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Abstract

Anomaly inspection plays an important role in industrial
manufacture. Existing anomaly inspection methods are lim-
ited in their performance due to insufficient anomaly data.
Although anomaly generation methods have been proposed to
augment the anomaly data, they either suffer from poor gener-
ation authenticity or inaccurate alignment between the gener-
ated anomalies and masks. To address the above problems, we
propose AnomalyDiffusion, a novel diffusion-based few-shot
anomaly generation model, which utilizes the strong prior
information of latent diffusion model learned from large-
scale dataset to enhance the generation authenticity under
few-shot training data. Firstly, we propose Spatial Anomaly
Embedding, which consists of a learnable anomaly embed-
ding and a spatial embedding encoded from an anomaly
mask, disentangling the anomaly information into anomaly
appearance and location information. Moreover, to improve
the alignment between the generated anomalies and the
anomaly masks, we introduce a novel Adaptive Attention
Re-weighting Mechanism. Based on the disparities between
the generated anomaly image and normal sample, it dynam-
ically guides the model to focus more on the areas with
less noticeable generated anomalies, enabling generation of
accurately-matched anomalous image-mask pairs. Extensive
experiments demonstrate that our model significantly outper-
forms the state-of-the-art methods in generation authenticity
and diversity, and effectively improves the performance of
downstream anomaly inspection tasks. The code and data are
available in https://github.com/sjtuplayer/anomalydiffusion.

Introduction
In recent years, industrial anomaly inspection algorithms,
i.e., anomaly detection, localization, and classification, play
a crucial role in industrial manufacture (Duan et al. 2023).
However, in real-world industrial production, the anomaly
samples are very few, posing a significant challenge for
anomaly inspection (Fig. 1-top). To mitigate the issue of few
anomaly data, existing anomaly inspection mostly relies on
unsupervised learning methods that only use normal sam-
ples (Zavrtanik, Kristan, and Skočaj 2021; Li et al. 2021), or
few-shot supervised learning methods (Zhang et al. 2023a).
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Figure 1: Top: Our model generates extensive anomaly data,
which supports the downstream Anomaly Detection (AD),
Localization (AL) and Classification (AC) tasks, while pre-
vious methods mainly rely on unsupervised learning or few-
shot supervised learning due to the limited anomaly data;
Bottom: Generated anomaly results on hazelnut-crack and
capsule-squeeze of our model and existing anomaly genera-
tion methods, where our results are the most authentic.

Although these methods perform well in anomaly detection,
they have limited performance in anomaly localization and
cannot handle anomaly classification.

To cope with the problem of scarce anomaly samples, re-
searchers propose anomaly generation methods to supple-
ment the anomaly data, which can be divided into two types:
1) The model-free methods randomly crop and paste patches
from existing anomalies or anomaly texture dataset onto nor-
mal samples (Li et al. 2021; Lin et al. 2021; Zavrtanik, Kris-
tan, and Skočaj 2021). But such methods exhibit poor au-
thenticity in the synthesized data (Fig. 1-bottom-a/b). 2) The
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GAN-based methods (Zhang et al. 2021; Niu et al. 2020;
Duan et al. 2023) utilize Generative Adversarial Networks
(GANs) (Goodfellow et al. 2014) to generate anomalies,
but most of them require a large amount of anomaly sam-
ples for training. The only few-shot generation model DFM-
GAN (Duan et al. 2023) employs StyleGAN2 (Karras et al.
2020) pretrained on normal samples, and then performs do-
main adaption with a few anomaly samples. But the gener-
ated anomalies are not accurately aligned with the anomaly
masks (Fig. 1-bottom-c). To sum up, the existing anomaly
generation methods either fail to generate authentic anoma-
lies or accurately-aligned anomalous image-mask pairs by
learning from few-shot anomaly data, which limits their im-
provement in the downstream anomaly inspection tasks.

To address the above issues, we propose AnomalyDiffu-
sion, a novel anomaly generation method based on the dif-
fusion model, which generates anomalies onto the input nor-
mal samples with the anomaly masks. By leveraging the
strong prior information of a pretrained LDM (Rombach
et al. 2022) learned from large-scale dataset (Schuhmann
et al. 2021), we can extract better anomaly representation
using only a few anomaly images and boost the generation
authenticity and diversity. To generate anomalies with spec-
ified type and locations, we propose Spatial Anomaly Em-
bedding, which disentangles anomaly information into an
anomaly embedding (a learned textual embedding to repre-
sent the appearance type of anomaly) and a spatial embed-
ding (encoded from an anomaly mask to indicate the loca-
tions). By disentangling anomaly location from appearance,
we can generate anomalies in any desired positions, which
enables producing a large amount of anomalous image-
mask pairs for the downstream tasks. Moreover, we propose
an Adaptive Attention Re-weighting Mechanism to allocate
more attention to the areas with less noticeable generated
anomalies, which dynamically adjusts the cross-attention
maps based on disparities between the generated images and
input normal samples during the diffusion inference stage.
This adaptive mechanism results in accurately aligned gen-
erated anomaly images and anomaly masks, which greatly
facilitates downstream anomaly localization tasks.

