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Abstract

Sequential Recommendation plays a significant role in daily
recommendation systems, such as e-commerce platforms like
Amazon and Taobao. However, even with the advent of large
models, these platforms often face sparse issues in the his-
torical browsing records of individual users due to new users
joining or the introduction of new products. As a result, ex-
isting sequence recommendation algorithms may not per-
form well. To address this, sequence-based data augmentation
methods have garnered attention.

Existing sequence enhancement methods typically rely on
augmenting existing data, employing techniques like crop-
ping, masking prediction, random reordering, and random
replacement of the original sequence. While these methods
have shown improvements, they often overlook the explo-
ration of the deep embedding space of the sequence. To
tackle these challenges, we propose a Sparse Enhanced Net-
work (SparseEnNet), which is a robust adversarial gener-
ation method. SparseEnNet aims to fully explore the hid-
den space in sequence recommendation, generating more
robust enhanced items. Additionally, we adopt an adver-
sarial generation method, allowing the model to differenti-
ate between data augmentation categories and achieve bet-
ter prediction performance for the next item in the se-
quence. Experiments have demonstrated that our method
achieves a remarkable 4-14% improvement over exist-
ing methods when evaluated on the real-world datasets.
(https://github.com/junyachen/SparseEnNet)

Introduction
The aim of sequential recommendation (SR) is to compre-
hend users’ evolving preferences based on their historical
behaviors, facilitating precise predictions of their forthcom-
ing item preferences (Chen et al. 2022; Liu et al. 2021; Xie
et al. 2022; Hjelm et al. 2018). SR has garnered significant
interest for its effectiveness in predicting user interests.
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Figure 1: Examples of data augmentation techniques.

For example, FPMC (Rendle, Freudenthaler, and
Schmidt-Thieme 2010) synergizes matrix factorization and
Markov chain methodologies to enhance recommender sys-
tems by deriving personalized transition matrices for users
from limited observations, outperforming other models
in sequential basket data. Additionally, ICL (Chen et al.
2022) develops users’ intent distribution functions from
unlabeled behavior sequences and optimizes SR models
with contrastive self-supervised learning by incorporating
the learned intents. Nonetheless, these methods struggle to
effectively address next-item prediction tasks in scenarios
where user historical sequences are short and sparse.

To tackle this challenge, recent studies have introduced
innovative approaches. CoSeRec (Liu et al. 2021) explores
the use of contrastive self-supervised learning, employing
informative augmentation operators to create refined views,
effectively addressing concerns like data sparsity and noisy
data. In addition, CL4SRec (Xie et al. 2022) introduces three
data augmentation techniques (crop/mask/reorder) to project
user interaction sequences into diverse perspectives, enhanc-
ing the learning of superior user representations. Neverthe-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8283



less, previous methodologies mainly focus on enhancing the
surface layers of the original sequence, overlooking the in-
terconnectedness within the hidden space of the sequence.

To illustrate this issue, we provide an example in Fig. 1,
where each top row in the subgraphs represents an additional
sequence generated using data augmentation methods, while
the corresponding original sequence is shown in the bottom
row. The figure demonstrates the following scenarios: (a)
Random selection of a continuous sub-sequence from the
original sequence starting at position v2; (b) Random mask-
ing of several items within a sequence; (c) Random shuf-
fling of a sub-sequence. Furthermore, there are alternative
approaches, like substituting or inserting various items into
a sequence. Collectively, we term the aforementioned ap-
proaches as shallow data augmentation.

To further comprehensively explore the latent space in se-
quence recommendation, we integrate previously mentioned
data augmentation techniques and introduce a novel adver-
sarial generation approach named SparseEnNet, as depicted
in Fig. 1 (d). In this method, we process items v3, v4, and v5
through a specially designed encoder to produce virtual item
embeddings, thus enhancing the original sequence. Never-
theless, we observed that an excessive use of data augmenta-
tion methods can potentially hamper the predictive accuracy
of the original model, especially for longer sequences which
inherently contain rich historical information. This exces-
sive augmentation could lead to suboptimal results.

