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Abstract
Stock price forecasting is a fundamental yet challenging task
in quantitative investment. Various researchers have devel-
oped a combination of neural network models (e.g., RNNs,
GNNs, Transformers) for capturing complex indicator, tem-
poral and stock correlations of the stock data. While complex
architectures are highly expressive, they are often difficult to
optimize and the performances are often compromised by the
limited stock data. In this paper, we propose a simple MLP-
based architecture named StockMixer which is easy to opti-
mize and enjoys strong predictive performance. StockMixer
performs indicator mixing, followed by time mixing, and
finally stock mixing. Unlike the standard MLP-based mix-
ing, we devise the time mixing to exchange multi-scale time
patch information and realize the stock mixing by exploit-
ing stock-to-market and market-to-stock influences explic-
itly. Extensive experiments on real stock benchmarks demon-
strate our proposed StockMixer outperforms various state-of-
the-art forecasting methods with a notable margin while re-
ducing memory usage and runtime cost. Code is available at
https://github.com/SJTU-Quant/StockMixer.

Introduction
Stock price forecasting is a fundamental task in the field of
quantitative investment. Due to the fact that the movements
of different stock prices in a market are not independent with
each other, stock price forecasting is practically formulated
as a multivariate time series forecasting problem. As the
stock market is highly volatile and chaotic, achieving high
forecasting accuracy remains an open question.

Numerous efforts have been devoted to improving fore-
casting performance for profitable stock investment. Early
attempts apply basic machine learning methods to uncover
complex patterns in stock data, including decision trees (Nu-
groho, Adji, and Fauziati 2014; Kamble 2017), support vec-
tor machines (SVM) (Xie et al. 2013), and k-nearest neigh-
bors (KNN) (Alkhatib et al. 2013). With the advent of deep
learning, recent literature focuses on developing neural ar-
chitectures that are expressive and flexible to exploit various
inductive biases based on the intuitive (probably insightful)
understandings about the stock market. Generally, there are
three kinds of correlations that have been investigated.

*corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
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• Indicator correlations. Typically, there are several finan-
cial indicators serving as raw features for each stock per
trading day, e.g., the basic open, high, low, and closing
prices. It is desirable to model correlations and depen-
dencies among raw indicators and extract high-level la-
tent features that are informative for future stock trends.

• Temporal correlations. Stock price movements are funda-
mentally caused by the continuous demand-and-supply
balancing. The temporal trends in surrounding trading
days are noticeably correlated, e.g., moving in the same
or reverse directions. The existence of temporal correla-
tions makes the future trends predictable.

• Stock correlations. As staying in the same market, stocks
are correlated. For instance, stocks in the same industry
may all have an upstream movement in one trading day
due to a bullish event for the industry. Being aware of the
stock correlations is thus beneficial for the forecasting.

Existing deep learning methods (Zou et al. 2022) take
parts or all of the correlations into account. A typical model
architecture consists of a specialized neural module for mod-
eling each individual correlation, followed by a fusion mod-
ule that combines information from preceding modules for
the final prediction. Specifically, Recurrent Neural Networks
(RNNs) (Qin et al. 2017; Nelson, Pereira, and De Oliveira
2017; Feng et al. 2018) are used for modeling temporal cor-
relations; Graph Neural Networks (GNNs) (Feng et al. 2019;
Li et al. 2021; Sawhney et al. 2021) are good at exchang-
ing stock-wise information; Transformer-based models (Yoo
et al. 2021; Wang et al. 2022; Li et al. 2023a) use the at-
tention mechanism to emphasize crucial patterns from cor-
related subjects. Nevertheless, a hybrid neural architecture
increases the model complexity and may further hurt the
model’s generalization ability. The reasons are three-fold.
First, stock price data is of a limited size, i.e., about 250 trad-
ing days per year and each day delivers only one multivariate
time series for training, introducing overfitting risks into the
model. Second, a hybrid model involving diverse informa-
tion exchanging scopes (e.g., local or global) and behaviors
(e.g., using gating or attention) is not easy to optimize which
may compromise the final performance. Third, some com-
ponents may learn inaccurate inductive bias that misleads
the model training. For instance, GNNs assume smoothness
between related stocks but their underlying patterns can be
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heterogeneous. To these ends, we are interested in devel-
oping a simple neural architecture that is easy to optimize
and enjoys strong predictive performance by modeling the
above-mentioned correlations effectively.

