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Abstract
In recent years, there has been significant progress in employ-
ing color images for anomaly detection in industrial scenar-
ios, but it is insufficient for identifying anomalies that are
invisible in RGB images alone. As a supplement, introduc-
ing extra modalities such as depth and surface normal maps
can be helpful to detect these anomalies. To this end, we
present a novel Multi-Modal Reverse Distillation (MMRD)
paradigm that consists of a frozen multi-modal teacher en-
coder to generate distillation targets and a learnable student
decoder targeting to restore multi-modal representations from
the teacher. Specifically, the teacher extracts complementary
visual features from different modalities via a siamese ar-
chitecture and then parameter-freely fuses these information
from multiple levels as the targets of distillation. For the stu-
dent, it learns modality-related priors from the teacher rep-
resentations of normal training data and performs interaction
between them to form multi-modal representations for target
reconstruction. Extensive experiments show that our MMRD
outperforms recent state-of-the-art methods on both anomaly
detection and localization on MVTec-3D AD and Eyecandies
benchmarks. Codes will be available upon acceptance.

Introduction
Anomaly detection (AD) has received continuous attention
for several decades due to its wide range of applications such
as defect detection, autonomous driving, video surveillance,
and medical diagnosis. It is usually formulated as an unsu-
pervised problem for the scarcity of anomalous data.

In recent years, vast efforts are dedicated to developing
unsupervised anomaly detectors in images and tremendous
progress has been made (Rudolph, Wandt, and Rosenhahn
2021; Roth et al. 2022; Li et al. 2021; Zavrtanik, Kris-
tan, and Skočaj 2021; Hou et al. 2021; Deng and Li 2022),
where embedding-based methods, synthesis and reconstruc-
tion are the dominant trends for this task. Embedding-based
methods (Rudolph, Wandt, and Rosenhahn 2021; Roth et al.
2022) characterize the corresponding distribution of the ex-
tracted features, and the anomalies are detected by measur-
ing the distance between features of test images and the es-
timated distribution. The synthesis-based methods (Li et al.
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Figure 1: Illustration of different multi-modal anomaly de-
tectors and corresponding anomaly maps (last row). Left:
Reverse distillation. Middle: Two-stream structure with late
fusion. Right: Our proposed paradigm.

2021; Zavrtanik, Kristan, and Skočaj 2021) estimate the de-
cision boundary between anomaly-free samples and the syn-
thetically anomalous data for detection. Contrarily, methods
by reconstruction (Hou et al. 2021; Deng and Li 2022) either
recover the input (Hou et al. 2021) or restore middle-level
features (Deng and Li 2022), as shown in Fig. 1-Left, where
the pixel-wise similarity indicates the anomalies. However,
extensive investigations in Invest3D (Horwitz and Hoshen
2022) show that some anomalies are hard to be detected on
RGB images. Therefore, a few 3D-based methods are mo-
tivated to be developed, which directly deal with the 3D
data for anomaly detection. For instance, Invest3D extracts
orientation-invariant 3D features via FPFH (Rusu, Blodow,
and Beetz 2009) operator and adopts PatchCore (Roth et al.
2022) for detection. And 3D-ST (Bergmann and Sattlegger
2023) extends the 2D teacher-student network to anomaly-
free point clouds. Nevertheless, they usually produce infe-
rior results than their RGB-based counterparts due to the
complexity of 3D data. To improve the effectiveness, recent
arts (Rudolph et al. 2023; Bonfiglioli et al. 2022; Wang et al.
2023) tend to utilize multiple modalities for AD, the neces-
sity of which is illustrated in Fig. 2. The hole on the “cook-
ies” and the protrusion on the “lollipop” is imperceptible on
RGB images, but can be detected using depth and surface
normals as the auxiliary modality. Besides, they also pro-
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Figure 2: First row: normal samples. Second row: defective
samples. Depth and normals provide supplementary visual
information to RGB images for revealing anomalies and re-
ducing misidentification of anomaly-free areas.

vide supplementary visual information reduce misidentifica-
tion of anomaly-free areas. Among those methods, autoen-
coder (Bonfiglioli et al. 2022) is used to reconstrcut the con-
catenation of RGB and depth images. And M3DM (Wang
et al. 2023) extends the 2D PatchCore to deal with different
modalities by complicated networks and lately fuse them for
multi-modal AD. However, the knowledge distillation (KD),
as one of the mainstream approaches in 2D AD, has not been
explored. A natural queston is: how can we develop an effi-
cient KD paradigm from a multi-modal perspective?

