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Abstract

Recently, learning urban region representations utilizing
multi-modal data (information views) has become increas-
ingly popular, for a deep understanding of the distributions of
various socioeconomic features in cities. However, previous
methods usually blend multi-view information in a posterior
stage, falling short in learning coherent and consistent rep-
resentations across different views. In this paper, we form a
new pipeline to learn consistent representations across vary-
ing views and propose the multi-view Contrastive Prediction
model for urban Region embedding (ReCP), which leverages
the multiple information views from point-of-interest (POI)
and human mobility data. Specifically, ReCP comprises two
major modules, namely an intra-view learning module utiliz-
ing contrastive learning and feature reconstruction to capture
the unique information from each single view, and an inter-
view learning module that perceives the consistency between
the two views using a contrastive prediction learning scheme.
We conduct thorough experiments on two downstream tasks
to assess the proposed model, i.e., land use clustering and re-
gion popularity prediction. The experimental results demon-
strate that our model outperforms state-of-the-art baseline
methods significantly in urban region representation learning.

Introduction
A deep understanding of the spatial distribution of various
socioeconomic factors in cities such as land use or popula-
tion distribution, is important for urban planning and man-
agement. In recent years, an increasingly popular trend in the
community of urban computing has been to partition a city
into numerous regions and utilize various urban sensory data
to learn the latent representations of the regions, which can
subsequently be used in varying urban sensing tasks, e.g.,
land usage clustering. house price prediction, and popula-
tion density inference (Liu et al. 2021; Li et al. 2022; Liu
et al. 2023; Huang et al. 2023; Xu et al. 2023b; Li et al.
2023). This trend can also be attributed to the prosperity of
mobile sensing technologies, which has led to the rapid ac-
cumulation of urban sensing data, such as human trajectories
or points-of-interest (POIs) (Zheng et al. 2020, 2021; Chen,
Yu, and Liu 2018; Zhang, Zhao, and Chen 2022; Xu et al.
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Figure 1: Illustration of (a) multi-view fusion paradigm and
our proposed (b) consistency learning paradigm for region
embedding. In the right figure, the solid and dotted rectan-
gles denote the region representations Za and Zm from the
attribute and mobility views, respectively. The mutual infor-
mation I(Za,Zm) (chartreuse area) quantifies the amount of
information shared by Za and Zm; the conditional entropy
H(Za|Zm) (grey area) quantifies the amount of information
of Za conditioned on Zm. To learn consistent region repre-
sentations across different views, it is encouraged to maxi-
mize I(Za,Zm) and minimize H(Za|Zm) and H(Zm|Za).

2023a; Zhang et al. 2023). Such various urban data provide
more opportunities for tackling the problem of region repre-
sentation learning.

Many previous studies have attempted to learn region
representations by utilizing human mobility data. For in-
stance, Wang et al. (Wang and Li 2017) construct flow
graphs and spatial graphs using taxi flow data and propose
a graph embedding method to learn region representations.
Yao et al. (Yao et al. 2018) extract human mobility pat-
terns from taxi trajectories, and model the co-occurrence
of origin-destination regions to learn region representations.
The above methods merely rely on single-view data, which
offers a limited perspective of regions and fails to pro-
vide a comprehensive representation. Further, recent stud-
ies (Zhang et al. 2021; Luo, Chung, and Chen 2022; Zhang,
Long, and Cong 2022; Zhou et al. 2023) propose learn-
ing region representations through integrating data in mul-
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tiple modalities, thus forming multiple information views.
In this context, the technical focus of recent region embed-
ding studies has shifted towards the fusion between multi-
ple information views, where they usually follow the same
pipeline: separate single-view representation followed by
multiple-view fusion. Such a pipeline is demonstrated in
Figure 1(a), where, it (1) separately models each informa-
tion view (usually with a graph structure) and learns mul-
tiple single-view representations for each region, and (2)
leverages certain fusion techniques (e.g., based on attention
mechanisms) to blend multiple representations and yield the
final multi-view region representation.

