of objects.

Formally, for an image, the object set is denoted as O =
{0;} and the relation set is denoted as R = {r;; }, where r;;
indicates the relation between objects o; and o;. We define
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the scene graph as G = (N, &), where N' = O U R denotes
the set of nodes containing objects and relations, £ denotes
the set of directed edges. It is worth noting that when 7;;
exists, we add two directed edges 0; — r;; and 7;; — 0; to
& during the construction process of the edge set.

Visual Representation

For the embedding layer of the graph, we design three types
of feature representations for each object and relation: (1)
visual feature, (2) position feature, (3) category feature.
Specifically, the visual features of objects f.. € R? are ob-
tained from the region of interest (ROI) features of the ob]ect
detector and the visual features of relations f“” € R% are
the relation representations before the final prediction layer
in the SGG model. The position features of objects f¥ €
R% and relations fF_ € R are converted from bound-
ing box coordinates and union box coordinates, respectively.
Besides, the category features of objects f. € R% and rela-
tions fC € R% are obtained from pre-trained Glove word
embeddlngs (Pennington, Socher, and Manning 2014) cor-
responding to the category labels of objects and relations.
Then we fuse the three types of features with a linear layer
followed by a ReLU activation function:

for = ReLU(WY f2 + WP f2 + WE fS)

2
fry = ReLUGWZ, £+ WE 2 +We fo) O

: ij ij ij i ij ij
where W? € R4@*4, WP € R%>9 and W¢ € R%*? are

trainable parameters. The fused object and relation features
fo, € RY, fr., € R% are employed to initialize node embed-
dings in the graph.

After that, we adopt Graph Convolutional Networks (Kipf
and Welling 2017) to aggregate information of neighbor-
hoods and get context-aware representations for objects.
Each node in the /-th GCN layer is updated according to
the representations of neighbor nodes as:

F! = FI7' £ ReLU(A, . F.7'W))

F! = FI=! £ ReLU(A,, F. W) )
where F,, = [f,,] € RNo*? and F, = [f,,,] € RN"*4 N,
and N, are the number of objects and relations respectlvely,
Ay € RNoXNrand A, € RN**No are the normalized
adjacency matrices from objects to relations, and from rela-
tions to objects, W' € R¥*4 are trainable parameters of the
l-th GCN layer. Finally, we can obtain the object representa-
tions H, = FL € RN-*4 from the output of the L-th GCN
layer.

It should be noted that we use the above approach to get
visual representations of objects for each image in the pair,
which can be denoted as H! = [h}] € RNo*? and H2 =

[12,] € RN?xd

, respectively.

Optimal Transport-Based Alignment

Since the same object has similar representations in different
images, we adopt optimal transport to achieve global align-
ment and interactions between the object features in the two
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time-consecutive images, which is beneficial for recognizing
visual information changes.

This work seeks to get the minimal OT distance between
H! and H2, which is defined as:

OTA(H}, H?) = mTin(T, C) “4)

where (T, C) Tr(TTC) denotes the Frobenius inner

product, ' € RY, o *N2 denotes the transportation plan, C'
represents the cost matrix between H! and H2. In the im-
plementations, we use the cosine distance between the two
objects to compute the cost matrix:

hl
IR, ||2 ||h2 |2

To solve Eq 4, we employ the IPOT method (Xie et al. 2019)
to calculate the approximated 7.

.h2T

Cij = &)

Cross-Modal Fusion

After obtaining textual and visual representations, a cross-
modal fusion module is designed to effectively fuse the two
modalities. We first adopt a multi-head attention mechanism
(Vaswani et al. 2017) to capture interactions between the tex-
tual and visual modalities, which can be formulated as:

Q KT
Head; = softmax([cgw\/[(%/vi])[va] ©)
MHA(Q, K,V) = [Head; @ - - - ® Head|W,

where h represents the number of heads, & denotes concate-
nation operation, { W2, W/ WY} € R¥*4/" are trainable
parameters. We take the object representations from each
image as query, and the textual representations as key and
value respectively to obtain representations as:

H! = MHA(H!, H,, H,)
H? = MHA(H?, H,, H,)