Recently, Multi-layer Perception (MLP) architectures
have shown promising performance in computer vision tasks
than state-of-the-art neural networks that use convolutions
and attention mechanisms (Tolstikhin et al. 2021; Touvron
et al. 2022; Yu et al. 2022). The architectural simplicity
and linear computational efficiency of the MLP architecture
inspire us to adapt it to the problem of stock price fore-
casting. A straightforward way is to perform MLP-based
mixing three times for modeling indicator, temporal, and
stock correlations, respectively. Specifically, indicator mix-
ing uses matrix multiplication and activation functions to
model interactions among indicators within each stock-time
pair, while time and stock mixing are performed within the
stock-indicator and indicator-time pairs accordingly.

However, the standard MLP-based mixing suffers from
poor performance according to our experiments. Through
deep analysis, we identify two key technical challenges.

First, due to the high dynamics of the stock market, the
time correlations in surrounding trading days are not sim-
ply point-wise correlations. At one extreme, the closing
prices of a stock within a time window like 5 days are con-
stantly changing, similar to iid samples drawn from an un-
derlying distribution. The time mixing that exchanges time-
point information is thus insufficient for modeling temo cor-
relations. Second, MLP-based mixing over stocks essen-
tially performs information exchange among stocks based
on the learned weight matrix. As pointed out in the previ-
ous works (Sawhney et al. 2021; Huynh et al. 2023), stock
correlations are complex, and the direct stock-to-stock mix-
ing may compromise the model performance. For instance,
two stocks in the same industry may randomly have similar
trends or divergent trends over time. To sum up, it is time
to seek effective time mixing and stock mixing schemes that
overcome the above two challenges.

In this paper, we propose a simple yet strong MLP-based
architecture named StockMixer for stock price forecasting.
Specifically, we design three mixing blocks for modeling the
indicator, temporal, and stock correlations effectively. Our
insights to tackle the two challenges are the following. For
time mixing, the local temporal patterns on surrounding days
are correlated to a certain extent. For example, the rising-up
and falling-down variation tendencies are not independent
and are driven by the latent stock value. Hence, we patch
time steps at multiple scales and extract patch tendencies to
be mixed. For stock mixing, we recognize that stock corre-
lations are typically influenced by overall stock market con-
ditions or states. For instance, in a bull market, stocks tend
to become more correlated and move together as investors
become more optimistic. We thus use two MLP structures
to learn latent stock states from all stocks and use the states
to influence individual stocks. This leads to a more robust
modeling of stock correlations, from individual stocks to the
whole market, and then back to the stocks. Based on the so-
phisticated designs for time mixing and stock mixing, our
proposed StockMixer enjoys structural complexity as MLP-

mixer and achieves more promising predictive performance
than state-of-the-art methods.

To summarize, this paper has the following contributions:

• We propose a lightweight and effective MLP-based ar-
chitecture for stock price forecasting. It consists of indi-
cator mixing, time mixing and stock mixing to capture
complex correlations in the stock data.

• We demonstrate the deficiencies of the standard MLP-
based mixing. We introduce patch-based multi-scale time
mixing and market-aware stock mixing that exploits the
characteristics of stock patterns.

• We conduct extensive experiments on three real stock
benchmarks NASDAQ, NYSE and S&P500. The exper-
imental results show our proposed StockMixer outper-
forms state-of-the-art methods in terms of various evalu-
ation metrics.

Related Work
In this section, we review the related work from the literature
of stock price forecasting and MLP-based Architectures.