This paper answers it in the context of Reverse Distilla-
tion (RD) (Deng and Li 2022) and presents a novel Multi-
Modal Reverse Distillation (MMRD) paradigm for multi-
modal anomaly detection. The main idea is to integrate in-
formation in the auxiliary modality to the frozen teacher
encoder and learnable student decoder at multiple feature
levels (Fig. 1-Right). The resulting multi-modal teacher en-
codes supplementary information from the auxiliary modal-
ity via a siamese structure, and parameter-freely fuses the
RGB features with them as the multi-modal targets of dis-
tillation. Instead the multi-modal student learns modality-
related priors from the normal data during training and in-
teractively produces multi-modal representations to restore
those targets. Consequently, the proposed MMRD achieves
state-of-the-art results on two multi-modal AD benchmarks.
What’s more, it is not only flexible, handling images, depth,
and surface normals but also generalizable to another dis-
tillation paradigm, i.e., the forward distillation (Bergmann
et al. 2020). To sum up, our main contributions are fourfold:

• We develop a novel reverse distillation paradigm, named
MMRD, for multi-modal anomaly detection.

• We devise a frozen multi-modal teacher encoder to gen-
erate multi-modal distillation targets through a siamese
structure and a parameter-free modulation module.

• We design a learnable multi-modal student decoder to re-
store representations of the multi-modal teacher via gen-
erating multi-modal priors.

• The proposed MMRD achieves state-of-the-art results on
two multi-modal anomaly detection benchmarks.

Related Work
Unsupervised Anomaly Detection. Most existing works
detect anomalies on RGB images and can be classified into
three categories (Xie et al. 2023a): synthesis-based (Li et al.
2021; Zavrtanik, Kristan, and Skočaj 2021), embedding-
based (Rudolph, Wandt, and Rosenhahn 2021; Roth et al.
2022; Gu et al. 2023; Xie et al. 2023b) and reconstruction-
based (Hou et al. 2021; Deng and Li 2022; Liang et al. 2023)
methods. Contrarily, limited methods perform unsupervised
3D anomaly detection (Liu et al. 2023; Chen et al. 2023a).
Grid-VAE (Bengs et al. 2021) adopts the variational Auto-
Encoder (AE) to reconstruct 3D voxel grids and produces
anomaly scores by comparing each voxel element of the in-
put to its reconstruction. 3D-ST (Bergmann and Sattlegger
2023) adapts the 2D student-teacher framework to detect ge-
ometric anomalies in high-resolution 3D point clouds. How-
ever, they do not perform well on the challenging MVTec
3D-AD (Bergmann et al. 2022) benchmark due to the com-
plexity of 3D data, and new methods are needed. Recent ef-
forts tend to combine different modalities for better anomaly
detection. AST (Rudolph et al. 2023) proposes an asymmet-
ric student-teacher network to deal with the concatenation
of image features and depth maps. Eyecandy (Bonfiglioli
et al. 2022) directly concatenates different modalities along
the channel dimension as the input and reconstructs it via an
AE. M3DM (Wang et al. 2023) uses a two-stream structure
to extract features from different modalities and lately fuses
them for AD. Two aspects differ our method from the above
ones: 1) we develop a novel multi-modal reverse distillation
paradigm and 2) integrate features of different modalities at
multiple feature levels.

Knowledge Distillation. Knowledge distillation (Hinton,
Vinyals, and Dean 2015; Gou et al. 2021, 2022) is origi-
nally used to transfer knowledge from a heavy teacher model
to a lightweight student network and has achieved promi-
nent progress in many fields. In AD, the student tends to
unsuccessfully reconstruct the features of the teacher for
anomalous samples. This insight is used to localize anoma-
lies. US (Bergmann et al. 2020) first introduces KD for the
task. Later, the forward distillation (Salehi et al. 2021; Wang
et al. 2021) forms the Student-Teacher (S-T) feature pyramid
and performs multi-scale feature distillation. Differences be-
tween multi-features are exploited for localization. How-
ever, the RD (Deng and Li 2022) argues that similar struc-
tures between the S-T harm the feature diversity and thus
the student is built on top of the teacher. All these methods
have difficulty in handling anomalies invisible in RGB im-
ages. Instead, for the first time, we explore KD to deal with
these anomalies from a multi-modal perspective.

Multi-Modal Fusion. Different modalities contain sup-
plementary information and fusing them is beneficial to bet-
ter understand visual scenes compared to methods with one
modality as input (Liu et al. 2022; Zhang et al. 2023b;
Chen, Han, and Zhang 2023; Chen et al. 2023b; Zhang
et al. 2023a). CEN (Wang et al. 2020a) dynamically ex-
changes the channels between sub-networks for fusion based
on the scaling factor of the batch normalization. Asym-
Fusion (Wang et al. 2020b) performs asymmetric shuffle
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Figure 3: Overview of the proposed multi-modal reverse distillation (MMRD). It comprises a frozen multi-modal teacher
encoder and a learnable multi-modal student decoder, and each of them contains two important components. At ith stage, the
teacher adopts a siamese encoder Ei with frozen convolutions and individual BNs to extract supplementary visual information,
i.e., FR

i and FA
i , from RGB image and the auxiliary modality. A parameter-free modality modulation module then fuses them

and produces the distillation target FT
i . Instead, the student generates modality-related priors, i.e., F̂R

i and F̂A
i , by learning

prototypes, i.e., PR
i and PA

I , from the teacher representations of normal data, i.e., FR
i and FA

i , and then performs interaction
between F̂R

i and F̂A
i to generate multi-modal representation F̄R

i . Finally, F̄R
i is concatenated with the student representation

FS
i to restore target FT

i . In inference, pixel-wise similarity between {FT
i , FS

i }Ki=1 is computed for anomaly detection.