Consequently, in order to enhance the robustness of the
sequential recommendation performance, we design four
main components in the proposed SparseEnNet. More con-
cretely, we first exploit an augmentation discriminator to dif-
ferentiate between data augmentation categories and achieve
better prediction performance for the next item in the se-
quence. Then, we adopt a stability discriminator to stabilize
the generated item embeddings from the same augmentation
operation. After that, we employ a negative sample learn-
ing approach to maximize the mutual information between
two positive pairs while effectively increasing the distance
from negative items. Without loss of generality, we utilize a
Transformer (Vaswani et al. 2017) as the sequence encoder
to predict the next item. Finally, we use the self-training en-
hanced learning to encode all original sequences using a se-
quence encoder and then aggregate the sequence represen-
tations to form a set of sequence representations, for captur-
ing consistency among similar sequences. Note that all men-
tioned encoders are served as the parts of the generator. The
contributions of our work can be summarized as follows:

(1) We propose a robust adversarial generation method,
called SparseEnNet, that can fully explore the hidden space
in sequence recommendation by generating more robust en-
hanced items.

(2) We design four main components: an augmentation
discriminator, a stability discriminator, a negative sample
learning module, and a self-training enhanced learning mod-
ule to achieve the above purpose. Extensive experiments are
conducted on three widely used datasets to demonstrate the
superiority of our method over several baselines.

Related Work
Contrastive Learning in SR
Early research in sequential recommendation (SR) often
relied on Markov Chains (MC) to capture the sequential
correlations among items (Zimdars, Chickering, and Meek
2001). As deep learning advanced, various deep learning ar-
chitectures were incorporated into sequence recommenda-
tion tasks. For instance, (Hidasi et al. 2015) integrated the
Gated Recurrent Unit (GRU) into sequence recommenda-
tion. Moreover, (Kang and McAuley 2018; Ji et al. 2020; Li,
Wang, and McAuley 2020) harnessed attention mechanisms
to extract contextual information, leading to more promising
outcomes. Following that, contrastive learning (CL), a self-
supervised task, has garnered significant attention across
various domains, including computer vision (CV) (Chen
et al. 2020; He et al. 2020) and natural language processing
(NLP) (Fang et al. 2020). More recently, contrastive learn-
ing has also found utility in the recommendation field, en-
hancing performance in sequential recommendation mod-
els. For instance, (Yao et al. 2021) proposed a collabora-
tive filtering-based recommendation method that employs
DNN-based contrastive learning to enhance item features.
Furthermore, several studies have showcased the potential
of using contrastive learning in graph neural networks to en-
hance recommendation performance (Wu et al. 2021; Xia
et al. 2021). In the realm of sequential recommendation,
S3-Rec (Zhou et al. 2020) employed contrastive learning
for pre-training to improve item representation. Conversely,
CL4SRec (Xie et al. 2022) incorporated CL into a multi-task
learning framework, synergizing contrastive learning with
sequential recommendation tasks for performance improve-
ment. Besides, ICLRec (Chen et al. 2022) introduced intent
contrastive self-supervised learning to capture user intents.

The sequential recommendation methods mentioned
above typically depend on extensive historical user-item in-
teractions (Chen et al. 2023). Although some earlier ap-
proaches (Xie et al. 2022; Chen et al. 2022) have inte-
grated data augmentation techniques, they often lack an in-
depth exploration of the underlying embedding space of se-
quences. As such, they may not effectively generate more
resilient item embeddings.

Adversarial Learning in SR
Adversarial learning, originally introduced by Generative
Adversarial Nets (GAN) (Goodfellow et al. 2014), enhances
model performance by engaging in a minimax game be-
tween the generator and the discriminator. This approach has
found wide applications in domains such as domain adap-
tation (Ganin et al. 2016) and anomaly detection (Akcay,
Atapour-Abarghouei, and Breckon 2019). In the realm of
recommendation, adversarial methods have been employed
to enhance the performance of base models. For instance,
Adversarial Personalized Ranking (APR) (He et al. 2018)
employs adversarial training to bolster the robustness of
Bayesian Personalized Ranking (BPR). In sequence recom-
mendation, MFGAN (Ren et al. 2020) employs multiple fac-
tor discriminators to assess recommendations generated by
the encoder, effectively disentangling various recommenda-
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tion factors. In comparison to previous models, our approach
incorporates adversarial generation into data augmentation
in sequence recommendation. This integration enables the
model to distinguish between data augmentation categories,
ultimately leading to improved prediction performance for
subsequent items in the sequence.