Empirically, object pairs exhibiting smaller cosine dis-
tances tend to indicate strong object matching or semantic
relevance. Therefore, these pairs hold greater significance
in mining causal clues. Based on this observation, we select
the top-/C object pairs with the lowest cosine distance in cost
matrix C' and concatenate their features as the fused repre-

sentations: H, = [h¥] € R**24 where hF = [71(1)1,; 7&]] €
R1x2d

)

Afterward, we seek to aggregate the features with the
guide of textual information. We take the representation
of [CLS] token h. as the overall textual representation.
Then we concatenate h. and h? and feed them into a fully-
connected layer to compute attention score. Finally, we sum
the fused representations with the attention score to obtain
multimodal representations:

a; = softmax(W,[he; hl])

K
H,, = Zai - hy
i=1

()
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Algorithm 1: The Training Process of SEIN

Input: Training set D = {(FEi, I¥), (ES, I3)}Y |, where F;
and I, represent the text and image of the first event, F; and
I5 represent the second.
Training:

1: for each batch D, € D do

2:  for any event pair € D, do
Get H; by Eq. 1;
Construct scene graph G for each image;
Get H} and H?2 by Eq. 2 and Eq. 3;
OT-based alignment OTA(H}, H?) by Eq. 4;
Get H} and H? by Eq. 7;
Fuse H! and H? into H, according to C' in Eq. 5;
9: Get H,, by Eq. 8;

X RNk

10: Compute classification loss £; and L,,;

11: Compute object alignment loss L,;

12:  end for

13:  Compute batch loss £ = A\ Ly + Ao Ly, + A3Ly;
14:  Stochastic gradient update model parameters;

15: end for

Model Training and Prediction

The textual and multimodal representations are fed into
fully-connected layers to obtain the predicted causal scores
4 and ¢, respectively. We adopt binary cross-entropy loss
as a training objective for textual classification:

N
1 . » . "
Et:_ﬁ E yylog g + (1 — y;) log(1 — 4;) ®
i=1

Similarly, we use cross-entropy loss to compute multi-
modal classification loss £,,. We also regard the distance
between two scene graphs as a training objective:

N
1
Lo=— Y OTA(H!, H? 10
¥ ; (H,, H) (10)
The overall training loss can be calculated as:
L=MLi+ XL, + 3L, (11)

The training process of SEIN is summarized in Algorithm
1. In the prediction stage, due to the different contributions
of textual and multimodal classification to the outcomes (Ma
and Tong 2022), we leverage an adaptive prediction strategy
to calculate the causal score. The confidence score is defined
as s = max (g, 1—7) to measure the significance of different
modalities, and the final predicted causal score is:

/gt ) gm
623% + ij

where [ is an adaptive weight factor, which is defined as:

gr =1+ 8% (12)

VSm—St
eveimTIt L 8 > 85

B = J— (13)
e Stisma Sm < St
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Split | #Video #Image Pair #Event
Train 800 1609 82731
Valid 100 208 10608
Test 100 191 9053

Table 1: Statistics of the Vis-Causal dataset.

Experiments
Experimental Settings

Dataset. We conduct experiments to evaluate our model on
the Vis-Causal dataset (Zhang et al. 2021), which is widely
used for multimodal daily event causality reasoning. The
images in the dataset are collected from YouTube videos,
which cover most categories of daily life, i.e., Sports, So-
cializing, Household, Personal Care, and Eating. Based on
the images, the goal is to find the event from the candidate
set that has causality with the given event. The statistics of
the dataset are listed in Table 1.

Evaluation Metrics. In line with previous works (Zhang
et al. 2021; Ma and Tong 2022), we employ Recall@K
(R@K) as evaluation metric. R@K reflects the ratio of the
correct outcomes in the top-K plausible scores to the total
number of ground truth causality events. This paper uses
R@1, R@5, and R@10 to evaluate the model performance.

Implementation Details. All experiments are conducted
on NVIDIA Tesla V100 GPU with Pytorch framework.
We adopt pre-trained BERT-BASE-UNCASED architecture
from HuggingFace’s Transformers library as textual en-
coder. We use Faster R-CNN (Ren et al. 2015) pre-trained
on Visual Genome to detect objects and leverage the public
Scene Graph Diagnosis toolkit (Tang et al. 2020) to identify
relations between each pair of objects. The hyper-parameters
A1, Ag, and A3 are set to 0.5, 0.3, and 0.1, respectively. The
number of paired objects K is set to 10. The number of GCN
layers L is set to 2. The model is trained for 25 epochs with
a learning rate of Se-5 and a batch size of 16. The dimen-
sion of the hidden representations d is set to 768. We utilize
an early stop strategy and Adam optimizer to update model
parameters.