and shift operations to exchange information between multi-
modal features. MGAF (Kim, Jones, and Hager 2021) fuses
motion features with that from detection via the cross-
attention (Wang et al. 2018). In KD for multi-modal AD,
we not only perform parameter-free modality modulation
to form distillation targets in the teacher but also generate
multi-modal representations to help the student better restore
these targets.

Proposed Method
This section revisits knowledge distillation for anomaly de-
tection as preliminaries. Then, details of the proposed frozen
multi-modal teacher encoder and learnable multi-modal stu-
dent decoder are presented one by one. The overall paradigm
is shown in Fig. 3 and the algorithm table summarizing the
proposed method is included in the supplementary material.

Preliminaries: Knowledge Distillation for AD
In AD, the Knowledge Distillation (KD) detects anomalies
based on RGB images and contains a pre-trained teacher net-
work and a learnable student network. It owns two types:
1) the Forward Distillation (FD) (Bergmann et al. 2020;
Wang et al. 2021); 2) Reverse Distillation (RD) (Deng and
Li 2022). Formally, given an RGB image IR ∈ RC×H×W

(C, H , and W is the channel, height, and width), the frozen
teacher extracts feature {FR

i }Ki=1 ∈ RCi×Hi×Wi (distilla-
tion targets) from its K stages and the student is trained to
restore them, resulting in {FS

i }Ki=1 ∈ RCi×Hi×Wi . Differ-
ently, the student in FD encodes IR but the student in RD
decodes the one-class embedding of the teacher. Finally, a

KD loss is used to supervise the reconstruction process:

LKD
i = 1− flat(FR

i )

∥flat(FR
i )∥2

· flat(FS
i )T

∥flat(FS
i )∥2

, (1)

where flat(·) is the flatten function. In inference, pixel-wise
cosine similarity between {FR

i , FS
i }Ki=1 is computed to de-

tect and localize anomalies, as shown in Fig. 1-Left.
However, it is difficult for KD to detect anomalies invisi-

ble in RGB images. To handle it, based on RD, we develop a
novel multi-modal reverse distillation paradigm, which con-
tains a frozen multi-modal teacher encoder and a learnable
multi-modal student decoder.

Multi-Modal Teacher (MMT) Encoder
For the teacher encoder, we generate multi-modal distilla-
tion targets by integrating supplementary information from
an auxiliary modality with an RGB image. As illuminated in
Fig. 3-Left, we adopt a cross-statistics siamese teacher net-
work to extract those information and a modality modulation
module to parameter-freely produce these targets.

Cross-Statistics Siamese Teacher Network. Fig. 2 shows
that auxiliary modalities provide supplementary visual in-
formation to RGB images for revealing anomalies and re-
ducing misidentification of anomaly-free areas. To model
such supplementarity, we adopt a shared encoder, known
as the siamese network, to extract features from the RGB
image and the corresponding auxiliary modality, denoted as
{FR

i , FA
i }Ki=1. Nevertheless, the teacher network in KD is

pre-trained on RGB images, and statistics stored in Batch
Normalization layers (BNs) are shifted for the auxiliary
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modality. To mitigate this issue, we share the frozen con-
volutions for both modalities but maintain individual BNs
for the auxiliary modality. Relevant statistics in these BNs
are updated within several epochs with parameters of affine
transformation unchanged, whose impacts are explored in
Tab. 2 (b) and visualized in the supplementary material. In
practice, we also adopt this strategy for RGB images. As a
result, the extracted features are more modality-specific.