Stock Price Forecasting. Stock price forecasting has un-
dergone a long period of development on top of price-
volume indicators from historical data. At the very begin-
ning, conventional mathematical algorithms only focus on
numerical features (Piccolo 1990; Wang and Leu 1996;
Tseng, Yu, and Tzeng 2002) based on financial techni-
cal analysis. With the advances of deep neural network
(DNN), parts of the works following previous paradigm
employ recurrent neural networks (Nelson, Pereira, and
De Oliveira 2017; Qin et al. 2017) or convolutional neu-
ral networks (Tsantekidis et al. 2017) to model a single
stock price and predict its short-term trend. To enhance
the capability of handling fine-grained transition signals,
some efforts have explored other techniques such as self-
attention mechanism (Li, Shen, and Zhu 2018), adversar-
ial training (Feng et al. 2018), and gated causal convolu-
tions (Wang et al. 2021). Later studies achieve state-of-the-
art performance considering the inter-stock relationships.
For instance, RSR (Feng et al. 2019) proposes a temporal
graph convolution model, which created the compositions
of temporal encoder, relation embedding and a prediction
layer. LSTM-RGCN (Li et al. 2021) handles both positive
and negative correlations among stocks to alleviate the over-
smoothing problem when predicting overnight stock price
movements. STHAN-R (Sawhney et al. 2021) augments the
corporate relevance based on Wiki data and uses hypergraph
convolution to propagate higher-order neighbor’s informa-
tion. The latest method ESTIMATE (Huynh et al. 2023)
also uses hypergraph to capture the non-pairwise correla-
tions with temporal generative filters for individual patterns
per stock.

MLP-based Architectures. Recently, MLP has been rein-
vestigated in the computer vision domain (Tolstikhin et al.
2021; Liu et al. 2021; Touvron et al. 2022). With linear
computation complexity and simpler architectures, MLP-
Mixer (Tolstikhin et al. 2021) attains similar performance
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Figure 1: Overview of the proposed StockMixer.

as CNN and Transformer by operating patches and signifi-
cantly enhancing the amount of inductive bias upon common
MLPs. Similar efforts have recently been put in the time
series domain. Dlinear (Zeng et al. 2023) and its follow-
up works (Das et al. 2023) confirm the feasibility of this
simple architecture in temporal prediction tasks. A series of
works (Zhang et al. 2022; Li et al. 2023b; Ekambaram et al.
2023) utilize the MLP-Mixer backbone that significantly
empowers the learning capability of simple MLP structures
to improve the performance of time series forecasting. How-
ever, since stock data lacks periodicity and changes dy-
namically in temporal and stock correlations, the aforemen-
tioned MLP-based methods perform even worse than the ba-
sic models on stock datasets.

Methodology
Problem Definition
Following the setup of existing works (Feng et al. 2018;
Huynh et al. 2023), we input the normalized stock historic
patterns with multiple indicators (such as stock open price,
close price or 5-day average close price) and output closing
price of the next day to calculate the 1-day return ratio. The
notations are as follows.

Given all data of the stock market composed of N stocks
X = {X1,X2, . . . ,XN}, each stock Xi ∈ RT×F contains
historical data with lookback window length T , where F
denotes the indicator dimension at one time step. Our task
is to predict closing price pti on trading day t and calculate

the 1-day return ratio rti =
pt
i−pt−1

i

pt−1
i

. Denoting our model
parameters as θ, the process can be expressed as:

X ∈ RN×T×F θ−→ p ∈ RN×1 → r ∈ RN×1. (1)

Standard MLP-based Mixing
As a lightweight method towards image classification, MLP-
Mixer only relies on the linear layers repeatedly imple-

mented in the token or feature channel, residual connection,
data scale transformation (such as reshape, transposition) as
well as appropriative activation function. Except for a sig-
nificant enhancement for the computation speed, we value
it more in exchanging information between various dimen-
sions. This ability enables close communication between in-
dicators, time, and stocks in the stock market, promoting the
expressive power of the model. Residual connection keeps a
trade-off between inputs and mixed feature while layer nor-
malization eliminates the impact of data offset to a certain
extend. For each original representation x ∈ Ra×b, we com-
pute a new embedding y ∈ Ra×b with mixed features on
dimension a as:

y = x+W2σ(W1LayerNorm(x)), (2)

where x is the inputs feature and y is the output of the block.
W1 ∈ Rh×a, W2 ∈ Ra×h are trainable weights of fully
connected layers and h is a tunable hidden dimension always
equal to a. σ denotes the non-linear activation function,
which makes significant impact on predicted performance.
Previous CV models chose GeLU (Howard et al. 2019) that
performs better on images, and through experiments we find
that ReLU and HardSwish (Avenash and Viswanath 2019)
achieve superior performance on temporal data.