Compared Methods

In this work, we compare the proposed SEIN with the fol-
lowing baselines: (1) Random, which means randomly se-
lecting an event from the candidate event set as the predic-
tion result. (2) BERT (Devlin et al. 2019), a method that
leverages the BERT model to encode the textual modality for
causality reasoning without considering the visual modality.
(3) VCC (Zhang et al. 2021), which uses event descriptions
and visual context representations to extract causal clues
from time-consecutive images. (4) iReason (Chadha and
Jain 2021), which seeks to infer visual-semantic common-
sense knowledge using both videos and natural language
captions with causal rationalization. (5) OARNet (Ma and
Tong 2022), which combines visual perception and linguis-
tic commonsense for daily events causality reasoning and
exploits object representations to refine visual perception.
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Method | Metrics | Sports Socializing Household Care Eating | Overall
R@1 0.67 3.64 1.69 0.00 9.09 2.13
Random R@5 14.19 16.36 15.25 11.11 27.27 15.25
R@10 28.38 38.18 27.12 33.33 27.27 30.14
R@1 12.16 7.27 3.39 0.00 18.18 9.22
BERT R@5 29.05 32.73 37.29 55.56 54.55 33.33
R@10 62.84 67.27 49.15 55.56 72.73 60.99
R@1 8.78 7.27 6.78 11.11 27.27 8.87
VCC R@5 37.16 36.36 28.81 33.33 45.45 34.75
R@10 64.86 58.18 62.71 55.56 72.73 63.12
R@1 9.27 8.09 7.91 12.72 28.89 9.21
iReason R@5 38.71 36.36 29.92 34.73 45.75 35.87
R@10 65.12 58.52 62.71 55.56 72.73 63.51
R@1 20.95 14.55 11.86 11.11 9.09 17.38
OARNet R@5 56.76 49.09 37.29 33.33 45.45 50.00
R@10 75.68 74.55 59.32 55.56 72.73 71.28
R@1 19.59 16.36 16.95 11.11 27.27 18.09
SEIN (Ours) R@5 58.78 56.36 38.98 33.33 54.55 53.19
R@10 77.03 78.18 61.02 71.78 63.64 73.40

Table 2: Overall performance compared to the state-of-the-art methods on the test set. The best results are denoted in bold.

Method | R@1 R@5 R@10
w/o SG 16.35 51.22 71.63
w/o OTA 17.21 51.87 71.92
w/o CMF 17.62 52.11 72.24
w/o APS 17.12 52.09 71.88

SEIN | 18.09 53.19 73.40

Table 3: Experimental results of ablation study. The best re-
sults are denoted in bold.

Main Results

The main experimental results of our method and baselines
are reported in Table 2. We can observe that: (1) The pro-
posed method achieves the best performance in terms of
R@1, R@5, and R@10 compared to the baseline methods,
which suggests the effectiveness of the SEIN framework in
addressing this task. Besides, SEIN consistently exhibits ex-
cellent performance improvement across different daily life
categories. (2) SEIN demonstrates a significant performance
gain over the BERT baseline, which indicates that incorpo-
rating visual modality can provide valuable information for
multimodal event causality reasoning and help rectify cer-
tain non-commonsense errors. (3) Compared to VCC and
iReason, our method performs far better than them on R@1,
R@5, and R@10. The reason behind this improvement may
be that VCC and iReason regard the object context represen-
tations as features instead of exploiting rich visual features.
While our method can make full use of visual and textual
features to recognize event causalities more effectively. (4)
Our method surpasses OARNet by a substantial margin on
R@1, R@5, and R@10. We attribute this to the fact that
OARNet primarily uses the co-occurrence of the objects in
two images as visual features to identify the causal relation,
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disregarding the relations between objects in the image and
the changes in visual information of the objects. In contrast,
SEIN can leverage the structural and semantic information
of the image and capture the object interactions across the
image pair, thus achieving better performance.