Parameter-Free Modality Modulation. Note that since
the frozen teacher in KD provides deterministic distillation
targets for a given input, the modality fusion should contain
no learnable parameters. Besides, as discussed before, the
auxiliary modality owns supplementary visual information
to RGB images and is integrated for an auxiliary purpose.
Therefore, not all information in FA

i is equally needed. To
this end, we propose to estimate a fusion weight for FA

i to
decide how much information is needed to be fused and then
compensate FR

i with the selected information in a residual
form. Concretely, we first exploit a normalization operation
to generate the fusion weight αA

i ∈ RCi×Hi×Wi :

α(FA
i ) = Sigmoid(

(FA
i − µA

i )
2

(σA
i )

2 + 10−4
), (2)

where µA
i = 1

HiWi

∑
FA
i and (σA

i )
2 = 1

HiWi

∑
(FA

i −
µA
i )

2. Intuitively, the normalization operation helps reduce
the disturbance from modality-specific information and bet-
ter reflects the position-wise intensity. In practice, we find
that αA

i calculated from the sum of FR
i and FA

i , denoted as
Fi, performs better than α(FA

i ). It may be because Fi con-
tains more comprehensive information than individual ones
and thus is a better indicator for the fusion weight. We give
the visual effects in Fig. 4. Finally, the multi-modal teacher
representation (distillation target) FT

i is formulated as:

FT
i = FR

i + α(Fi) · FA
i . (3)

α(Fi) ∈ [0, 1] flexibly controls the multi-modal informa-
tion. Compared to FR

i , the multi-modal FT
i pays more at-

tention to objects and suppresses the effects from the back-
ground, which is investigated in the supplementary material.

Analysis. The devised siamese teacher encoder differs
from AsymFusion (Wang et al. 2020b) in two aspects. First,
ours extracts modality-specific features by a frozen architec-
ture but their fully learnable structure instead encodes multi-
modal features in each branch. Second, we parameter-freely
fuse features of each modality to generate multi-modal dis-
tillation targets while they fuse features for further encoding.

Multi-Modal Student (MMS) Decoder

For the student, we incorporate multi-modal prior informa-
tion to help restore distillation targets. To this end, we first
generate priors for each modality via a modality-related pri-
ors generation module and then perform interaction on them
to produce multi-modal priors via a multi-modal priors gen-
eration module, as shown in Fig. 3-Right.

Modality-Related Priors Generation. In KD, the student
is expected to restore representations of the teacher encoder.
Therefore, introducing information from the teacher to the
student is helpful for the reconstruction. We then propose to
learn a set of representative features (named “prototypes”)
from the teacher representations of normal training data and
generate modality-related priors to provide finer modal in-
formation. The prototypes are learned for both modalities
and integrated via feature retrieval to generate priors for
each modality. Formally, given the teacher representation
of an RGB image FR

i ∈ RCi×Hi×Wi and N prototypes
PR
i = {(PR

i )j ∈ RCi}Nj=1, the position-wise retrieval
weight WR

i ∈ RN×Hi×Wi is measured as follows:

(WR
i )j,h,w =

exp(d((FR
i )h,w, (P

R
i )j))∑N

j=1 exp(d((F
R
i )h,w, (PR

i )j))
, (4)

where (w, h) denotes spatial index and d(·, ·) is the cosine
similarity. Aggregating PR

i with weights at each location of
WR

i gives the reconstruction result F̂R
i :

(F̂R
i )w,h =

∑
j
(WR

i )j,h,w · (PR
i )j . (5)

To ensure PR
i learns representative information, we pro-

pose to enforce the similarity between the teacher represen-
tation FR

i and the reconstruction F̂R
i in the training phase:

LR
i =

1

HWC

∑
h,w,c

∥FR
i − F̂R

i ∥22. (6)

Note that Eq. (6) is applied to all normal training samples.
Therefore, the learned PR

i contains normal information and
is representative enough. This is why we call them “proto-
types”. In inference, the teacher representation FR

i is used
to generate the modality-specific priors F̂R

i via Eq. (5).
For the auxiliary modality, we also learn a set of N pro-

totypes PA
i = {(PA

i )j ∈ RCi}Nj=1 via a similar process,
producing the loss LA

i and priors F̂A
i .

Multi-Modal Priors Generation. Next, we aim to pro-
vide multi-modal prior information for the student to recon-
struct the distillation target FT

i . To achieve this, we perform
multi-modality interaction between the modality-related F̂R

i

and F̂A
i to obtain a refiner representation. Since the auxil-

iary modality provides supplementary visual cues and the
student is learnable, we use F̂A

i to enhance F̂R
i through the

intra and inter-modal interaction, as demonstrated in Fig. 3-
Right. Specially, we first conduct the Channel Attention
(CA) (Hu, Shen, and Sun 2018) on F̂R

i for intra-modal en-
hancement. Then the Spatial Attention (SA) map of size
R1×Hi×Wi is generated from F̂A

i via the MaxPooling −
Conv3×3 − Sigmoid procedure. Finally, we perform inter-
modal interaction by multiplying the enhanced F̂R

i with the
SA map to highlight locations of interest, resulting in a finer
multi-modal representation F̄R

i . The whole multi-modal in-
teraction process can be formulated as follows:

F̄R
i = SA(F̂A

i ) · (CA(F̂R
i ) · F̂R

i + F̂R
i ) + F̂R

i . (7)
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Method Bagel Cable
Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