The previous multi-view region embedding methods have
been effective in certain analyses, but they come with a
notable limitation: neglecting the information consistency
across different views when generating the final region rep-
resentation. Intuitively, the information carried by multiple
views of a region is highly correlated, and thus their repre-
sentations should be consistent. For example, an entertain-
ment region could contain multiple bars and restaurants (re-
gion attribute view based on POIs), as well as a large num-
ber of nighttime mobility flows (human mobility view). Both
views can reflect the intrinsic characteristics of this region
(i.e., entertainment function). If we manage to leverage such
correlation, it could be served as the constraint during the
process of learning representations for each view, and en-
able the knowledge of transferring from one view to the
other. Ultimately, the multi-view representations would be-
come highly consistent and naturally fused.

Following the ideas above, we present a new pipeline -
consistency learning paradigm - for multi-view region em-
bedding from an information theory perspective (Tsai et al.
2021; Lin et al. 2021), where the multi-view representa-
tions are naturally fused through exchanging information
between views along with learning view-specific region rep-
resentations, rather than treating fusion as a posterior pro-
cess. This new pipeline is shown in Figure 1(b). Given two
view-specific region representations Za and Zm (where they
are from the region attribute view and the human mobil-
ity view, respectively), we maximize the mutual information
I(Za,Zm) to increase the amount of the shared information
(consistency) in the region representations of the two views.
We also minimize the conditional entropy H(Za|Zm) and
H(Zm|Za) to diminish the inconsistent information across
the two views and improve the consistency further.

Based on the consistency learning paradigm, we propose
a multi-view Contrastive Prediction model for urban Re-
gion embedding (ReCP), which can effectively enhance the
consistency of region representations across different views.
ReCP consists of two major components: intra-view learn-
ing and inter-view learning. In the intra-view learning com-
ponent, to learn view-specific region representations, we
compare each region with other dissimilar ones to embed
the region into a latent space via contrastive learning; in
the meantime, we also utilize autoencoders to capture view-
specific region features for different views, which helps
avoid model falling into a trivial solution. In the inter-view
learning component, to learn the cross-view consistency
of region representations, we design inter-view contrastive

learning by maximizing I(Za,Zm) and dual prediction be-
tween views by minimizing H(Za|Zm) and H(Zm|Za).

To summarize, our contributions are as follows:
• We form a new pipeline following a consistency learning

paradigm, to study the urban region embedding problem
by exploring the consistency across different views, us-
ing both human mobility and POI data. Different from
existing multi-view region embedding methods which
adopt the attention mechanisms to fuse representations
of different views, we propose to learn consistent multi-
view representations of regions by increasing the amount
of shared information across multiple views from the in-
formation entropy perspective.

• We design the inter-view contrastive learning and dual
prediction processes to diminish the inconsistent infor-
mation across views and learn an informative and con-
sistent region representation between different views,
achieved by maximizing the mutual information among
different views and minimizing the conditional entropy
among them.

• We conduct extensive experiments to evaluate our model
with real-world datasets. The results demonstrate that the
proposed ReCP outperforms existing methods on two
downstream tasks by a margin. Data and source code are
available at https://github.com/lizc-sdu/ReCP.

Problem Formulation
Definition 1 (Urban Region) A city can be partitioned into
n disjoint urban regions, denoted as R = {r1, r2, ..., rn}.
Definition 2 (Region Attributes) In this study, region at-
tributes are defined as inherent geographic features of re-
gions. Specifically, we consider Point of Interest (POI) cate-
gories as region attributes following Zhang, Long, and Cong
(2022); Fu et al. (2019). These region attributes are repre-
sented as a set A = {A1,A2, · · · ,An}, where Ai ∈ RF