Extensive qualitative and quantitative experiments and
comparisons demonstrate that our AnomalyDiffusion outper-
forms state-of-the-art anomaly generation models in terms
of generation authenticity and diversity. Moreover, our gen-
erated anomaly images can be effectively applied to down-
stream anomaly inspection tasks, yielding a pixel-level
99.1% AUROC and 81.4% AP score in anomaly localiza-
tion on MVTec (Bergmann et al. 2019). The main contribu-
tion of this paper can be summarized as follows:

• We propose AnomalyDiffusion, a few-shot diffusion-
based anomaly generation method, which disentangles
anomalies into anomaly embedding (for anomaly appear-
ance) and spatial embedding (for anomaly location), and
generates authentic and diverse anomaly images.

• We design Adaptive Attention Re-weighting Mechanism,
which adaptively allocates more attention to the areas
with less noticeable generated anomalies, improving the
alignment between the generated anomalies and masks.

• Extensive experiments demonstrate the superiority of
our model over the state-of-the-art competitors, and our
generated anomaly data effectively improves the perfor-
mance of downstream anomaly inspection tasks, which
will be released to facilitate future research.

Related Work
Generative Models
Generative models. VAEs (Kingma and Welling 2013)
and GANs (Goodfellow et al. 2014) have achieved
great progress in image generation. Recently, diffusion
model (Nichol and Dhariwal 2021) demonstrates a more en-
hanced potential in generating images in a wide range of do-
mains. Latent diffusion model (LDM) (Rombach et al. 2022)
further improves the generation ability through compression
of the diffusion space and obtains strong prior information
by training on LAION dataset (Schuhmann et al. 2021).
Few-shot image generation. Few-shot image generation
aims to generate diverse images with limited training data.
Early methods propose modifying network weights (Mo,
Cho, and Shin 2020), using various regularization tech-
niques (Li et al. 2020) and data augmentation (Tran et al.
2021) to prevent overfitting. To deal with the extremely lim-
ited data (less than 10), recent works (Ojha et al. 2021;
Wang et al. 2022; Hu et al. 2023a) introduce cross-domain
consistency losses to keep the generated distribution. Tex-
tual Inversion (Gal et al. 2022) and Dreambooth (Ruiz et al.
2023) encode a few images into the textual space of a pre-
trained LDM, but cannot control the generated locations ac-
curately.

Anomaly Inspection
Anomaly inspection. The anomaly inspection task consists
of anomaly detection, localization and classification. Some
existing methods (Schlegl et al. 2017, 2019; Liang et al.
2023) rely on image reconstruction, comparing the differ-
ences between reconstructed images and anomaly images to
achieve anomaly detection and localization. Moreover, deep
feature modeling-based methods (Lee, Lee, and Song 2022;
Cao et al. 2022; Roth et al. 2022; Gu et al. 2023; Wang
et al. 2023) build a feature space for input images and then
compare the differences between features to detect and lo-
calize anomalies. Additionally, some supervised learning-
based methods (Zhang et al. 2023a) utilize a small num-
ber of anomaly samples to enhance the anomaly localiza-
tion capabilities. Some studies conduct zero-/few-shot AD
without using or with only a small number of anomaly sam-
ples (Jeong et al. 2023; Cao et al. 2023; Chen, Han, and
Zhang 2023; Chen et al. 2023; Zhang et al. 2023b; Huang
et al. 2022). Although these methods have shown promising
results in anomaly detection, their performance in anomaly
localization is still limited due to the lack of anomaly data.
Anomaly generation. The scarcity of anomaly data
has sparked research interest in anomaly generation.
DRAEM (Zavrtanik, Kristan, and Skočaj 2021), Cut-
Paste (Li et al. 2021), Crop-Paste (Lin et al. 2021) and
PRN (Zhang et al. 2023a) crop and paste unrelated textures
or existing anomalies into normal sample. But they either
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Figure 2: Overall framework of our AnomalyDiffusion: 1) The Spatial Anomaly Embedding e, consisting of an anomaly
embedding ea (a learned textual embedding to represent anomaly appearance type) and a spatial embedding es (encoded
from an input anomaly mask m to indicate anomaly locations), serves as the text condition to guide the anomaly generation
process; 2) The Adaptive Attention Re-weighting Mechanism computes the weight map wm based on the difference between
the denoised image x̂0 and the input normal sample y, and adaptively reweights the cross-attention map mc by the weight map
wm to help the model focus more on the less noticeable anomaly areas during the denoising process.

generate less realistic anomalies or have limited generated
diversity. The GAN-based model SDGAN (Niu et al. 2020)
and Defect-GAN (Zhang et al. 2021), generate anomalies
on normal samples by learning from anomaly data. But they
require a large amount of anomaly data and cannot gener-
ate anomaly mask. DMFGAN (Duan et al. 2023) transfers
a StyleGAN2 (Karras et al. 2020) pretained on normal sam-
ples to anomaly domain, but lacks generation authenticity
and accurate alignment between generated anomalies and
masks. In contrast, our model incorporates spatial anomaly
embedding and adaptive attention re-weighting mechanism,
which can generate anomalous image-mask pairs with great
diversity and authenticity.