3D

FPFH 82.5/97.3 55.1/87.9 95.2/98.2 79.7/90.6 88.3/89.2 58.2/73.5 75.8/97.7 88.9/98.2 92.9/95.6 65.3/96.1 78.2/92.4
AST 88.1/95.2 57.6/74.1 96.5/97.3 95.7/90.4 67.9/83.0 79.7/83.1 99.0/97.8 91.5/98.1 95.6/89.1 61.1/77.8 83.3/88.6
M3DM 94.1/94.3 65.1/81.8 96.5/97.7 96.9/88.2 90.5/88.1 76.0/74.3 88.0/95.8 97.4/97.4 92.6/95.0 76.5/92.9 87.4/90.6
Ours 82.9/92.6 68.6/80.6 93.7/96.5 80.4/85.8 97.2/90.4 86.5/73.1 94.7/96.2 80.6/95.8 96.7/96.6 84.9/93.6 86.6/90.1

R
G

B

PatchCore 87.6/90.1 88.0/94.9 79.1/92.8 68.2/87.7 91.2/89.2 70.1/56.3 69.5/90.4 61.8/93.2 84.1/90.8 70.2/90.6 77.0/87.6
AST 94.7/85.5 92.8/90.5 85.1/80.0 82.5/46.6 98.1/89.4 95.1/52.9 89.5/83.5 61.3/54.4 99.2/87.7 82.1/60.5 88.0/73.1
M3DM 94.4/95.2 91.8/97.2 89.6/97.3 74.9/89.1 95.9/93.2 76.7/84.3 91.9/97.0 64.8/95.6 93.8/96.8 76.7/96.6 85.0/94.2
Ours 98.7/97.0 93.7/98.3 94.3/98.2 77.0/92.4 98.1/97.6 84.7/87.5 91.3/98.1 75.3/97.5 99.3/98.4 85.3/97.3 89.8/96.2

R
G

B
+

3D PatchCore 91.8/97.6 74.8/96.9 96.7/97.9 88.3/97.2 93.2/93.3 58.2/88.8 89.6/97.5 91.2/98.1 92.1/95.0 88.6/97.1 86.5/95.9
AST 98.3/97.1 87.3/94.4 97.6/98.1 97.1/93.9 93.2/91.3 88.5/91.4 97.4/98.1 98.1/98.3 100.0/89.0 79.7/94.0 93.7/94.6
M3DM 99.4/97.0 90.9/97.1 97.2/97.9 97.6/95.0 96.0/94.1 94.2/93.2 97.3/97.7 89.9/97.1 97.2/97.1 85.0/97.5 94.5/96.4
Ours 99.9/98.6 94.3/99.0 96.4/99.1 94.3/95.1 99.2/99.0 91.2/90.1 94.9/99.0 90.1/99.0 99.4/98.7 90.1/98.2 95.0/97.6

(a) Anomaly detection and localization performance on the MVTec 3D-AD dataset.

Method Candy
Cane

Chocolate
Cookie

Chocolate
Praline Confetto Gummy

Bear
Hazelnut
Truffle

Licorice
Sandwich Lollipop Marsh. Peppermint

Candy Mean

3D

FPFH 69.3/90.4 87.0/92.1 80.6/79.5 92.8/94.7 86.4/87.2 59.7/63.3 90.9/91.8 91.0/91.5 85.0/87.4 89.8/90.7 83.2/86.9
Eyecandy 60.9/87.7 85.3/91.5 82.9/76.7 84.0/95.6 82.8/91.0 56.0/56.9 77.0/88.2 85.6/84.3 91.0/92.3 85.8/87.6 79.1/85.1
M3DM 48.2/91.1 58.9/64.5 80.5/58.1 84.5/74.8 78.0/74.8 53.8/48.8 76.6/60.8 82.7/90.4 80.0/64.6 82.2/75.0 72.5/70.2
Ours 84.4/96.1 94.4/93.6 91.5/91.6 89.4/90.2 87.5/88.4 73.3/67.2 95.4/96.3 93.8/92.6 90.1/93.8 95.0/96.1 89.5/90.6

R
G

B

PatchCore 52.5/54.3 95.4/92.8 53.4/60.1 90.7/92.4 64.6/78.2 46.6/55.7 76.2/86.0 68.2/74.5 94.4/95.3 91.5/93.3 73.4/78.3
Eyecandy 52.7/60.7 84.8/90.4 77.2/80.5 73.4/98.2 59.0/87.1 50.8/66.2 69.3/83.6 76.0/80.5 85.1/90.7 73.0/76.2 70.1/81.4
M3DM 64.8/86.7 94.9/90.4 94.1/80.5 100.0/98.2 87.8/87.1 63.2/66.2 93.3/88.2 81.1/89.5 99.8/97.0 100.0/96.2 87.9/88.0
Ours 61.8/91.6 99.5/95.2 86.2/83.3 97.8/98.3 86.1/87.5 65.8/67.2 87.0/88.7 84.0/85.6 97.1/97.6 99.8/98.5 86.5/89.4