and F represents the total number of POI categories. Each
dimension in Ai corresponds to the number of POIs with a
specific category in the region ri.
Definition 3 (Human Mobility) For a region ri, we define
its outflow feature Sj,t

i as the number of trips made by all
individuals originating from region ri and destined for re-
gion rj during a specific time interval t. Consequently, we
generate a collection of outflow features based on the mo-
bility data encompassing all regions within the set R. This
collection is represented as S = {S1,S2, · · · ,Sn}, where
Si ∈ RM . Here, M is calculated as the product of the
number of regions, n, and the number of time intervals, Nt,
within a day, for instance, 24. Similarly, by considering ri as
the destination region and the other regions rj as the source
regions, we can obtain an inflow feature vector, denoted as
Di, and finally obtain a collection D = {D1,D2, · · · ,Dn}
of inflow features for all regions.
Problem 1 (Region Representation Learning) Given the
attribute features A, outflow features S , and inflow features
D of n regions, our objective is to acquire a collection of
low-dimensional embeddings E = {E1,E2, · · · ,En}, to
serve as the latent representation for each region.
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Figure 2: The framework of ReCP.

Methodology
The framework of ReCP is illustrated in Figure 2, which in-
cludes two major components: 1) intra-view learning: for
both region attribute and human mobility view, it captures
the representative features of each region by intra-view con-
trastive learning to learn view-specific representations. Ad-
ditionally, feature reconstruction is designed within each
view to recover the original feature of the region, which
helps avoid a trivial solution; 2) inter-view learning: within
the same region, it integrates representations from differ-
ent views through two learning objectives: inter-view con-
trastive learning is used to enhance the consistency across
different views, and dual prediction is introduced to further
diminish the inconsistent information between views.

Intra-view Learning
Initially, we learn view-specific region representations based
on the region attribute features A and the mobility features
S and D, respectively. Within each view, we learn the latent
representation for each region by employing intra-view con-
trastive learning, i.e., we compare each region with others to
highlight distinctive features within each region. Addition-
ally, we design a within-view reconstruction loss to avoid
the trivial solution.

Intra-view Contrastive Learning To learn region repre-
sentations within each view, we design an intra-view con-
trastive learning module, which compares each region with
others. For a given region ri, we have three types of region
features, including the attribute feature Ai, outflow feature
Si, and inflow feature Di. For simplicity, let Xv

i denote the
raw feature for the v-th view. For a target region ri, we de-
fine its positive set as Pv

i = {Xv
1,X

v
2, · · · ,Xv

K}, where

Xv
1,X

v
2, · · · ,Xv

K are positive samples obtained through the
data augmentation function following (Zhang, Long, and
Cong 2022), and K is the number of positive samples. The
negative set N v

i is defined as N v
i = {Xv

t |t ̸= i}, which
contains features of regions except ri.

We then map the raw features of regions into a latent rep-
resentation,

Zv
i = E(v)(Xv

i ), (1)

where E(v) denotes the encoder for the v-th view. In prac-
tice, we simply implement it as a fully connected neural net-
work. As a result, we obtain three types of region represen-
tations, Za

i , Zs
i and Zd

i . Further, we compute the region rep-
resentation Zm

i of the human mobility view as the average
of Zs

i and Zd
i , i.e., Zm

i =
(
Zs

i + Zd
i

)
/2. To maximize the

similarity of positive pairs while minimizing the similarity
of negative pairs, the contrastive learning loss for the v-th
view is defined as follows,

Lv
cl =

∑
ri∈R

[− log
K∑

k=1

exp(
Zv

i · Zv
k

τ
)+

log(
K∑

k=1

exp(
Zv

i · Zv
k

τ
) +

|Nv
i |∑

t=1

exp(
Zv

i · Zv
t

τ
))],

(2)

where τ is the temperature parameter and R is the set of re-
gions. Further, the intra-view contrastive learning loss across
all views is formulated as