The StockMixer Approach

Figure 1 illustrates the overview of StockMixer, mainly in-
cluding two parts: indicator&time mixing and stock mixing.
The former extracts the respective representations of each
stock, acting as an efficient encoder. The latter gathers the
learned representations of all stocks in current market to
capture the complex stock correlations. Finally, we combine
these two representations to predict close price on trading
day. Here, adhering to the arrangement of data dimension,
we design the module sequence as indicator mixing, time
mixing and stock mixing, deriving our StockMixer.
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Figure 2: Standard mixing (left) vs time mixing (right).

Indicator Mixing. Historical stock price has shown to be
a strong indicator of future stock trends and widely used
across financial literature. Previous works fed the sequence
of financial indicators into recurrent neural network and ig-
nored the correlations between indicators. For instance, the
difference between the open and closing prices of a stock on
the same day may imply its future trend, so it is needed to
exchange the information of indicators at each time step be-
fore calculating the temporal representations. Our indicator
mixing is consistent with standard MLP-based mixing. For
each stock, we transpose its time and indicator to perform
feature mixing on the indicator dimension and formulate the
indicator mixing as:

x̂T = xT +W2σ(W1LayerNorm(xT )), (3)

where xT ∈ RF×T denotes transposed original embedding
of a single stock and x̂ ∈ RT×F is the result of indicator
mixing and we take it as the inputs of the following time
mixing.

Time Mixing. Unlike standard MLP-based mixing in
computer vision emphasizing the equality of patches, infor-
mation exchange in temporal domain relies more on chrono-
logical order. Specifically, information from earlier time
steps can influence later time steps, but not vice versa. How-
ever, standard MLP-based mixing employs the fully con-
nected structure to exchange information against the charac-
teristic of temporal data. To address this issue, we propose a
structural modification on the fully connected hidden layer
resembling a self-attention mask in Figure 2. When commu-
nicating the temporal information, any t could only see it-
self and its previous time step’s content instead of adopting
all equally. This modification ensures that information from
later time steps does not leak into the earlier ones, more in
line with temporal nature. Replacing the weights with upper
triangular matrix realises the process:

h = x̂+U2σ(U1LayerNorm(x̂)), (4)

where x ∈ RT×F denotes the indicator mixing representa-
tion and U1 ∈ RHt×T , U2 ∈ RT×Ht respectively signify
the learnable weights of the first and second fully connected
layer, that only the upper triangular part of a matrix is train-
able to achieve the effect of mask. Ht means the hidden di-
mension of time and here we set Ht = T as customary.

Although there exist researches (Zeng et al. 2023; Li et al.
2023b; Ekambaram et al. 2023) deploying MLP into Long

Time Series Forecasting (LTSF), they rely heavily on sta-
ble and periodic datasets (e.x. electricity and transportation),
which are easier to learn stable and sufficient representa-
tions. Due to the timeliness of the shares market, only re-
cent lookback window is effective for price prediction. It is
necessary to utilize the patterns more fully and overcome
the sensitivity of linear models to small fluctuations caused
by the absence of periodicity. In order to mine information
from short sequences as much as possible while enhanc-
ing the robustness of the linear layer against time deviation,
we segment original time sequence into subsequence-level
patches and mix features at different scales. Such segmenta-
tion causes dimension extension adverse to mixture, so we
map the representations of all time steps in a patch into one
overall look. Specifically, we obtain the corresponding sin-
gle pattern by avgpool or one-dimensional convolution from
raw inputs of a stock x ∈ RT×F as:

x(k) = Avgpool(x)kernel=k, k ∈ {T
2
,
T

4
, . . . , 1}, (5)

and x(k) ∈ RT
k ×F represents the compressed sequence

when the patch size is k. Then we send the x(k) through indi-
cator mixing and time mixing, obtain its mixing embedding
h(k) ∈ RT

k ×F . After that, we assign a fully connected layer
after a concatenation operation to all patch size to aggregate
the final temporal representation h. The process is:

h(k) = TimeMixing(IndicatorMixing(x(k))), (6)

h = FC(concat(h(k))), k ∈ {T
2
,
T

4
, . . . , 1}. (7)