Analysis and Discussion

Ablation Study. To verify the contributions of each com-
ponent, we conduct ablation studies by comparing SEIN
with the proposed variant methods. As illustrated in Table
3, we can find that: (1) After removing scene graph (w/o
SG), the model performance drops significantly. The per-
formance gap indicates the importance of the scene graph
in modeling the objects and relations between paired ob-
jects, which could provide valuable structural and semantic
knowledge for each image and facilitate event causality rea-
soning. (2) After removing optimal transport-based align-
ment (w/o OTA), the model performance becomes worse.
This illustrates that the optimal transport-based alignment
strategy can capture the interactions of objects across the
image pair, which is beneficial for recognizing the changes
in visual information and mining implicit causal clues. (3)
After removing the cross-modal fusion module (w/o CMF),
the model also suffers from performance decay. This re-
sult demonstrates that the multi-head attention mechanism
is effective for capturing cross-modal interactions and fus-
ing textual and visual modalities, enabling enhanced reason-
ing and prediction. (4) After removing the adaptive predic-
tion strategy (w/o APS), which means the causality score is
predicted by an average operation, the model performance
decreases. This performance gap illustrates that the adaptive
prediction strategy can balance the influence of textual and
multimodal reasoning for causality prediction, especially in
the case of single outcome prediction errors.
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A girl is watching two dogs.
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(a) The input events and object detection results

The two dogs are going to play.
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(b) Transportation cost matrix

Figure 3: Visualization of a typical instance.
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Figure 4: Experimental results under different number of
GCN layers.

Effect of the Number of GCN Layers. To investigate the
effect of GCN layers, we conduct experiments with the num-
ber of GCN layers ranging from 1 to 5. The model per-
formance on R@1, R@5, and R@10 is plotted in Fig. 4.
The observations drawn from the results are as follows: (1)
SEIN produces the best performance when using two layers
on R@1, R@5, and R@10. Therefore, we argue that adopt-
ing two GCN layers is most effective in modeling the ob-
jects and relations between paired objects to obtain a suf-
ficient understanding of the image. (2) The model perfor-
mance drops rapidly when the number of GCN layers be-
comes too large. This illustrates that increasing the number
of GCN layers beyond a certain point does not contribute
to improving the performance of multimodal event causality
reasoning.

Generalization. To prove the generalization ability of the
SEIN framework, we leverage different pre-trained models
to encode text and image modalities for comparison. The re-
sults are presented in Fig. 5. The following observations can
be made: (1) SEIN consistently yields the best performance
among different methods, indicating the effectiveness and
generalization ability of the proposed method. This also sug-
gests that leveraging the structural information of the image
and interactions of objects across the image pair enables the
model to uncover implicit causal clues, thus boosting rea-
soning performance. (2) The methods that incorporate vi-
sual information generally perform better than BERT, which
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BERT BERT+VIT SEIN
BERT+ResNet CLIP
25 35 75
20 A 50 70 4
15 45 65
10 40 4 60
5 354 55 4
R@1(%) 0 R@5(%) R@10(%)

Figure 5: Experimental results of using different pre-trained
models.

indicates that the inclusion of global visual features can en-
hance the model’s understanding of multimodal daily events.

Visualization. We present the visualization of a typical in-
stance to demonstrate the object interactions across the im-
age pair. As shown in Fig. 3(a), we adopt the pre-trained
Faster R-CNN (Ren et al. 2015) to obtain object informa-
tion from each image. After training the SEIN framework,
the cost matrix from the optimal transport-based alignment
strategy is illustrated in Fig. 3(b). We can find that the same
kind of objects exhibit relatively lower transportation costs.
Additionally, the cost associated with the same object is
lower compared to different objects across the image pair.
This indicates that using the cost matrix to guide the combi-
nation of object features is reasonable and effective.

Conclusion

In this paper, we propose a SEIN framework to tackle the
multimodal event causality reasoning task. The proposed
method exploits GCN to model the objects and relations
from scene graph structure, allowing for a sufficient vi-
sual understanding of the image. Then an optimal transport-
based alignment approach is designed to capture changes
in visual information between the image pair and facilitate
causality reasoning. Besides, SEIN adopts a cross-modal fu-
sion module to combine textual and visual features, and in-
troduces an adaptive prediction strategy for better inference.
Experimental results illustrate that SEIN achieves state-of-
the-art performance on the Vis-Causal dataset.
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