Lintra
cl = µLa

cl + Lm
cl . (3)

where µ is the parameter controlling the balance between
the attribute view and the mobility view.
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Intra-view Reconstruction Given the feature Xv
i for the

v-th view of the region ri, we further optimize the latent
region representations via an autoencoder and define the re-
construction loss Lv

rec as

Lv
rec =

∑
ri∈R

∥∥∥Xv
i −D(v)(E(v)(Xv

i ))
∥∥∥2
2
, (4)

where E(v) is the same as that in Equation (1) and D(v)

is the decoder for the v-th view to reconstruct the region
features. Specifically, we employ a fully connected network
to implement D(v), which shares the same number of layers
and hidden sizes as E(v). Note that the autoencoder structure
is helpful to avoid the trivial solution.

The total reconstruction loss across all views is

Lintra
rec = µLa

rec + Lm
rec, (5)

where µ is the same weight parameter as that in Equation (3).
So far, we obtain two types of view-specific region repre-
sentations Za

i and Zm
i from the region attribute and human

mobility views.

Inter-view Learning
Different views of a region provide valuable information
for describing the region, often offering complementary in-
sights. To learn consistent and informative representations
across different views, we employ inter-view contrastive
learning to improve collaboration and information exchange
between the views, achieved by maximizing the mutual in-
formation among different views. Additionally, dual predic-
tion between two views is leveraged to reduce the impact of
inconsistent information between the views by minimizing
the conditional entropy across them.

Inter-view Contrastive Learning In the latent embed-
ding space, we conduct contrastive learning to learn con-
sistent representations shared across different views, as re-
cent contrastive learning studies (He et al. 2020; Lin et al.
2021) have shown that consistency could be learned by max-
imizing the mutual information of different views. Formally,
given the two representations Za

i and Zm
i of region ri, we

maximize the mutual information between Za
i and Zm

i from
different views:

Linter
cl = −

∑
ri∈R

[I(Za
i ,Z

m
i ) + α(H(Za

i ) +H(Zm
i ))], (6)

where I(·) represents mutual information, H(·) denotes in-
formation entropy, and the parameter α controls the balance
between mutual information and information entropy. Note
that the maximization of H (Za

i ) and H (Zm
i ) also helps pre-

vent trivial solutions where all regions are represented by the
same representation. Based on the definition of mutual infor-
mation, I(·) is defined as

I (Za
i ,Z

m
i ) = P (Za

i ,Z
m
i ) log

P (Za
i ,Z

m
i )

P (Za
i )P (Zm

i )
, (7)

where P (Za
i ,Z

m
i ) represents the joint probability distribu-

tion of Za
i and Zm

i . To represent the joint probability distri-
bution, we employ a softmax function to transform the re-
gion representations Za

i ∈ Rd and Zm
i ∈ Rd (where d is the

dimension of region representations) with

Ba
i = softmax (Za

i ) ,B
m
i = softmax (Zm

i ) , (8)

where Ba
i ∈ Rd and Bm

i ∈ Rd can be interpreted as the
probability distributions. Considering the entire set R con-
taining n regions, we define the matrix M ∈ Rd×d as the
joint probability distribution of Za and Zm,

M =
1

n

n∑
i=1

Ba
i (B

m
i )

T
. (9)

We denote the element located at the r-th row and the r′-th
column of the matrix as Mrr′, and the sum of the elements
in matrix M along the r-th row (the r′-th column) as Mr

(Mr′). Mrr′ represents the joint probability, while Mr and
Mr′ represent the marginal probability, respectively. Then
we could compute the mutual information I (Za,Zm) as fol-
lows,

I (Za,Zm) =
d∑

r=1

d∑
r′=1

Mrr′ log
Mrr′

Mr ·Mr′
. (10)

Information entropy H(Zv
i ) is defined as follows,

H(Zv
i ) = −P (Zv

i )logP (Zv
i ), (11)

where v ∈ {a,m}. Following the above definition of M,
H(Zv

i ) could be computed as

H(Za) = −
d∑

r=1

Mr logMr,

H(Zm) = −
d∑

r′=1

Mr′ logMr′.