Method
Our AnomalyDiffusion aims to generate a large amount of
anomaly data aligned with anomaly masks, by learning from
a few anomaly samples. The inputs to our model include an
anomaly-free sample y and an anomaly mask m, and the
output is an image with anomalies generated in the mask
area, while the remaining region is consistent with the input
anomaly-free sample.

As shown in Fig. 2, our AnomalyDiffusion is developed
based on Latent Diffusion Model (Rombach et al. 2022). To
disentangle the anomaly location information from anomaly
appearance, we propose Spatial Anomaly Embedding e,
which consists of an anomaly embedding ea (for anomaly
appearance) and a spatial embedding es (for anomaly loca-
tion). Moreover, to enhance the alignment between the gen-
erated anomalies and given masks, we introduce an Adaptive
Attention Re-weighting Mechanism, which helps the model
to allocate more attention to the areas with less noticeable
generated anomalies (Fig. 3(c)).

Specifically, the anomaly embedding ea provides the
anomaly appearance type information, with one ea corre-
sponding to a certain type of anomaly (e.g., hazelnut-crack,
capsule-squeeze), which is learned by our masked textual in-

version (Sec. ). And the spatial embedding es provides the
anomaly location information, which is encoded from the in-
put anomaly mask m by a spatial encoder E (shared among
all anomalies). By combining the anomaly embedding ea
with spatial embedding es, the spatial anomaly embedding
e contains both the anomaly appearance and spatial infor-
mation, which serves as the text condition in the diffusion
model to guide the generation process. With the the spatial
anomaly embedding as condition, given a normal sample,
we generate an anomaly image with the blended diffusion
process (Avrahami, Lischinski, and Fried 2022):

xt−1 = pθ(xt−1|xt, e)⊙m+ q(yt−1|y0)⊙ (1−m), (1)

where xt is the generated anomaly image at timestep t, y0 is
the input normal sample, m is the anomaly mask, and q(·)
and pθ(·) are the forward and backward process in diffusion
as illustrated in Sec. .

Preliminaries
Denoising diffusion probabilistic models (DDPM) (Ho,
Jain, and Abbeel 2020) has achieved significant success in
image generation tasks. It employs a forward process to add
noise into the data and then learns denoising during the
backward process, thereby accomplishing the fitting of the
training data distribution. With the training image x0, the
forward process q(·) in diffusion model is formulated as:

q (x1, . . . , xT | x0) :=
T∏

t=1

q (xt | xt−1) ,

q (xt | xt−1) := N
(
xt;

√
1− βtxt−1, βtI

)
,

(2)

where βt is the variance at timestep t.
The backward process is approximated by predicting the

mean µθ(xt, t) and variance Σθ (xt, t) (set as a constant in
DDPM) of a Gaussian distribution iteratively by:

pθ (xt−1 | xt) := N (xt−1;µθ (xt, t) ,Σθ (xt, t)) . (3)
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Textual inversion (Gal et al. 2022) utilizes a pre-trained
Latent Diffusion Model to extract the shared content infor-
mation in few-shot input samples by optimizing text em-
beddings. With the refined text embeddings as condition c,
textual inversion can generate novel images x0 with similar
contents of input images by:

x0 =
T∏

t=1

pθ(xt−1|xt, c), xT ∼ N (0, 1). (4)

Spatial Anomaly Embedding
Disentangle spatial information from anomaly appear-
ance. We aim at controllable anomaly generation with spec-
ified anomaly type and location. A direct solution is to con-
trol anomaly type by textual embedding learned from tex-
tual inversion (Gal et al. 2022), and control anomaly loca-
tion by the input mask. However, textual inversion tends to
capture the location of anomalies along with the anomaly
type information, which results in the generated anomalies
only distributed in specific locations. To address the issue,
we propose to disentangle the textual embedding into two
parts, where one part (the spatial embedding es) is directly
encoded from the anomaly mask to indicate the anomaly lo-
cation, leaving the rest (the anomaly embedding ea) to only
learn anomaly type information. We name our decomposed
textual embedding as Spatial Anomaly Embedding.
Anomaly embedding is a learned textual embedding that
represents the anomaly appearance type information. Dif-
ferent from textual inversion method that learns the features
of the entire image, in anomaly generation, our model only
needs to focus on anomaly areas, without requiring infor-
mation of the entire image. Therefore, we introduce masked
textual inversion, where we mask out irrelevant background
and normal regions of the anomaly image, and only the
anomaly regions are visible to the model. We initialize the
anomaly embedding ea with k tokens and optimize it using
the masked diffusion loss:

Ldif = ∥m⊙ (ϵ− ϵθ (zt, t, {ea, es}))∥22 , (5)

where ϵ ∼ N (0, 1) and zt is the noised latent code of the
input image x at timestep t.
Spatial embedding. To provide accurate spatial informa-
tion of the anomaly locations, we introduce a spatial en-
coder E that encodes the input anomaly mask m into spatial
embedding es, which is in the form of textual embedding
and contains precise location information from the mask.
Specifically, we input the anomaly mask into ResNet-50 (He
et al. 2016) to extract the image features in different layers
and fuse them together by Feature Pyramid Networks (Lin
et al. 2017). Finally, several fully-connected networks are
employed to map the fused features into textual embedding
space, with each network predicting one text token, thereby
outputting the final spatial embedding es with n tokens.
Overall training framework. For each anomaly type i, we
employ an anomaly embedding ea,i to extract its appearance
information, while all anomaly categories share a common
spatial encoder E. For a set of image-mask pairs (xi,mi) in
the training data, we first input anomaly mask mi into spatial

(a) Mask (b) Ours (c)w/o AAR

Figure 3: Comparison between the models w/ (Ours) and
w/o Adaptive Attention Re-weighting (AAR). The model
w/o AAR cannot generate anomalies to fill the entire mask.

encoder E to obtain the spatial embedding es = E(mi).
Then, we concatenate the anomaly embedding ea,i and the
spatial embedding es together to obtain our spatial anomaly
embedding e = {ea, es}. Finally, the concatenated textual
embedding e is used as the text condition to the diffusion
model, and the training process can be formulated as:

e∗a, E
∗ =argmin

ea,E
Ez∼E(xi),mi,ϵ,tLdif . (6)

where E(·) is the image encoder of latent diffusion model
and ϵ ∼ N (0, 1).

Adaptive Attention Re-Weighting
With the spatial anomaly embedding e, we can use it as the
text condition to guide the generation of anomaly images by
Eq. (1). However, the generated anomaly images sometimes
fail to fill the entire mask, especially when there are multiple
anomaly regions in the mask or when the mask has irregu-
lar shapes (Fig. 3-a/c). In such cases, the generated anoma-
lies are usually not well aligned with the mask, which limits
the improvement in downstream anomaly localization task.
To address this problem, we propose an adaptive attention
re–weighting mechanism, which allocates more attention to
the areas with less noticeable generated anomalies during
the denoising process, thereby facilitating better alignment
between the generated anomalies and the anomaly masks.
Adaptive attention weight map. Specifically, at the t-
th denoising step, we calculate the corresponding x̂0 =
D(pθ(ẑ0|zt, e)) (where D is the decoder of LDM). Then, we
calculate the pixel-level difference between x̂0 and the nor-
mal sample y within the mask m. Based on the difference,
we calculate the weight map wm by the Adaptive Scaling
Softmax (ASS) operation:
wm = ∥m∥1 · Softmax(f(∥m⊙ y −m⊙ x̂0∥22)), (7)

where f(x) = 1
x when x! = 0 and f(x) = −∞ otherwise.

For the regions within the mask that are similar to normal
samples, the generated anomalies in these regions are less
noticeable. To enhance the anomaly generation effects, these
regions are assigned higher weights by Eq. (7) and allocated
with more attention by attention re-weighting.
Attention re-weighting. We employ the weight map wm to
adaptively control the cross-attention, in order to guide our
model to focus more on the areas with less noticeable gen-
erated anomalies. In our cross-attention calculation, Query
is calculated from the latent code zt, and Key and Value are
calculated from our spatial anomaly embedding e:

Q = W
(i)
Q · φi (zt) ,K = W

(i)
K · e, V = W

(i)
V · e, (8)
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Category DiffAug CDC Crop-Paste SDGAN Defect-GAN DFMGAN Ours
IS ↑ IC-L ↑ IS ↑ IC-L ↑ IS ↑ IC-L ↑ IS ↑ IC-L IS ↑ IC-L ↑ IS ↑ IC-L ↑ IS ↑ IC-L ↑

bottle 1.59 0.03 1.52 0.04 1.43 0.04 1.57 0.06 1.39 0.07 1.62 0.12 1.58 0.19
cable 1.72 0.07 1.97 0.19 1.74 0.25 1.89 0.19 1.70 0.22 1.96 0.25 2.13 0.41

capsule 1.34 0.03 1.37 0.06 1.23 0.05 1.49 0.03 1.59 0.04 1.59 0.11 1.59 0.21
carpet 1.19 0.06 1.25 0.03 1.17 0.11 1.18 0.11 1.24 0.12 1.23 0.13 1.16 0.24
grid 1.96 0.06 1.97 0.07 2.00 0.12 1.95 0.10 2.01 0.12 1.97 0.13 2.04 0.44