Proposed Model
Problem Definition
We define sequential recommendation as follows: Given a
user-item interaction sequence su = [vu1 , ..., v

u
t , ..., v

u
|su|],

where u ∈ U represents the user set, and v ∈ V represents
the item set. For a user u, the sequential recommendation
task involves predicting the most likely item interaction at
next step |su|+ 1. This can be formulated as follows:

argmax
v∈V

P (vu|su|+1 = v|su). (1)

Formulated Data Augmentation
Shallow data augmentation: Without sacrificing generality,
we adopt three data augmentation methods for sequence
augmentation, following the approach outlined in previous
work (Xie et al. 2022). The augmentation can be formulated:

Crop (C): A random subsequence of length LC is se-
lected from the original sequence su. The subsequence is
cropped from position c, and this process can be defined by:

sCu = [vuc , v
u
c+1, ..., v

u
c+LC−1]. (2)

Mask (M): Items from the original sequence su are ran-
domly chosen for masking. The mask operation can be de-
scribed as follows:

sMu = [v̂u1 , v̂
u
2 , ..., v̂

u
|su|], (3)

where v̂ut denotes the randomly masked item.
Reorder (R): A continuous subsequence of a given length

LR starting from r is randomly shuffled within the original
sequence su. The resulting reordered sequence can be for-
mulated as:

sRu = [vu1 , ..., v̂
u
r , ..., v̂

u
r+LR−1, ..., v

u
|su|]. (4)

Deep data augmentation: We have observed that exces-
sive utilization of data augmentation methods might have
a negative impact on the predictive accuracy of the orig-
inal model, particularly for longer sequences that inher-
ently hold substantial historical information. This overzeal-
ous augmentation could potentially lead to suboptimal re-
sults. To address this, and in order to bolster the robustness
of sequential recommendation performance, we introduce
the following approaches aimed at thoroughly exploring the
latent space in sequence recommendation, thereby generat-
ing more robust enhanced items:

Pooling (P): We user a pooling operator to explore the
hidden information of items. The operation is described as
follows:

sPu = [vu1 , ..., v
u
n−1,p, v

u
n+LP

, ..., vu|su|], (5)

where p = mean(vun, ..., v
u
n+LP−1) is the generated item, n

is the starting position of the pool subsequence, and LP is
the number of items used for pooling.

Sparse Enhanced Network
The complete structure of SparseEnNet is depicted in Fig. 2,
where specifics of each component are elucidated as follows.

Although the aforementioned data augmentation meth-
ods can alleviate the data sparsity issue in short sequences,
the generated items might adversely affect the original se-
quences if there is a substantial disparity in the distribution
between the generated items and the original ones. To reduce
the impact of distribution differences on model performance,
we design an adversarial generation method, allowing the
model to differentiate between data augmentation categories
and achieve better prediction performance for the next item
in the sequence. The details are as follows.

Augmentation Discriminator: To solve the above prob-
lem, we exploit an augmentation discriminator with a min-
imax game. To augment the encoder’s ability to capture la-
tent invariance across different augmentations, the augmen-
tation discriminator’s purpose is to differentiate the source
augmentation method of the sequence representation. In this
context, a single augmented sequence representation is in-
put into the discriminator to determine the employed aug-
mentation operation from the augmentation set. Denoted as
a non-linear function, the augmentation discriminator is rep-
resented by fAD(·). The loss function for this module em-
ploys cross entropy and is defined as follows:

LAD = −
∑

u∈U

∑
aj∈A

j log(fAD(hu
aj
)), (6)

where aj is the label in the augmentation operation set A (as
mentioned in “Formulated Data Augmentation” Section),
and hu

aj
represents the sequence representation derived from

the generator fE(·)1. The parameter θAD in the discrimina-
tor is optimized by:

θ̂AD = arg min
θAD

LAD(θE , θAD), (7)

where θE denotes the parameters in the encoder. Corre-
spondingly, we optimize it as follows:

θ̂E = arg max
θE

LAD(θE , θAD). (8)

The classification loss of Eq. (6) on the augmented opera-
tions indirectly assesses the encoder’s capacity to capture la-
tent invariance across various augmentations. A larger value
of the loss LAD indicates improved ability of the encoder
to extract invariance among different augmentation meth-
ods. Conversely, a smaller loss signifies effective discrimi-
nation by the discriminator across data augmentation cate-
gories, resulting in enhanced predictive performance for the
subsequent item in the sequence.