(12)

Combining Equations (6), (10), and (12), the inter-view
contrastive learning loss is formulated as

Linter
cl = −

d∑
r=1

d∑
r′=1

Mrr′ ln
Mrr′

Mα+1
r ·Mα+1

r′
. (13)

where α is the weight parameter defined in the Equation (6).

Inter-view Dual Prediction To further diminish the in-
consistency across different views, we predict the view-
specific region representation by minimizing the condi-
tioned entropy. Formally, given the region representa-
tions Za and Zm, we minimize the conditional entropy
H(Zp|Zq), where p = a, q = m or p = m, q = a. On
one hand, Zq contains nearly all the information required to
represent the p-th view if Zq can perfectly predict Zp for
any (Zp,Zq) ∼ PZp,Zq . On the other hand, Zq diminishes
the inconsistent information within the q-th view if Zp can
perfectly predict Zq under the constraint where I(Zp,Zq) is
maximized. Mathematically, H(Zp|Zq) is defined as

H (Zp |Zq ) = −EP Zp,Zq [logP (Zp|Zq)] . (14)

To minimize H (Zp |Zq ), a common approach is to as-
sume a variational distribution Q (Zp|Zq) for Zp and Zq .
Specially, we present to maximize EP Zp,Zq [logQ (Zp|Zq)],
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which serves as a lower bound of EP Zp,Zq [logP (Zp|Zq)].
Q (·|·) can be any distribution such as Gaussian or Lapla-
cian. In this work, we simply adopt the Gaussian distribu-
tion N (Zp|F (q) (Zq) , σI ), where F (q) (·) represents a pa-
rameterized function mapping Zq to Zp, and σI denotes the
variance matrix. By ignoring the constants derived from the
Gaussian distribution, maximizing EP Zp,Zq [logQ (Zp|Zq)]
is equivalent to minimizing

EP Zp,Zq

∥∥∥Zp − F (q) (Zq)
∥∥∥2
2
. (15)

Then the dual prediction loss can be formulated as

Linter
dp =

∑
ri∈R

∥∥∥Zm
i − F (a) (Za

i )
∥∥∥2
2
+
∥∥∥Za

i − F (m) (Zm
i )

∥∥∥2
2
.

Here, F (a) and F (m) are respectively implemented as
fully-connected networks, with each layer followed by a
batch normalization layer and a ReLU layer. Note that the
above loss may lead to model collapse without the intra-view
reconstruction loss (Equation (4)), i.e., Za

i and Zm
i from dif-

ferent views become equivalent to the same constant.
Finally, the inter-view learning loss is defined as

Linter = Linter
dp + Linter

cl . (16)

Model Training
The final objective function is defined as

L = Linter + λ1Lintra
cl + λ2Lintra

rec , (17)

where λ1 and λ2 are parameters controlling the weights of
different losses. After learning the latent representations Za

and Zm, we simply concatenate them as the final multi-view
region representation, i.e., Ei = Za

i ||Zm
i .

Experiments
Experimental Settings
Datasets. We collect a diverse set of real-world data from
NYC Open Data1 and use the Manhattan borough as the
study area. We partition Manhattan into 270 regions based
on the city boundaries designed by the US Census Bureau2.
As for the human mobility data, we employ complete taxi
trip records from February 2014 as our training data. We
utilize the NYC check-in and POI data provided by Yang
et al. (2014) for our model training and the popularity pre-
diction task. The detailed description of datasets is shown in
Table 1. Based on these data, we construct the region fea-
tures including A, S , and D for model training.