hazel nut 1.67 0.05 1.97 0.05 1.74 0.21 1.85 0.16 1.87 0.19 1.93 0.24 2.13 0.31
leather 2.07 0.06 1.80 0.07 1.47 0.14 2.04 0.12 2.12 0.14 2.06 0.17 1.94 0.41

metal nut 1.58 0.29 1.55 0.04 1.56 0.15 1.45 0.28 1.47 0.30 1.49 0.32 1.96 0.30
pill 1.53 0.05 1.56 0.06 1.49 0.11 1.61 0.07 1.61 0.10 1.63 0.16 1.61 0.26

screw 1.10 0.10 1.13 0.11 1.12 0.16 1.17 0.10 1.19 0.12 1.12 0.14 1.28 0.30
tile 1.93 0.09 2.10 0.12 1.83 0.20 2.53 0.21 2.35 0.22 2.39 0.22 2.54 0.55

toothbrush 1.33 0.06 1.63 0.06 1.30 0.08 1.78 0.03 1.85 0.03 1.82 0.18 1.68 0.21
transistor 1.34 0.05 1.61 0.13 1.39 0.15 1.76 0.13 1.47 0.13 1.64 0.25 1.57 0.34

wood 2.05 0.30 2.05 0.03 1.95 0.23 2.12 0.25 2.19 0.29 2.12 0.35 2.33 0.37
zipper 1.30 0.05 1.30 0.05 1.23 0.11 1.25 0.10 1.25 0.10 1.29 0.27 1.39 0.25

Average 1.58 0.09 1.65 0.07 1.51 0.14 1.71 0.13 1.69 0.15 1.72 0.20 1.80 0.32

Table 1: Comparison on IS and IC-LPIPS on MVTec dataset. Our model generates the most high-quality and diverse anomaly
data, achieving the best IS and IC-LPIPS. Bold and underline represent optimal and sub-optimal results, respectively.
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Figure 4: Comparison on the generation results on MVTec.
Our model generates high quality anomaly images that are
accurately aligned with the anomaly masks.

where φi is the intermediate representation of the U-Net
(ϵθ) and the W (i)s are the learnable projection matrices.
The cross-attention calculation process is then formulated as
Attn(Q,K, V ) = mc ·V , where mc = Softmax(QKT

√
d
) is

the cross-attention map.
Considering the cross-attention map mc controls the gen-

erated layout and effects, where higher attention leads to
stronger generation effects (Hertz et al. 2022), we reweight
the cross-attention map by our weight map: m′

c = mc⊙wm.
The new cross-attention map m′

c focuses more on the areas
with less noticeable generated anomalies, thereby enhanc-
ing the alignment accuracy between the generated anomalies

and the input anomaly masks. The re-weighted cross atten-
tion is formulated as RW -Attn(Q,K, V ) = m′

c · V.

Mask Generation
Recall that our model requires anomaly masks as inputs.
However, the number of real anomaly masks in the training
datasets is very few, and the mask data lacks diversity even
after augmentation, which motivates us to generate more
anomaly masks by learning the real mask distribution. We
employ textual inversion to learn a mask embedding em,
which can be used as text condition to generate extensive
anomaly masks. Specifically, we initialize the mask embed-
ding em as k′ random tokens and optimize it by:

e∗m = argmin
em

Ez∼E(m),ϵ,t

[
∥ϵ− ϵθ (zt, t, em)∥22

]
. (9)

With the learned mask embedding, we can generate exten-
sive anomaly masks for each type of anomaly.

Experiments
Experiment Settings
Dataset. we conduct experiments on the widely used
MVTec (Bergmann et al. 2019) dataset. We employ one-
third of the anomaly data with the lowest ID numbers as the
training set, reserving the remaining two-thirds for testing.
Implementation details. We assign k = 8 tokens for
anomaly embedding, n = 4 tokens for spatial embedding,
and k′ = 4 tokens for mask embedding. For each type of
anomaly, we generate 1000 anomalous image-mask pairs for
the downstream anomaly inspection tasks. More details are
recorded in the supplementary material.
Metric. 1) For generation, due to the limited anomaly data,
FID (Heusel et al. 2017) and KID (Bińkowski et al. 2018)
are not reliable since the overfitted model tends to yield
better scores (best) (Duan et al. 2023). Therefore, we em-
ploy Inception Score (IS), which is independent of the given