Stability Discriminator: In this part, we aim to stabilize
the generated item embeddings from the same augmentation
operation. We design the stability discriminator as a non-
linear function fSD(·) and define the classification loss of
the discriminator by cross entropy as follows:

LSD = −
∑

u∈U

∑
aj ,a

′
j∈A

log(fSD(hu
aj
|| hu

a
′
j

)), (9)

1In this paper, all mentioned encoders are served as the parts of
the generator.
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Figure 2: Overall structure of SparseEnNet. When examining the structure from bottom to top, two augmentation operators,
denoted as ai and aj , are randomly chosen from the augmentation set A = {C,M,R, P}. Then, the Encoder processes both
the augmented sequences and the original sequence, generating sequence representations used for calculating the losses.

where a
′

j denotes the same data augmentation type as aj , and
|| denotes the concatenation. We repeat the same enhance-
ment operation twice on the identical sequence, concurrently
reducing the discriminator loss during the loss function op-
timization process. This strategy ensures stable learning for
the encoder. Similarly, we update the parameter θSD in the
discriminator as follows:

θ̂SD = arg min
θSD

LSD(θE , θSD). (10)

Negative Sample Learning: Lately, self-supervised con-
trastive methods (Xie et al. 2022; Liu et al. 2021) have gar-
nered attention in the recommendation field due to their
remarkable success in enhancing negative sample learning
during batch training. We employ this negative sample learn-
ing approach to maximize the mutual information between
two positive pairs while effectively increasing the distance
from negative items. The InfoNCE loss is utilized as the loss
function, as shown below:

LNSL =∑
u∈U

∑
ai,aj∈A

−log
exp(sim(hu

ai
, hu

aj
)/τ)∑

ū∈neg exp(sim(hu
ai
, hū

aj
)/τ)

,

(11)
where sim(·) represents the dot product, τ is the scale factor,
and hu

aj
and hu

ak
denote the sequence representations of suai

and suai
, which have been independently augmented by two

distinct augmentation operators ai and aj . The pair formed
by hu

aj
and hu

ak
is considered as a positive pair, while sūaj

represents the augmented sequence that does not belong to
user u but resides within the same training batch. In this con-
text, it is treated as a negative pair.

Next Item Prediction: Without loss of generality, we uti-
lize a Transformer (Vaswani et al. 2017) as the sequence
encoder to extract sequential information for predicting the
next item. We employ a log-likelihood loss function to opti-
mize the prediction at time step t:

LNIP (s
u, t) =− log(σ(hu

t · evt+1
))

−
∑

vj /∈su

log(1− σ(hu
t · evj

)), (12)

where hu
t represents the output of the Transformer encoder

at position t, evt+1 stands for the actual next item at time
step t, σ denotes the Sigmoid function, and vj corresponds
to a randomly selected negative item not present in sequence
su and drawn from the batch (Chen et al. 2022).

Self-training Enhanced Learning: As mentioned in the
“Augumentation Discriminator” Section, we consider two
different augmentations of the same sequence as positives
and treats augmentations of different sequences as negatives,
aiming to bring positives closer together and push negatives
farther apart. However, even if two different sequences are
somewhat similar, the discriminator might still treat them as
negatives and attempt to separate them, which could hinder
the feature encoder’s ability to capture consistency among
similar sequences. Inspired by (Chen et al. 2022), we en-
code all original sequences using a sequence encoder and
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then aggregate the sequence representations to form a set of
sequence representations. Then, appling k-means clustering
to obtain pseudo clusters of embedding representations for
different categories. Clustering allows us to group feature-
similar sequences into the same category, which we call it as
the self-training enhanced learning. We utilize the mean of
each category as the category feature representation and ap-
ply the sequence within this category to the following loss:

LSEL =∑
g∈G

∑
u∈Ug

−log
exp(sim(hu

a , g)/τ)∑
ḡ∈G exp(sim(hu

aj
, ḡ)/τ)

,
(13)

where Ug is the set of users belonging to the cluster g, g is
the cluster feature representation.