Model Parameters. In our experiments, the dimension of
region representations is set to 96. In the intra-view recon-
struction module, we set the number of layers at 3 and the
hidden size at 128 for the encoder E(v) and decoder D(v);
in the intra-view contrastive learning module, following the
settings in Zhang, Long, and Cong (2022), we set the num-
ber of positive samples for region attribute and human mo-
bility data at 3 and 4, and the parameter µ controlling the

1https://opendata.cityofnewyork.us
2https://www.census.gov/data.html

Dataset Description
Regions 270 regions divided by streets in Manhattan

Taxi trips 10M taxi trips during February, 2014
POI data 10K POIs with 244 categories

Check-in data 100K check-in records

Table 1: Data description (K=103, M=106).

balance between different views at 0.0001. In the inter-view
dual prediction module, we set the number of layers at 3 and
the hidden size at 96 for F (a) and F (m); in the inter-view
contrastive learning module, we set the parameter α at 9.
We set the hyper-parameters λ1 and λ2 in the final objective
loss at 1. Note that the optimal model parameters are se-
lected using grid search with a small but adaptive step size.
To optimize our model, we adopt Adam and initialize the
learning rate at 0.01 with a linear decay.

Baselines. We compare the performance of ReCP with
several state-of-the-art region embedding methods.

• HDGE. (Wang and Li 2017) constructs flow graphs and
spatial graphs using taxi data and learns region represen-
tations with graph embedding methods.

• ZE-Mob. (Yao et al. 2018) models co-occurrence pat-
terns between regions from mobility data to learn region
representations.

• MV-PN. (Fu et al. 2019) models both inter-region and
intra-region information to construct multi-view POI-
POI networks within each region.

• CGAL. (Zhang et al. 2019) extends MV-PN and incor-
porates the spatial structure and spatial autocorrelation
among regions to learn region representations.

• MVURE. (Zhang et al. 2021) learns region representa-
tions by cross-view information sharing and multi-view
fusion with human mobility and region attributes.

• MGFN. (Wu et al. 2022) designs multi-level cross-
attention mechanisms to extract region representations
from multiple mobility patterns.

• ReMVC. (Zhang, Long, and Cong 2022) learns region
representations through both intra-view and inter-view
contrastive learning modules.

• HREP. (Zhou et al. 2023) constructs heterogeneous
graphs and uses relation-aware graph embedding to learn
region representations.

Land Usage Clustering
We use the district division by the community boards (Berg
2007) as ground truth and divide the Manhattan borough into
29 districts, following the settings in Zhang, Long, and Cong
(2022). We cluster regions into groups by k-means cluster-
ing (k = 29), using region representations as inputs. The
regions with the same land usage type are expected to be
assigned to the same cluster. The experimental results are
evaluated using three metrics: Normalized Mutual Informa-
tion (NMI), Adjusted Rand Index (ARI), and F-measure fol-
lowing (Yao et al. 2018; Zhang et al. 2021). We assess all
the methods using the same dataset and conduct 10 runs to
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Method Land Usage Clustering Region Popularity Prediction
NMI ARI F-measure MAE RMSE R2

HDGE 0.469 ± 0.01 0.095 ± 0.01 0.117 ± 0.01 334.43 ± 10.17 474.94 ± 9.49 0.079 ± 0.04
ZE-Mob 0.437 ± 0.02 0.071 ± 0.01 0.097 ± 0.01 282.42 ± 13.71 418.02 ± 12.69 0.286 ± 0.04
MV-PN 0.407 ± 0.01 0.036 ± 0.01 0.070 ± 0.01 291.17 ± 16.54 435.23 ± 16.52 0.226 ± 0.06
CGAL 0.414 ± 0.08 0.059 ± 0.06 0.091 ± 0.06 351.10 ± 51.20 486.96 ± 52.58 0.021 ± 0.20

MVURE 0.735 ± 0.01 0.400 ± 0.02 0.415 ± 0.02 236.25 ± 7.86 347.01 ± 11.70 0.508 ± 0.03
MGFN 0.748 ± 0.01 0.424 ± 0.03 0.437 ± 0.03 240.37 ± 11.99 354.24 ± 17.14 0.487 ± 0.05