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8530



Task Pixel-level Anomaly Localization Image-level Anomaly Detection

Category DRAEM PRN DFMGAN Ours DRAEM PRN DFMGAN Ours
AUC AP F1 AUC AP F1 AUC AP F1 AUC AP F1 AUC AP F1 AUC AP F1 AUC AP F1 AUC AP F1

bottle 96.7 80.2 74.0 97.5 76.4 71.3 98.9 90.2 83.9 99.4 94.1 87.3 99.3 99.8 98.9 94.9 98.4 94.1 99.3 99.8 97.7 99.8 99.9 98.9
cable 80.3 21.8 28.3 94.5 64.4 61.0 97.2 81.0 75.4 99.2 90.8 83.5 72.1 83.2 79.2 86.3 92.0 84.0 95.9 97.8 93.8 100 100 100

capsule 76.2 25.5 32.1 95.6 45.7 47.9 79.2 26.0 35.0 98.8 57.2 59.8 93.2 98.7 94.0 84.9 95.8 94.3 92.8 98.5 94.5 99.7 99.9 98.7
carpet 92.6 43.0 41.9 96.4 69.6 65.6 90.6 33.4 38.1 98.6 81.2 74.6 95.3 98.7 93.4 92.6 97.8 92.1 67.9 87.9 87.3 96.7 98.8 94.3
grid 99.1 59.3 58.7 98.9 58.6 58.9 75.2 14.3 20.5 98.3 52.9 54.6 99.8 99.9 98.8 96.6 98.9 95.0 73.0 90.4 85.4 98.4 99.5 98.7

hazelnut 98.8 73.6 68.5 98.0 73.9 68.2 99.7 95.2 89.5 99.8 96.5 90.6 100 100 100 93.6 96.0 94.1 99.9 100 99.0 99.8 99.9 98.9
leather 98.5 67.6 65.0 99.4 58.1 54.0 98.5 68.7 66.7 99.8 79.6 71.0 100 100 100 99.1 99.7 97.6 99.9 100 99.2 100 100 100

metal nut 96.9 84.2 74.5 97.9 93.0 87.1 99.3 98.1 94.5 99.8 98.7 94.0 97.8 99.6 97.6 97.8 99.5 96.9 99.3 99.8 99.2 100 100 100
pill 95.8 45.3 53.0 98.3 55.5 72.6 81.2 67.8 72.6 99.8 97.0 90.8 94.4 98.9 95.8 88.8 97.8 93.2 68.7 91.7 91.4 98.0 99.6 97.0

screw 91.0 30.1 35.7 94.0 47.7 49.8 58.8 2.2 5.3 97.0 51.8 50.9 88.5 96.3 89.3 84.1 94.7 87.2 22.3 64.7 85.3 96.8 97.9 95.5
tile 98.5 93.2 87.8 98.5 91.8 84.4 99.5 97.1 91.6 99.2 93.9 86.2 100 100 100 91.1 96.9 89.3 100 100 100 100 100 100

toothbrush 93.8 29.5 28.4 96.1 46.4 46.2 96.4 75.9 72.6 99.2 76.5 73.4 99.4 99.8 97.6 100 100 100 100 100 100 100 100 100
transistor 76.5 31.7 24.2 94.9 68.6 68.4 96.2 81.2 77.0 99.3 92.6 85.7 79.6 80.5 71.4 88.2 88.9 84.0 90.8 92.5 88.9 100 100 100

wood 98.8 87.8 80.9 96.2 74.2 67.4 95.3 70.7 65.8 98.9 84.6 74.5 100 100 100 77.5 92.7 86.7 98.4 99.4 98.8 98.4 99.4 98.8
zipper 93.4 65.4 64.7 98.4 79.0 73.7 92.9 65.6 64.9 99.4 86.0 79.2 100 100 100 98.7 99.7 97.6 99.7 99.9 99.4 99.9 100 99.4

Average 92.2 54.1 53.1 96.9 66.2 64.7 90.0 62.7 62.1 99.1 81.4 76.3 94.6 97.0 94.4 91.6 96.6 92.4 87.2 94.8 94.7 99.2 99.7 98.7

Table 2: Comparison on pixel-level anomaly localization and image-level anomaly detection on MVTec dataset by training an
U-Net on the generated data from DRAEM, PRN, DFMGAN and our model with AUC, AP, and F1-max metrics.

GT Ours DRAEM DFMGANInput

Figure 5: Quantitative anomaly localization comparison
with an U-Net trained on the data generated by DRAEM,
DFMGAN, and our model. It shows that our model achieves
the best anomaly localization results.

anomaly data, for a direct assessment of generation qual-
ity; we also introduce Intra-cluster pairwise LPIPS distance
(IC-LPIPS) (Ojha et al. 2021) to measure the generation
diversity. 2) for anomaly inspection, we utilize AUROC,
Average Precision (AP), and the F1-max score to evaluate
the accuracy of anomaly detection and localization.