Concretely, in this work, if the length of the input series is
16, we set k ∈ {1, 2, 4} and thus h ∈ R(T+T

2 +T
4 ). For the

convenience of subsequent narration, we denote the embed-
ding dimension d = (T + T

2 + T
4 ). By combining informa-

tion at different scales, the model can obtain multi-level, rich
and diverse feature representations on limited series, and im-
prove its generalization ability on unprecedented data.

Stock Mixing. Based on the previous operations, we
obtain the temporal representations of all stocks H =
{h1, h2, . . . , hN} ∈ RN×d. Next, we describe our Stock
Mixing to construct inter stock relation without any prior
knowledge like knowledge graphs or industry information.
Obviously, it is conceivable that the strong information ex-
change capability of MLP-Mixer could be applied for rela-
tion capture. By setting the hidden dimension of standard
mixing a = N in Equation 2, the interaction process can
be understood as N market characteristics aggregated by all
stocks, in turn, affect these N stocks. This modeling method
is no different from message-passing on a fully connected
graph which involves an edge between any two stocks. In
that case, some insignificant relationships or coincidences
will also be considered and the mode of message passing we
capture is extremely vulnerable. Due to the small sizes of the
stock datasets, the absence of transferability and robustness
causes serious overfitting problem.

Drawing insights from that, we hope to preserve the most
important and informative market states to improve the per-
formance and interpretability of the model. For one stock,
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we do not have to take all other stocks’ information into con-
sideration, but decompose the process of direct information
exchange among stocks into stock-to-market and market-to-
stock similar to hypergraph. To achieve this, we replace the
hidden dimension of standard mixing related to stocks with
a hyperparameter m to reach the effect of self-learnable hy-
pergraph. The stock mixing can be formulated as:

Ĥ = H +M2σ(M1LayerNorm(H)), (8)

where M1 ∈ Rm×N compresses N representations into m
while the M2 ∈ RN×m restores the zoomed information.
This process is similar to the process in which node infor-
mation in a hypergraph is first aggregated onto hyperedges
and then the impact of hyperedges on each entity is calcu-
lated, except that this process is induced by the model it-
self. H ∈ RN×h represents the individual embeddings of N
stocks in the market and Ĥ denotes the influence on each
stock from extracted relationships.

Finally, we compute the concatenation between stock’s
own representation H and its corresponding market-
influenced representation Ĥ and then send it to a fully con-
nected layer for dimension reduction to obtain the final pre-
diction.

Loss Function
We use the 1-day return ratio of a stock as the ground-truth
rather than the normalized price used in previous work us-
ing a combination of a pointwise regression and pairwise
ranking-aware loss to minimize the MSE between the pre-
dicted and actual return ratios while maintaining the relative
order of top ranked stocks with higher expected return for
investment as:

L =LMSE + α
N∑
i=1

N∑
j=1

max(0,−(r̂ti − r̂tj)(r
t
i − rtj)), (9)

where r̂t and rt are the predicted and actual ranking scores,
respectively, and α is a weighting parameter.

Experiments
Experimental Setup
Datasets. We evaluate our approach based on three real-
world datasets from the US stock market. The statistics of
the datasets are in Table 1. These datasets all contain rela-
tively complete sector-industry relations or Wiki company-
based relations, making it easy to compare with other graph-
based methods. NASDAQ and NYSE (Feng et al. 2019) fil-
ter transaction records between 01/02/2013 and 12/08/2017
from corresponding markets. Datasets removed abnormal
patterns and penny stocks while maintain their represen-
tative properties that NASDAQ is more volatile whereas
NYSE is more stable. S&P500 (Huynh et al. 2023) gath-
ers historic price data and the information about industries
in the S&P 500 index from the Yahoo Finance database.