ReMVC 0.761* ± 0.02 0.455* ± 0.04 0.462* ± 0.04 283.02 ± 18.03 406.25 ± 18.00 0.325 ± 0.06
HREP 0.757 ± 0.01 0.448 ± 0.03 0.457 ± 0.03 217.52* ± 10.98 318.41* ± 14.54 0.585* ± 0.04
ReCP 0.780 ± 0.01 0.483 ± 0.01 0.499 ± 0.02 195.16 ± 18.70 291.19 ± 20.04 0.652 ± 0.05

Improvements 2.50% 6.15% 8.01% 10.28% 8.55% 11.45%

Table 2: Performance comparison on two downstream tasks, where the performance improvements of ReCP are compared with
the best of these baseline methods, marked by the asterisk.

report the mean value with the standard deviation in Table 2.
From the results, we observe that:

• HDGE and ZE-Mob exhibit relatively inferior perfor-
mance as they merely model co-occurrence patterns us-
ing human mobility data. MGFN demonstrates better
performance than HDGE and ZE-Mob, as it designs a
deep model based on cross-attention mechanisms to cap-
ture complex mobility patterns from spatial-temporal hu-
man mobility data.

• The methods that model multi-view information gener-
ally achieve satisfactory results, validating the impor-
tance of effectively integrating multi-view information
for region embedding. Specifically, MV-PN and CGAL
exhibit poor performance as they simply combine re-
gion representations from two views, lacking the deep
interaction between views; MVURE and HREP design
attention-based mechanisms to fuse the multi-view in-
formation, consequently yielding superior performance;
ReMVC adopts contrastive learning to model intra-view
and inter-view information and also obtains good results.

• The proposed ReCP outperforms all these baselines, as it
explores the consistency across different views in region
embedding. Compared with ReMVC, ReCP achieves av-
erage improvements of 2.50%, 6.15%, and 8.01% in
terms of NMI, ARI, and F-measure, respectively. More-
over, the results of the superiority paired t-test indicate
that the improvement of ReCP over the baselines is sta-
tistically significant, with a p-value less than 0.01.

Region Popularity Prediction
Another commonly-compared downstream task to evaluate
the region representations is popularity prediction, where
we aggregate the check-in counts within each region as the
ground truth of popularity following Yang et al. (2014);
Zhang, Long, and Cong (2022). We take region represen-
tations as input and train the Lasso regression model. The
evaluation results including Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), and Coefficient of De-
termination (R2) are obtained by 5-fold cross-validation, as
reported in Table 2. From the results, we observe that the
multi-view fusion methods including MVURE and HREP

achieve decent performance, which further validates the ne-
cessity of integrating multi-view information in region em-
bedding. ReCP performs the best among all methods, e.g.,
compared to HREP, ReCP achieves average improvements
of 10.28%, 8.55%, and 11.45% in terms of MAE, RMSE,
and R2. These results indicate that it is an effective way
to learn better region representations by utilizing the new
pipeline following the consistency learning paradigm.

Ablation Study and Parameter Analysis
Ablation study We design four variants to explore how
each module of ReCP affects the model performance. ReCP
w/o CL removes the intra-view contrastive learning loss,
ReCP w/o Rec removes the intra-view reconstruction loss
and only uses the encoder to extract features, ReCP w/o IV
removes the inter-view learning module and directly con-
catenates region representations from the two views without
the constraint of consistency learning, and ReCP w/o DP re-
moves the inter-view dual prediction loss. From the results
in Figure 3, we observe that:

1) ReCP w/o CL achieves the lowest performance in both
tasks, indicating that the intra-view contrastive learning loss
is a crucial component in our model for learning view-
specific feature representations of regions.

2) ReCP w/o Rec achieves worse performance than ReCP,
supporting the aforementioned claim that the intra-view re-
construction loss could help prevent the model from con-
verging to a trivial solution.