Comparison in Anomaly Generation
Baseline. The compared anomaly generation methods can
be classified into 2 groups: 1) the models (Crop&Paste (Lin
et al. 2021), DRAEM (Zavrtanik, Kristan, and Skočaj 2021),
PRN (Zhang et al. 2023a) and DFMGAN (Duan et al. 2023))
that can generate anomalous image-mask pairs, which are
employed to compare anomaly detection and localization;
2) the models (DiffAug (Zhao et al. 2020), CDC (Ojha
et al. 2021), Crop&Paste, SDGAN (Niu et al. 2020), Defect-
GAN (Zhang et al. 2021) and DFMGAN) that can gener-
ate specific anomaly types, which are employed to compare
anomaly generation quality.
Anomaly generation quality. We compare our model with

DiffAug, CDC, Crop&Paste, SDGAN, DefectGAN and
DFMGAN on anomaly generation quality and diversity in
Tab. 1. Since DRAEM and PRN crop random textures to im-
itate anomalies, we cannot compute IC-LPIPS for them. For
each anomaly category, we allocate one-third of the anomaly
data for training and generate 1000 anomaly images to com-
pute IS and IC-LPIPS. It demonstrates that our model gener-
ates anomaly data with both the highest quality and diversity.

Moreover, we exhibit the generated anomalies in Fig. 4.
It can be seen that our model excels in producing high-
quality authentic anomalies that accurately align with their
corresponding masks. In contrast, CDC yields visually per-
plexing outcomes, particularly for structural anomaly cate-
gories like capsule-squeeze. SDGAN and DefectGAN yield
poor outputs, frequently encountering difficulties in gen-
erating anomalies such as pill-crack. The state-of-the-art
model DFMGAN sometimes struggles to produce authen-
tic anomalies and fails to keep the alignment between the
generated anomalies and masks, as shown in metal nut-bent.
More results are presented in supplementary material.
Anomaly generation for anomaly detection and localiza-
tion. We compare the performance of our approach with ex-
isting anomaly generation methods in downstream anomaly
detection and localization. Due to the inability of DiffAug
and SDGAN to generate anomaly masks, we only com-
pare our method with Crop&Paste, DRAEM, PRN, and
DFMGAN. For each method, we generate 1000 images per
anomaly category and train an U-Net (Ronneberger, Fis-
cher, and Brox 2015) alongside normal samples for anomaly
localization. The localization outcomes are aggregated us-
ing average pooling to derive confidence scores for image-
level anomaly detection (the same as DREAM). We compute
pixel-level metrics including AUROC, AP, F1-max. The re-
sults, as presented in Tab. 2, illustrate that our model out-
performs other anomaly generation models at most condi-
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Category Unsupervised Supervised

KDAD CFLOW DRAEM SSPCAB CFA RD4AD PatchCore DevNet DRA PRN Ours

bottle 94.7/50.5 98.8/49.9 99.1/88.5 98.9/88.6 98.9/50.9 98.8/51.0 97.6/75.0 96.7/67.9 91.7/41.5 99.4/92.3 99.3/94.1
cable 79.2/11.6 98.9/72.6 94.8/61.4 93.1/52.1 98.4/79.8 98.8/77.0 96.8/65.9 97.9/67.6 86.1/34.8 98.8/78.9 99.2/90.8

capsule 96.3/ 9.9 99.5/64.0 97.6/47.9 90.4/48.7 98.9/71.1 99.0/60.5 98.6/46.6 91.1/46.6 88.5/11.0 98.5/62.2 98.8/57.2
carpet 91.5/45.8 99.7/67.0 96.3/62.5 92.3/49.1 99.1/47.7 99.4/46.0 98.7/65.0 94.6/19.6 98.2/54.0 99.0/82.0 98.6/81.2
grid 89.0/ 7.6 99.1/87.8 99.5/53.2 99.6/58.2 98.6/82.9 98.0/75.4 97.2/23.6 90.2/44.9 86.2/28.6 98.4/45.7 98.3/52.9

hazelnut 95.0/34.2 97.9/67.2 99.5/88.1 99.6/94.5 98.5/80.2 94.2/57.2 97.6/55.2 76.9/46.8 88.8/20.3 99.7/93.8 99.8/96.5
leather 98.2/26.7 99.2/91.1 98.8/68.5 97.2/60.3 96.2/60.9 96.6/53.5 98.9/43.4 94.3/66.2 97.2/ 5.1 99.7/69.7 99.8/79.6

metal nut 81.7/30.6 98.8/78.2 98.7/91.6 99.3/95.1 98.6/74.6 97.3/53.8 97.5/86.6 93.3/57.4 80.3/30.6 99.7/98.0 99.8/98.7
pill 90.1/23.1 98.9/60.3 97.7/44.8 96.5/48.1 98.8/67.9 98.4/58.1 97.0/75.9 98.9/79.9 79.6/22.1 99.5/91.3 99.8/97.0

screw 95.4/ 5.9 98.8/45.7 99.7/72.9 99.1/62.0 98.7/61.4 99.1/51.8 98.7/34.2 66.5/21.1 51.0/ 5.1 97.5/44.9 97.0/51.8
tile 78.6/26.7 98.0/86.7 99.4/96.4 99.2/96.3 98.6/92.6 97.4/78.2 94.9/56.0 88.7/63.9 91.0/54.4 99.6/96.5 99.2/93.9