NASDAQ NYSE S&P500
# Stocks 1026 1737 474

Start Time 13-01-02 13-01-02 16-01-04
End Time 17-12-08 17-12-08 22-05-25
Train Days 756 756 1006
Val Days 252 252 253
Test Days 273 273 352

Table 1: Statistics of datasets.

Implementation Details. Our model is implemented with
PyTorch. For fair comparison, all samples are generated by
moving a 16-day lookback window along trading days. Re-
garding temporal scale factors, k ∈ {1, 2, 4} is set for all
datasets and only 1 Stock Mixing is employed in the model.
We use grid search to find optimal market hyperparameters
m, and finalize m = 20, 25, 8 for NASDAQ, NYSE and
S&P500, respectively. For methods that require market in-
formation, we construct graphs or hypergraphs according to
the preprocessing process in the original paper. The loss fac-
tor α is 0.1 and the learning rate is 1e− 3. We conducted all
the experiments on a server equipped with Intel(R) Xeon(R)
Silver 4110 CPU, 128GB Memory, and a Nvidia GeForce
RTX 2080 Ti GPU (12GB Memory). Each experiment was
repeated 3 times and the average performance was reported.

Metrics. Previous studies applied distinct pointers, mak-
ing it troublesome for comprehensive comparison of vari-
ous methods. To thoroughly evaluate the performance of the
techniques, we employ four most frequently used and most
stable metrics, among which are two rank-based evaluation
metrics, one accuracy-based and the other return-based. In-
formation Coefficient (IC) is a coefficient that shows how
close the prediction is to the actual result, computed by the
average Pearson correlation coefficient. Rank Information
Coefficient (RIC) is the coefficient based on the ranking of
the stocks’ short-term profit potential, computed by the av-
erage Spearman coefficient. The above two metrics evaluate
stock selection ability of model and they are strongly related
to rank loss. Precision@N evaluates the precision of the top
N predictions. For example, when N is 10, and the labels
of 4 among these top 10 predictions are positive, then the
Precision@10 is 40%. Sharpe Ratio (SR) takes into account
both return and risk and calculates the average return per unit
of volatility in relation to the risk-free rate: SR =

Rt−Rf

θ ,
where Rt represents the return, Rf represents the risk-free
rate, and θ represents the standard deviation of the returns.

Baselines. We compare the performance of our architec-
ture with that of several state-of-the-art baselines, as fol-
lows: (1) LSTM (Hochreiter and Schmidhuber 1997) ap-
plies vanilla LSTM on temporal price data for ranking.
(2) ALSTM (Feng et al. 2018) integrates the adversarial
training and stochasticity simulation in an enhanced LSTM
to better learn the market dynamics. (3) RGCN (Li et al.
2021) adopts Relational Graph Convolutional Networks
(RGCN) to model multi-relations. (4) GAT (Veličković et al.
2017) utilizes graph attention networks (GAT) to aggregate
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Model NASDAQ NYSE S&P500
IC RIC prec@N SR IC RIC prec@N SR IC RIC prec@N SR

RNN
LSTM 0.032 0.354 0.514 0.892 0.024 0.256 0.512 0.857 0.031 0.186 0.531 1.332

ALSTM 0.035 0.371 0.522 0.941 0.023 0.276 0.519 0.764 0.029 0.181 0.532 1.298

GNN
RGCN 0.034 0.382 0.516 1.054 0.025 0.275 0.517 0.932 0.028 0.175 0.528 1.359
GAT 0.035 0.377 0.530 1.233 0.025 0.297 0.521 1.070 0.034 0.191 0.541 1.484

RSR-I 0.038 0.398 0.531 1.238 0.026 0.284 0.519 0.098 0.033 0.200 0.542 1.437

HGNN
STHAN-SR 0.039 0.451 0.543 1.416 0.029 0.344 0.542 1.228 0.037 0.227 0.549 1.533
ESTIMATE 0.037 0.444 0.539 1.307 0.030 0.327 0.536 1.115 0.035 0.241 0.553 1.547