R
G

B
+

3D PatchCore 44.8/70.9 95.0/93.3 77.9/73.7 92.8/95.2 88.8/90.2 41.6/40.7 91.2/91.9 83.1/86.6 100.0/96.9 96.3/92.9 81.1/84.0
Eyecandy 58.7/85.2 84.6/90.3 80.7/74.1 83.3/93.5 83.3/89.9 54.3/53.6 74.4/86.7 87.0/86.4 94.6/94.5 83.5/84.3 78.4/83.9
M3DM 62.4/90.6 95.8/92.3 95.8/80.3 100.0/98.3 88.6/85.5 78.5/68.8 94.9/88.0 83.6/90.6 100.0/96.6 100.0/95.5 89.7/88.2
Ours 85.4/97.5 100.0/97.0 94.6/94.2 99.8/98.5 90.8/91.7 74.7/68.0 96.6/97.0 98.4/94.1 100.0/99.0 100.0/99.2 94.0/93.6

(b) Anomaly detection and localization performance on the Eyecandies dataset.

Table 1: Quantitative results on (a) MVTec 3D-AD and (b) Eyecandies datasets. We report Image-level AUROC (%) ↑/Pixel-
level PRO (%) ↑ and highlight methods achieving the best results in bold.

Finally, F̄R
i is concatenated with FS

i as the input of the stu-
dent decoder Di−1 to restore FT

i−1, resulting in FS
i−1:

FS
i−1 = Di−1([F

S
i ; F̄R

i ]). (8)

The FS
i−1 and FT

i−1 are used to compute the distillation loss
in Eq. (1) during training and detect anomalies in inference.

Analysis. We give some theoretical explanations on scores
from priors. The student is trained to produce anomaly-free
features and then anomaly-free areas are inside the convex
combination of “prototypes”. Finally, anomalies fail to be
inside the combination and features between the teacher and
student have a higher reconstruction error. This insight is
used for anomaly localization. Fig. 5 verifies the analysis.

Loss Function and Anomaly Detection
Loss Function. It consists of the distillation loss from K
stages and the prototype learning loss of each modality:

L =
∑K

i=1
LKD
i + λ

∑K

i=1
(LR

i + LA
i ), (9)

where K = 3 and λ is the balance factor, set 0.1 by default.

Anomaly Detection. In inference, pixel-wise cosine sim-
ilarity between {FT

i , FS
i }Ki=1 is computed and then a bi-

linear up-sampling operation Up(·) is conducted to generate
an anomaly map Si. The final anomaly map A is given by:

A = g(
∑

i
Up(1− d(FT

i , FS
i ))), (10)

where g(·) denotes the Gaussian filter (Roth et al. 2022). A
gives the localization results and a larger score on it indi-
cates a higher probability of anomaly. We simply take its
maximum value as the image-level anomaly score.

Experiments
Experimental Settings
Datasets. We conduct experiments on two multi-modal
benchmarks, i.e., the MVTec 3D-AD (Bergmann et al. 2022)
and the Eyecandies (Bonfiglioli et al. 2022). The former con-
tains 4,147 scans captured from 10 object categories and
provides modality of RGB images and Point Clouds (PCs).
The latter consists of 10 categories with 1,500 samples for
each type and provides RGB images, depth maps, and sur-
face normals. Pixel-level annotations are available in both
datasets to evaluate the anomaly localization performance.
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Component ROCAD ROCAL PRO

Baseline 84.0 96.7 88.9
+MMT 91.5 97.2 91.5
+MMT+PG 92.6 97.6 92.0
All 94.0 98.3 93.6

(a) Study on key components.

Modality ROCAD ROCAL PRO

None 93.2 97.6 92.8
3D 93.4 97.7 93.0
RGB 93.8 98.2 93.4
All 94.0 98.3 93.6

(b) Study on individual BNs.

Method ROCAD ROCAL PRO

FD 70.8 85.6 78.0
MMFD 82.5 90.2 84.4
RD 84.0 96.7 88.9
MMRD 94.0 98.3 93.6
(c) Study on distillation paradigms.

Modality ROCAD ROCAL PRO

Depth 74.5 90.8 86.2
Normals 89.5 96.0 90.6
RGB 86.5 94.5 89.4
+Depth 92.8 97.2 91.3
+Normal 94.0 98.3 93.6
All 94.4 98.8 93.9

(d) Study on modalities.

Method ROCAD ROCAL PRO

CSA 91.2 97.9 92.4
SSA 92.5 98.1 91.6
α = 1 93.0 98.1 92.8
α(FA

i ) 93.4 98.2 93.1
α(Fi) 94.0 98.3 93.6
SEM(Fi) 90.2 97.0 92.6

(e) Study on fusion strategies.

