Enhancing Job Recommendation through LLM-Based Generative Adversarial Networks

Authors

  • Yingpeng Du School of Computer Science and Engineering, Nanyang Technological University, Singapore School of Software and Microelectronics, Peking University, Beijing, China
  • Di Luo Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China
  • Rui Yan Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China
  • Xiaopei Wang School of Languages and Communication Studies, Beijing Jiaotong University, Beijing, China
  • Hongzhi Liu School of Software and Microelectronics, Peking University, Beijing, China
  • Hengshu Zhu Career Science Lab, BOSS Zhipin, Beijing, China
  • Yang Song NLP Center, BOSS Zhipin, Beijing, China
  • Jie Zhang School of Computer Science and Engineering, Nanyang Technological University, Singapore

DOI:

https://doi.org/10.1609/aaai.v38i8.28678

Keywords:

DMKM: Recommender Systems

Abstract

Recommending suitable jobs to users is a critical task in online recruitment platforms. While existing job recommendation methods encounter challenges such as the low quality of users' resumes, which hampers their accuracy and practical effectiveness.With the rapid development of large language models (LLMs), utilizing the rich external knowledge encapsulated within them, as well as their powerful reasoning capabilities, is a promising way to complete users' resumes for more accurate recommendations. However, directly leveraging LLMs to enhance recommendation results is not a one-size-fits-all solution, as LLMs may suffer from fabricated generation and few-shot problems, which degrade the quality of resume completion. In this paper, we propose a novel LLM-based approach for job recommendation. To alleviate the limitation of fabricated generation for LLMs, we extract accurate and valuable information beyond users' self-description, which helps the LLMs better profile users for resume completion. Specifically, we not only extract users' explicit properties (e.g., skills, interests) from their self-description but also infer users' implicit characteristics from their behaviors for more accurate and meaningful resume completion. Nevertheless, some users still suffer from few-shot problems, which arise due to scarce interaction records, leading to limited guidance for high-quality resume generation. To address this issue, we propose aligning unpaired low-quality with high-quality generated resumes by Generative Adversarial Networks (GANs), which can refine the resume representations for better recommendation results. Extensive experiments on three large real-world recruitment datasets demonstrate the effectiveness of our proposed method.

Published

2024-03-24

How to Cite

Du, Y., Luo, D., Yan, R., Wang, X., Liu, H., Zhu, H., Song, Y., & Zhang, J. (2024). Enhancing Job Recommendation through LLM-Based Generative Adversarial Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 38(8), 8363-8371. https://doi.org/10.1609/aaai.v38i8.28678

Issue

Section

AAAI Technical Track on Data Mining & Knowledge Management