Unified Training Loss
In essence, our goal is to minimize the recommendation loss
for the next item prediction as indicated in Eq. (12). Addi-
tionally, we aim to employ negative sample learning to bol-
ster the recommendation task and employ self-training for
enhanced learning to mitigate the issue of false negatives,
as expressed through Eq. (11) and Eq. (13). Furthermore,
the integration of an adversarial mechanism is deemed nec-
essary to enhance the semantic consistency between aug-
mented sequences, and this is realized through Eq. (9) and
Eq. (6). Thus, the joint loss function for SparseEnNet is de-
fined as follows:
L = LNIP +λ1LNSL+λ2LSEL+λ3(LSD+LAD) (14)

where λ1, λ2, and λ3 serve as balancing weights to regulate
the emphasis on multi-tasks.

GRL for Adversarial Training: To facilitate the end-to-
end training of adversarial methods, we incorporate a gra-
dient reversal layer (GRL) (Ganin et al. 2016) between the
encoder and the discriminators. GRL reverses the gradient
during the backpropagation process, causing the parameters
before the GRL to be optimized to increase the loss, while
the gradient direction of the parameters after the GRL re-
mains unchanged to optimize for decreasing the loss. The
optimization objectives of the parameters before and after
the GRL are contrary, thus achieving the goal of adversarial
learning. The parameter update process is as follows:

θ = θ − µ
∂L
∂θ

, (15)

where θ ∈ θE , θI , θT represents parameters within the en-
coder and discriminators, and µ signifies the learning rate.

Experiment
In this section, we conduct comprehensive experiments on
SparseEnNet to address the following inquiry:

RQ1: Does the proposed method outperform the baseline
models? RQ2: How do various augmentation methods im-
pact the model’s performance? RQ3: How do different com-
ponents influence the performance of SparseEnNet? RQ4:
Does SparseEnNet mitigate the cold-start problem caused
by data sparsity? RQ5: How do various hyper-parameters
influence the performance of our model? (We have included
these results in the supplementary material.)

Dataset #Users #Items #Actions Avg.length Sparsity

Beauty 22,363 12,101 198,502 8.9 99.93%
Toys 19,412 11,924 167,597 8.6 99.93%
Yelp 30,431 20,033 316,354 10.4 99.95%

Table 1: Dataset statistics

Datasets: We perform experiments on three publicly
available datasets sourced from real-world data. The Beauty
and Toys subsets are extracted from the Amazon reviews
dataset (McAuley et al. 2015), derived from one of the
world’s largest e-commerce platforms. Additionally, we uti-
lize the Yelp dataset2, which is a frequently employed re-
source in recommendation tasks and originates from a busi-
ness platform. We adhere to the established convention
(Kang and McAuley 2018; Xie et al. 2022) for dataset pro-
cessing. Then, we organize each user’s reviews in chrono-
logical sequence and transform them into a sequence of user-
item interactions suitable for the recommendation models.

Evaluation Metrics: We employ the leave-one-out strat-
egy (Kang and McAuley 2018; Zhou et al. 2020; Xie et al.
2022), a widely employed approach in sequence recommen-
dation, to partition the datasets. In this strategy, for each
user-item interaction sequence, we treat the last item as the
test data, and the item immediately preceding it as the val-
idation data. The remaining items are utilized for training
the model. To comprehensively assess all models, we em-
ploy the Hit Ratio (HR) and Normalized Discounted Cumu-
lative Gain (NDCG) as evaluation metrics for recommen-
dation performance. HR@top-k quantifies the proportion of
the target item in the top-k recommended items. In compar-
ison, NDCG@top-k takes into consideration the rank of the
target item among the top-k recommendations.

Baseline Methods: The selected baseline methods en-
compass the following: GRU4Rec (Hidasi et al. 2015) inte-
grates the GRU architecture into session-based recommen-
dation tasks, augmenting model performance through novel
loss function design and efficient sampling strategies. SAS-
Rec (Kang and McAuley 2018) leverages a Transformer-
based one-way attention mechanism to capture sequential
patterns and make next-item recommendations. BERT4Rec
(Sun et al. 2019) adapts the BERT technique (Devlin et al.
2018), originally successful in NLP, to sequence recom-
mendation. It employs a two-way self-attention mechanism
and mask operation for enhanced performance. CL4SRec
(Xie et al. 2022) employs contrastive learning within se-
quence recommendation, introducing crop, mask, and re-
order augmentation techniques for the contrastive learning
framework. ICLRec (Chen et al. 2022) engages unsuper-
vised modeling of user intentions and incorporates these in-
tentions into contrastive sequential recommendation tasks.