3) ReCP demonstrates an improvement of 29.84% (in
terms of ARI) and 4.00% (in terms of R2) when compared to
ReCP w/o IV. This finding suggests that the proposed inter-
view learning module effectively leverages the multi-view
information and highlights the importance of consistency
learning across different views.

4) ReCP w/o DP outperforms ReCP w/o IV but performs
worse than ReCP, indicating that both the inter-view con-
trastive learning loss (which maximizes the mutual informa-
tion between views) and the inter-view dual prediction loss
(which minimizes the conditional entropy across them) are
important for learning multi-view region representations.

Parameter sensitivity The parameters λ1 and λ2 govern
the weighting of various losses. We vary their values within
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Figure 3: Performance comparison of different modules.
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Figure 4: Parameter analysis on both downstream tasks.

the range of {0.01, 0.1, 1, 10, 100} to assess the impact of λ1

and λ2 on the model performance. As depicted in Figure 4,
ReCP achieves satisfactory performance when we set both
λ1 and λ2 at 1.

Related Work
Traditional methods for region embedding typically utilize
human mobility data to analyze the transition patterns be-
tween urban regions. These methods are often based on the
word2vec framework and learn the latent representations of
regions (Wang and Li 2017; Yao et al. 2018). In a simi-
lar vein, Wu et al. (2022) incorporate mobility graphs with
spatio-temporal similarity as mobility patterns and propose
multi-level cross-attention mechanisms to extract compre-
hensive region representations from these patterns. Addi-
tionally, some studies focus on leveraging the inherent at-
tributes of regions to learn latent representations. For in-
stance, Zhang et al. (2019) construct multiple spatial graphs
to represent the geographic structure of regions. By trans-
forming the region embedding problem into a graph em-

bedding problem, they primarily capture the spatial struc-
ture within regions and the spatial autocorrelation between
regions. Another approach, proposed by Wang, Li, and Ra-
jagopal (2020), involves mining street views and textual in-
formation of POIs within regions to learn representations.

Moreover, there have been studies that learn region rep-
resentations by incorporating both attribute features within
regions and mobility patterns between regions. For instance,
Fu et al. (2019) propose an autoencoder framework that ef-
fectively captures inter-region correlations and intra-region
structural information during the process of region embed-
ding. Zhang et al. (2021) model multi-view region correla-
tions by leveraging human mobility data and inherent region
attributes, and employ a graph attention mechanism to ac-
quire region representations from each view of the estab-
lished correlations. Zhou et al. (2023) learn relation-specific
region representations from various types of relations in
a heterogeneous graph constructed using human mobility,
POI data, and geographic neighbors of regions. They de-
vise an attention-based fusion technique to integrate shared
information among different types of correlations. Addi-
tionally, Zhang, Long, and Cong (2022) introduce a multi-
view region embedding model based on contrastive learning,
which incorporates an intra-view contrastive learning mod-
ule to discern distinct representations and an inter-view con-
trastive learning module to facilitate the transfer of knowl-
edge across multiple views.

Conclusion
In this paper, we form a new pipeline based on the consis-
tency learning paradigm for multi-view region embedding.
Under the hood, we propose a multi-view Contrastive Pre-
diction model for urban Region embedding (ReCP) by ex-
ploring the consistency across two views, leveraging both
POI and human mobility data. The ReCP model consists
of two modules: an intra-view learning module that utilizes
contrastive learning and feature reconstruction to learn re-
gion representations specific to each view, and an inter-view
learning module utilizing a contrastive prediction learning
scheme that enhances the consistency between two views.
To evaluate the effectiveness of our proposed model, we
conduct comprehensive experiments on two downstream
tasks: land use clustering and region popularity predic-
tion. The experimental results demonstrate that the proposed
ReCP model outperforms state-of-the-art embedding meth-
ods, proving that retaining consistency across views is piv-
otal for effective region embedding.
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