MLP
Linear 0.019 0.188 0.505 0.517 0.015 0.163 0.497 0.625 0.016 0.156 0.520 0.674

StockMixer 0.043 0.501 0.545 1.465 0.029 0.351 0.539 1.454 0.041 0.262 0.551 1.586

Table 2: Comparison results on stock metrics (measured by t-test with p-value < 0.01). The methods for comparison are
mainly divided into four types: RNN (Recurrent Neural Network), GNN (Graph Neural Network), HGNN (HyperGraph Neural
Network) and MLP (Multi-Layer Perceptron). Bold & underlines show best & second best (SOTA) results, respectively.

stock embeddings encoded by GRU on the stock graph. (5)
RSR (Feng et al. 2019) combines Temporal Graph Convo-
lution with LSTM to learn the stocks’ interaction in a time-
sensitive manner. The original proposes two ways, RSR-E
using similarity as relation weight as well as RSR-I with
neural net for relation weight, and we choose RSR-I with
better performance as the baseline. (6) STHAN-SR (Sawh-
ney et al. 2021) models the relations with hypergraph atten-
tion combined temporal Hawkes attentive LSTM to tailor
spatiotemporal network architecture to rank stocks. (7) ES-
TIMATE (Huynh et al. 2023) implements a memory-based
mechanism onto an LSTM network in an attempt to learn in-
dividual patterns and employs hypergraph attentions to cap-
ture the non-pairwise correlations, which pass message by
the wavelet basis instead of the Fourier basis. (8) Linear
only uses simple fully connected layers to predict the final
price.

Overall Comparison
Table 2 shows the performance of all the comparison meth-
ods. Most of the baselines’ results on the benchmarks are
reported using their original settings and all of them adopt
the same optimization loss in ensuring fair. We have the fol-
lowing key observations: 1) For univariate methods, whether
LSTM or enhanced ALSTM performs worse than all other
hybrid architectures, which proves the necessity and effec-
tiveness of relationships in the stock market. As it should
be, RNN-based encoders are faster the rest due to no addi-
tional calculations on relations and perform better with small
capacity of stocks(e.g., S&P500) because of the fewer re-
lationships in the market. 2) Hypergraph architectures ap-
preciably have better capability of modeling complicated
inter-stock dependencies, since classic graph tends to de-
fine pairwise correlations between any two entities. How-
ever, tendency of real share prices do not depend on several
strongly correlated enterprise but current market attributes.
Thus, to some extent, hyperedges gathering the industry in-
formation reflect parts of these market attributes. 3) Sim-
ple linear model lacks adequate inductive bias and naturally
fail while other MLP-based methods for time series perform
even worse without considering the characteristics of stock

Ablation NASDAQ NYSE
Model Component IC RIC IC RIC

LSTM 0.032 0.354 0.024 0.256
w.o.Indicator Mixing 0.040 0.465 0.027 0.291

w.o.Time Mixing 0.018 0.164 0.016 0.161
w.o.Stock Mixing 0.037 0.376 0.026 0.285

LSTM + Stock Mixing 0.041 0.476 0.030 0.307
STHAN-SR 0.039 0.451 0.029 0.344
StockMixer 0.043 0.501 0.029 0.351

Table 3: Ablation study over three components (indicator
mixing, time mixing, and stock mixing) on NASDAQ and
NYSE.

data. Relatively short lookback window overlooks periodic-
ity and time deviation leads to market value varying, which
are the main cause of severe overfitting. 4) Balancing the
lightweight of MLP models with the excellent performance
of hybrid networks, our proposed StockMixer obtains the
best results across most metrics and fetches an average rela-
tive performance gain of 7.6%, 10.8% and 10.9% in regard
of two rank metrics and the risk adjusted returns (p < 0.01).
Meanwhile, simple but strong design brings parameter quan-
tity second only to RNN and much less computation time
compared with graph message passing. In addition, slight
performance degradation is observed on NYSE with most
stocks (1737), which may indicate that insufficient induc-
tive bias gradually come into force in dealing with larger
candidate pools.