Implementation Details: We evaluate the above base-
lines by either using the RecStudio3 (a widely used gen-

2https://www.yelp.com/dataset
3https://github.com/ustcml/RecStudio
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Datasets Methods Hit@5 NDCG@5 Hit@10 NDCG@10 Hit@20 NDCG@20

GRU4Rec 0.0256 0.0164 0.0426 0.0218 0.0690 0.0285
SASRec 0.0338 0.0222 0.0532 0.0285 0.0828 0.0359

BERT4Rec 0.0293 0.0183 0.0477 0.0242 0.0688 0.0295
Beauty CL4SRec 0.0427 0.0278 0.0648 0.0349 0.0957 0.0427

ICLRec 0.0461 0.0304 0.0728 0.0389 0.1054 0.0471
SparseEnNet 0.0516 0.0348 0.0762 0.0426 0.1103 0.0512

Improv. 11.93% 14.47% 4.67% 9.51% 4.65% 8.70%

GRU4Rec 0.0211 0.0145 0.0337 0.0186 0.0536 0.0236
SASRec 0.0399 0.0264 0.0584 0.0324 0.0832 0.0387

BERT4Rec 0.0304 0.0199 0.0461 0.0248 0.0689 0.0305
Toys CL4SRec 0.0541 0.0449 0.0772 0.0374 0.1063 0.0522

ICLRec 0.0579 0.0395 0.0820 0.0472 0.1131 0.0550
SparseEnNet 0.0619 0.0423 0.0855 0.0499 0.1162 0.0576

Improv. 6.91% 7.09% 4.27% 5.72% 2.74% 4.73%

GRU4Rec 0.0152 0.0091 0.0248 0.0124 0.0371 0.0145
SASRec 0.0160 0.0101 0.0260 0.0133 0.0443 0.0179

BERT4Rec 0.0196 0.0121 0.0339 0.0167 0.0564 0.0223
Yelp CL4SRec 0.0227 0.0143 0.0384 0.0194 0.0623 0.0254

ICLRec 0.0234 0.0145 0.0401 0.0199 0.0645 0.0260
SparseEnNet 0.0244 0.0154 0.0414 0.0209 0.0678 0.0275

Improv. 4.27% 6.21% 3.24% 5.03% 5.12% 5.77%

Table 2: Performance comparison of various methods on top-N recommendation. The best score for each metric is indicated in
bold, and the second-best score is underlined. The final row displays improvements over the best baseline on each dataset.

eral recommendation library) or adopting the codes from
the papers. We follow the general implementation method
and set the maximum length of the sequence to 50, the
embedding dimension of the model to 64, and the batch
size to 256. For SparseEnNet, we set attention heads of
the encoder as 2 and tune the self-attention layer within
{1, 2, 3, 4} . We test the hyper-parameters λ1, λ2, λ3 among
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5}, and set the cluster number
K as 256. We apply dropout in our model and set dropout
ratio between 0.1, 0.3, 0.5, 0, 7. We use the Adam optimizer
(Kingma and Ba 2014) to optimize the model trainable pa-
rameters with a learning of 0.001, β1 = 0.9, β2 = 1.

Performance Comparison (RQ1)
Table. 2 presents a comprehensive performance comparison
of all methods. From the table, we can observe that:

(1) The proposed SparseEnNet outperforms all other
baselines across all datasets, underscoring the effective-
ness of our proposed model. Notably, SparseEnNet demon-
strates remarkable performance improvements, showcasing
a 11.93%, 6.91%, and 4.27% enhancement over the second-
best model in terms of Hit@5 on the Beauty, Toys, and Yelp
datasets, respectively. Moreover, SparseEnNet demonstrates
substantial improvements over the second-best performing
model across all datasets in terms of NDCG@5, with gains
of 14.47%, 7.09%, and 6.21% observed on the Beauty, Toys,
and Yelp datasets, respectively. Comparable enhancements
are also evident across other evaluation metrics.

(2) BERT4Rec consistently outperforms GRU4Rec, af-
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Figure 3: Different data augmentation performance in terms
of Hit@5 and NDCG@5 on Beauty.

firming the efficacy of the self-attention mechanism in ex-
tracting sequence features for sequential recommendation
tasks. Furthermore, SASRec exhibits superior performance
compared to BERT4Rec. This divergence could potentially
be attributed to the fact that the masking operation in sparse
datasets leads to a more pronounced loss of contextual infor-
mation within such sparse data.