{N1, N2, N3} ROCAD ROCAL PRO

{0, 0, 0} 91.5 97.2 91.5
{10, 10, 10} 93.4 97.8 92.3
{10, 50, 102} 94.2 98.2 93.0
{50, 50, 50} 94.0 98.3 93.6
{102, 50, 10} 94.0 98.2 93.3
{102, 102, 102} 93.3 98.0 93.1

(f) Study on number of prototype.

Table 2: Ablation study on the Eyecandies dataset. “PG”, “MMFD”, “SEM”, “CSA” and “SSA” refer to the modality-related
prior generation, multi-modal forward distillation, SE module, channel, and spatial self-attention, respectively.

Baseline Methods. We compare ours with several SOTA
multi-modal detectors, i.e., AST (Rudolph et al. 2023) us-
ing depths and RGBs, M3DM (Wang et al. 2023) using PCs
and RGBs, PatchCore (Roth et al. 2022) with FPFH (Rusu,
Blodow, and Beetz 2009) using PCs and RGBs, and Eye-
candy (Bonfiglioli et al. 2022) using normals and RGBs.

Evaluation Metrics. The Area Under the Receiver Oper-
ator Curve (AUROC) and Precision Recall (AUPR) are used
to quantify anomaly detection and localization capacity. The
Per-Region Overlap (PRO) is also adopted for localization.

Implemental Details. Images are resized into 256 × 256
and Adam is used as the optimizer with a learning rate of
0.001. The model is trained for 400 epochs of batch size 16.
the number of prototypes is set 50. The teacher network is
a pre-trained WideResNet50 and the student is the same as
RD. We adopt the depth and normals as auxiliary modalities
for MVTec 3D-AD and Eyecandies datasets, respectively.

Main Results
Results on the MVTec 3D-AD. Tab. 1 (a) shows exper-
imental results for anomaly detection using 3D data, RGB
images, or their combination on the MVTec 3D-AD dataset.
Image-level AUROC and pixel-level PRO for all classes are
reported. First, we find that by solely relying on RGB images
for detection, our method outperforms all 3D-based counter-
parts (with improvements of 2.4% on AUROCAD and 3.8%
on PROAL) in terms of mean values. This is likely due to
the complexity of 3D data and the limited efforts put into
its development. However, it is also observed that geomet-
ric information in some targets, e.g., foam and peach, play
a more important role in detecting anomalies (86.5% versus
84.7% on foam, and 94.7% versus 91.3% on peach) since
these anomalies are visually unperceived in the 2D view. Fi-
nally, integrating 3D information gives larger improvements.

Results on the Eyecandies. The proposed method is also
evaluated on the Eyecandies dataset and image-level AU-
ROC and pixel-level PRO for all classes are reported in

Method ROCAD ROCAL PRAD PRAL PRO GPUH/FPS

AST† 93.7 97.5 97.4 33.7 94.6 10.4/41.0
M3DM† 93.6 99.2 97.7 43.9 96.2 12.6/0.10

Ours 95.0 99.2 98.1 42.1 97.6 5.8/10.2

Table 3: More comprehensive results on the MVTec 3D-AD
dataset. AD and AL are short for anomaly detection and lo-
calization. † means re-implementation. “GPUH” and FPS re-
fer to GPU hours and frame per second, respectively.

Tab. 1 (b). We observe that the overall performance on nor-
mals is higher than that on RGB images. This is because
the normals describe the geometric shape of the target ob-
ject and some geometric anomalies that are hard to be per-
ceived from images can thus become visually identifiable,
as demonstrated in Fig. 2. Additionally, introducing the nor-
mals to images further improves the performance. Compared
to methods such as AST and Eyecandy that fuse multiple
modalities via concatenation, our strategy performs feature-
level fusion, surpassing them by a clear margin.

More comprehensive results. In Tab. 3, our method out-
performs AST and M3DM in four out of five AD met-
rics. Moreover, it consumes less training time and the infer-
ence speed is 1⁄4x compared to AST and 100x compared to
M3DM, demonstrating both the effectiveness and efficiency.

Ablation Study
Study on key components. We study the effectiveness of
the multi-modal teacher (MMT) and two key components
in multi-modal student (MMS), i.e., modality-related Prior
Generation (PG) and multi-modal interaction, in Tab. 2 (a).
RD is the baseline. Since RGB images contain limited in-
formation for geometric anomalies, the baseline thus owns
inferior results. Instead, introducing an auxiliary modal-
ity to the teacher brings large improvement (7.5% ↑ on
AUROCAD and 2.6% ↑ on PROAL). For the student, gener-
ating modality-related priors from normal samples and con-
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ducting multi-modal interaction give improvements of dif-
ferent degrees. Finally, combining them all performs best.