toothbrush 95.6/20.0 99.1/56.9 97.3/49.2 97.5/38.9 98.4/61.7 99.0/63.1 97.6/37.1 96.3/52.4 74.5/ 4.8 99.6/78.1 99.1/76.5
transistor 76.0/25.9 98.8/40.6 92.2/56.0 85.3/36.5 98.6/82.9 99.6/50.3 91.8/66.7 55.2/ 4.4 79.3/11.2 98.4/85.6 99.3/92.6

wood 88.3/24.7 98.9/47.2 97.6/81.6 97.2/77.1 97.6/25.6 99.3/39.1 95.7/54.3 93.1/47.9 82.9/21.0 97.8/82.6 98.9/84.6
zipper 95.1/30.5 96.5/63.9 98.6/73.6 98.1/78.2 95.9/53.9 99.7/52.7 98.5/63.1 92.4/53.1 96.8/42.3 98.8/77.6 99.4/86.0

Average 89.6/24.9 98.7/65.3 97.7/69.0 96.2/65.5 98.3/66.3 98.3/57.8 97.1/56.6 86.4/49.3 84.8/25.7 99.0/78.6 99.1/81.4

Table 3: Comparison on pixel-level anomaly localization (AUROC/AP) between the simple U-Net trained on our generated
dataset and the existing anomaly detection methods with their official codes or pre-trained models.

Method Metric
SAE Masked L AAR AUROC AP F1-max

81.3 31.1 46.5
✓ 90.3 51.2 60.7
✓ ✓ 95.0 64.9 68.8

✓ ✓ 95.5 67.5 68.9
✓ ✓ ✓ 99.1 81.4 76.3

Table 4: Ablation study on our spatial anomaly embedding
(SAE), masked diffusion loss (Masked L) and adaptive at-
tention re-weighting mechanism (AAR).

tions.Furthermore, we also evaluate image-level AUROC,
AP, and F1-max scores in Tab. 2. It demonstrates our model
has the best anomaly detection performance compared to
other methods. We also compare the qualitative results on
anomaly localization in Fig. 5, which shows our superior
performance in localizing the anomalies.

Comparison with Anomaly Detection Models
To further validate the efficacy of our model, we con-
duct a comparative experiment with the state-of-the-art
anomaly detection methods CFLOW (Gudovskiy, Ishizaka,
and Kozuka 2022), DRAEM (Zavrtanik, Kristan, and Skočaj
2021), CFA (Lee, Lee, and Song 2022), RD4AD (Deng and
Li 2022), PatchCore (Roth et al. 2022), DevNet (Pang et al.
2021), DRA (Ding, Pang, and Shen 2022) and PRN (Zhang
et al. 2023a). We employ their official codes or pre-trained
models and evaluate them on the same testing dataset that
we use. It is worth noting that due to the absence of the
open-source code for PRN, we utilize the data provided in
its paper. The comparison results on pixel-level AUROC and
AP are presented in Tab. 3. It can be seen that although our
model is only a simple U-Net, with the help of our gener-
ated anomaly data, it has a good performance in anomaly

localization with the highest AP of 81.4% and AUROC of
99.1%, indicating the profound significance of our gener-
ated data for downstream anomaly inspection tasks.

Ablation Study
We evaluate the effectiveness of our components: spatial
anomaly embedding (SAE), masked diffusion loss (Masked
L), and adaptive attention re-weighting mechanism (AAR).
Not that the models without SAE employ only an anomaly
embedding trained by textual inversion. We train 5 models:
1) with none of these components; 2) only SAE; 3) SAE
+ masked L; 4) masked L + AAR and 5) the full model
(ours). We employ these models to generate 1000 anoma-
lous image-mask pairs and train an U-Net for anomaly lo-
calization. We compare the pixel-level localization results in
Tab. 4. It demonstrates that the omission of any of the pro-
posed modules leads to a noticeable decline in the model’s
performance on anomaly localization, which validates the
efficacy of the proposed modules. For more experiments,
please refer to the supplementary material (Hu et al. 2023b).

Conclusion
In this paper, we propose Anomalydiffusion, a novel anomaly
generation model which generates anomalous image-mask
pairs. We disentangle anomaly information into anomaly ap-
pearance and location information represented by anomaly
embedding and spatial embedding in the textual space of
LDM. Moreover, we also introduce an adaptive attention re-
weighting mechanism, which helps our model focus more on
the areas with less noticeable generated anomalies, thus im-
proving the alignment between the generated anomalies and
masks. Extensive experiments show that our model outper-
forms the existing anomaly generation methods and our gen-
erated anomaly data effectively improves the performance of
the downstream anomaly inspection tasks.
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