(3) CL4SRec and ICLRec, tailored for sequential data
augmentation, outperform the other baseline models. No-
tably, CL4SRec achieves the second-best performance
across all datasets, underscoring the significance and effec-
tiveness of data augmentation techniques in the realm of se-
quential recommendation.
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Dataset Beauty Toys

Metric Hit@10 NDCG@10 Hit@10 NDCG@10

SparseEnNet 0.0762 0.0426 0.0855 0.0499
w/o D 0.0724 0.0406 0.0865 0.0497

w/o SD 0.0737 0.0407 0.0847 0.0490
w/o AD 0.0738 0.0415 0.0870 0.0500
w/o SEL 0.0713 0.0401 0.0805 0.0451
w/o NSL 0.0649 0.0347 0.0775 0.0427

Table 3: Ablation study for SparseEnNet

Different Data Augmentation Analysis (RQ2)
To investigate the impact of different data augmentation
techniques on model performance, we present the com-
parative results in Fig. 3. Generally, the ranking of the
significance of various augmentation methods is as fol-
lows: Recoder > Pooling > Mask ≈ Crop. SparseEn-
Net achieves scores of 0.0516 and 0.0348 on Hit@5 and
NDCG@5, respectively. In contrast, the performance of
the model without reorder data augmentation is the low-
est, with corresponding scores of 0.0471 and 0.0304. No-
tably, SparseEnNet consistently outperforms these individ-
ual methods, underscoring the effectiveness of its holistic
approach that considers a range of enhancement techniques.

Ablation Study (RQ3)
We investigated the impact of various modules on the over-
all performance of the model. The variants of SparseEnNet
encompass the following configurations: (1) w/o D: remov-
ing all discriminators of the model and leaving the NSL and
SEL parts. (2) w/o SD: removing the stability discrimina-
tor. (3) w/o AD: removing the augmentation discriminator.
(4) w/o SEL: removing self-training enhanced learning. (5)
w/o NSL: removing negative sample learning module. Table
3 presents a performance comparison between SparseEnNet
and its five variants on the beauty and toys datasets. Impor-
tantly, it is evident that the NSL component plays a critical
role within SparseEnNet, resulting in significant improve-
ments in terms of Hit@10 and NDCG@10 scores. Specif-
ically, on the Beauty dataset, NSL contributes to achieving
values of 0.0649 for Hit@10 and 0.0347 for NDCG@10.
Similarly, on the Toys dataset, NSL contributes to achieving
values of 0.0775 for Hit@10 and 0.0427 for NDCG@10.
Overall, this table underscores the efficacy of all the de-
signed components within our model.

Cold-start Problem by Data Sparsity (RQ4)
For the cold-start performance assessment, we have chosen
ICLRec, the second-best baseline. Initially, we randomly se-
lected 2000 items that appear in user-item interactions with
a count of less than or equal to 10. This was done to simulate
cold-start item embeddings. As evident from Figure 4a, it is
evident that SparseEnNet is able to encode items into a more
condensed embedding space compared to ICLRec. Addi-
tionally, we conducted a comparative learning by selecting
2000 items that occur in user-item interactions with a count
of 30 or more to simulate embeddings for popular items. The
findings from Figure 4b indicate that our model performs at

(a) Simulating cold-start item embeddings for user-item inter-
actions <= 10 on SparseEnNet and ICLRec.

(b) Simulating popular item embeddings for user-item interac-
tions >= 30 on SparseEnNet and ICLRec.

Figure 4: Cold-start performance in sparsity data.

a similar level to ICLRec in this scenario. These outcomes
underscore the effectiveness of our proposed model in ad-
dressing the cold-start issue.

Conclusion

In this paper, we present SparseEnNet, an innovative and
robust adversarial generation method designed to thor-
oughly explore the latent space in sequence recommenda-
tion by generating enhanced items that are more robust. The
SparseEnNet framework consists of four essential compo-
nents: an augmentation discriminator, a stability discrimina-
tor, a negative sample learning module, and a self-training
enhanced learning module. Through extensive experiments
conducted on three well-known datasets, we establish the
efficacy of our model. Additionally, our ablation study fur-
ther validates the contribution of each individual component.
Furthermore, a case study focusing on the cold-start problem
confirms the ability of SparseEnNet to produce distinct item
embeddings in sparse datasets.
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