Study on individual BNs in MMT. They are used to learn
modality-related statistics for adaption and their impacts are
listed in Tab. 2 (b). Adopting individual BNs benefits both
anomaly detection and localization while applying them to
surface normals alone contributes less to final results than
to RGB images, implying that the network may have dif-
ficulty further adapting Image-Net pre-trained convolutions
to other modalities. Visualizations in the supplementary ma-
terial show that learning RGB-related information helps the
pre-trained convolutions better describe anomalies, resulting
in finer multi-modal representations for the teacher.

Study on distillation paradigms. We explore the general-
ization of our multi-modal strategies to the Forward Distil-
lation (FD) and Reverse Distillation (RD), as listed in Tab. 2
(c). How to apply them to FD can be found in the supple-
mentary material. It is observed that integrating an auxiliary
modality to the RGB data via our strategies gives consistent
improvement to different distillation paradigms, which im-
plies the flexibility and expandability of our method.

Study on different modalities. Tab. 2 (d) studies the ef-
fects of different modalities and how to extend our method
to more modalities can be found in the supplementary ma-
terial. First, compared to depth, both normals and images
provide useful information for AD and thus achieve bet-
ter results. Second, fusing RGB data with depth or normals
all bring significant improvement whereas the normals own
larger gains (6.3% v.s. 7.5% on AUROCAD, 2.7% v.s. 3.8%
on AUROCAL and 1.9% v.s. 4.2% on PROAL). Instead, inte-
grating depth into images and normals produces limited im-
provement since depth introduces minor extra information.

Study on different fusion strategies for FT
i . In Tab. 2 (e),

we explore different ways to generate the multi-modal rep-
resentation FT

i , including the parameter-free Channel Self-
Attention (CSA) and Spatial Self-Attention (SSA) (Wang
et al. 2018)), and the learnable SE Module (Hu, Shen, and
Sun 2018) (SEM). We observe that no learnable transforma-
tions in CSA and SSA result in inaccurate attention compu-
tation and thus lead to unsatisfactory results. Besides, they
can only handle two modalities. Surprisingly, element-wise
addition between FR

i and FA
i (α = 1) outperforms above

strategies. Contrarily, fusion with adaptive weight α pro-
duces better results, indicating that not all the information in
the auxiliary modality is important. The SEM instead under-
performs the vanilla addition. We guess the parameterized
SEM produces unstable representations for the teacher.

Study on number of prototypes. The number of pro-
totypes controls the amount of normal information to be
learned for each modality, which is explored in Tab. 2 (f). We
find that learning normal information benefits both anomaly
detection and localization. And more prototypes lead to bet-
ter detection while owning similar AUROCAL. Instead, a
larger Ni leads to more parameters and optimization diffi-
culty, resulting in more performance drops. For the sake of
higher localization results, we adopt Ni = 50 by default.

(a) RGB Image (b) 𝛼(𝐹!) (d) 𝛼(𝐹)(c) from 𝛼(𝐹!)

Anomaly Map

(e) from 𝛼(𝐹)

Anomaly Map𝛼 from 𝐹! 𝛼 from 𝐹

Figure 4: Visualization on α from different sources and cor-
responding detection results. Red boxes highlight anoma-
lous areas. α(F ) pays attention to anomalous regions and
special patterns in RGB, owning more accurate localization.
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Figure 5: Visualization on multi-modal priors from training
data. They help suppress sensitivity to anomaly-free patterns
and give accurate localization capacity.

Visualization Analysis
Sources for generating fusion weight α. Note that α in
Eq. (3) can also be obtained from FA. To explore the differ-
ence, Fig. 4 visualizes α on the depth map and their corre-
sponding anomaly map on the image. As shown in Fig. 4 (b)
and (d), α(F ) highlights not only anomalous regions which
are visible in auxiliary modality but also some regions with
special patterns in RGB (the chocolate on the “cookie”). In
this sense, α(FA) fails to introduce auxiliary modality infor-
mation in special pattern regions and leads to wrong results
in Fig. 4 (c). On the contrary, α(F ) enables the model to
consult the composite information in special pattern regions
and get a more accurate anomaly map in Fig. 4 (e).

How multi-modal priors work? To investigate it, we vi-
sualize its impacts in Fig. 5. The multi-modal priors sup-
press responses to normal patterns in both anomaly-free and
anomalous samples, e.g., the chocolate on the “cookie” and
the hollow on the “potato”. This is mainly because the multi-
modal priors contain normal information and are trained
to help the student decoder restore anomaly-free features.
Therefore, anomalous regions are highlighted and responses
to normal patterns are mitigated after calculating pixel-wise
feature similarity between the teacher and student networks.

Conclusion
We present a novel MMRD paradigm for anomaly detection,
which integrates an auxiliary modality into RGB images
for better detection. It uses a frozen multi-modal teacher
encoder to generate multi-modal distillation targets for the
learnable student decoder to restore. As a result, it achieves
superior results on two multi-modal benchmarks.
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