Ablation Study
Model Component. We attempt to verify the effect of
three mixing blocks by removing the one of them respec-
tively and compare with two typical baselines, STHAN-SR
and LSTM. We also replace the previous market module
with our stock mixing and implement these settlements in
NASDAQ and NYSE. The results are shown in Table 3. As
shown, different components jointly contribute to the per-
formance. Among three parts, the mixing of time dimension
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Figure 3: Effects of different activation function on NAS-
DAQ.

matters most, for the poor learning of isolated representation
can lead to meaningless relationship modeling. This also ex-
plains why StockMixer as well as earlier architecture adopts
a framework of time before space. Without incorporating
indicator features, MLP-Mixer has slightly worse perfor-
mance, which confirmed the importance of mixing indicator
features into stock movement. From the model performance
of ablation experiments, the order of impact on the model is
time, stock and indicator. The variant replacing the indicator
mixing with vanilla LSTM can draw with the state-of-the-art
STHAN-SR that integrates the stock mixing without prior
knowledge is quite competent at shares market relationship.
We can see that the MLP-based encoder credible alternative
to RNN and brings a higher performance gain to LSTM. The
most likely reason is that RNN makes the hidden represen-
tation lack cross-indicator correlation.

Activation Function. We investigate the impact of differ-
ent activation functions on model performance. Due to space
limit, we depict the results on NASDAQ in Figure 3, similar
regularities can be observed on other datasets. In the origi-
nal module, the GELU function with excellent performance
in multiple computer vision, natural language processing,
and voice tasks did not achieve the best performance in
such sequence prediction tasks as stocks. It can be seen that
both Sigmoid and tanh perform mediocrely while ReLU and
HardSwish obviously improve model performance over all
metrics. This ablation verified the impact of non-linear func-
tion on mixing block, and we also conduct the similar exper-
iments to explore the effect of Layer Normalization, where
is no significant difference.

Hyperparameter Sensitivity
The results in Figure 4 show the hyperparameter sensitiv-
ity. Due to the space limit, we focus on the most important

(a) Window length (b) Market (c) Scale factor

Figure 4: Sensitivity to parameters T , m and k.

hyperparameters and select IC as metric.

Lookback window length T . We analyze the prediction
performance of StockMixer when varying the length T of
the lookback window in Figure4a. Across all datasets, mod-
erate window length gains the best performance. Too short
window length drops quickly due to the lack of information
while the overlong sequential patterns also fails as the lack
of early information gain and increased learning costs for
stocks.

Market dimension m. We consider different m of the hid-
den dimension of stock mixing in Figure 4b and observe
that datasets achieve their best performance at distinct m.
As shown, result on S&P500 degrades significantly when
w exceeds 10 while that on NYSE does well at around 30.
Markets with high capacity prefer larger m that the surge in
stock numbers brings more complex market representations

Multi-Scale factor k. We analyze the variance in the prof-
itability depending on the number of scale factors from the
ranking in Figure 4c. It is seen that StockMixer performs
generally well, while the best results are obtained for k = 3.

Conclusion
In this paper, we proposed StockMixer, a simple yet strong
architecture with enhanced MLP blocks for stock price fore-
casting. Instead of using different sub-networks to model in-
dicator, temporal and stock correlations, StockMixer con-
sists of a lightweight combination of indicator, time, and
stock mixing blocks. Especially, time mixing takes more
scales into consideration which construct preferable tempo-
ral encoder and provides improvements for temporal data. In
market view, stock mixing decomposes the standard mixing
block to into information exchange of stock-to-market and
market-to-stock, which is a more robust modeling of stock
correlations. Through extensive experiments, we show that
StockMixer outperforms all popular benchmarks with an av-
erage relative performance gain of 7.6%, 10.8% and 10.9%
in regard of three metrics, validating that this architecture
offers a powerful alternative to other current methods. In fu-
ture, we aim to optimize the hyperparameter selection pro-
cess and adapt StockMixer to more stock markets.
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