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Abstract

Predicting chemical reaction yields is pivotal for efficient
chemical synthesis, an area that focuses on the creation of
novel compounds for diverse uses. Yield prediction demands
accurate representations of reactions for forecasting practical
transformation rates. Yet, the uncertainty issues broadcasting
in real-world situations prohibit current models to excel in
this task owing to the high sensitivity of yield activities and
the uncertainty in yield measurements. Existing models often
utilize single-modal feature representations, such as molec-
ular fingerprints, SMILES sequences, or molecular graphs,
which is not sufficient to capture the complex interactions
and dynamic behavior of molecules in reactions. In this pa-
per, we present an advanced Uncertainty-Aware Multimodal
model (UAM) to tackle these challenges. Our approach seam-
lessly integrates data sources from multiple modalities by
encompassing sequence representations, molecular graphs,
and expert-defined chemical reaction features for a com-
prehensive representation of reactions. Additionally, we ad-
dress both the model and data-based uncertainty, refining the
model’s predictive capability. Extensive experiments on three
datasets, including two high throughput experiment (HTE)
datasets and one chemist-constructed Amide coupling reac-
tion dataset, demonstrate that UAM outperforms the state-
of-the-art methods. The code and used datasets are available
at https://github.com/jychen229/Multimodal-reaction-yield-
prediction.

Introduction
Computer-Assisted Synthesis Prediction (CASP) has
emerged as a key area of focus in the intersection of artifi-
cial intelligence in scientific domains. The goal of CASP
revolves around tackling a diverse array of chemical chal-
lenges, including the prediction of reaction products (Coley
et al. 2017) and the intricacies of retro-synthesis (Ishida
et al. 2019). Yield prediction, among the spectrum of CASP
tasks, is particularly crucial. The target of yield prediction
is to accurately estimate the practical conversion rates in
chemical reactions, illustrating the transition from reactants
to products. In this context, yield prediction lays the foun-
dation for reaction-related predictions, thereby supporting
the advancements in CASP (Ahneman et al. 2018).

*The corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

When conceptualized as a machine learning problem,
yield prediction is essentially a regression task. The devel-
opment of an effective yield prediction model depends crit-
ically on obtaining high-quality representations of the re-
actants and products involved in chemical reactions. Early,
molecular fingerprints were employed to depict chemical
structures, yet their efficacy in handling complex structures
was limited. Deep learning-based methods can automati-
cally learn intricate patterns and features from data. For
instance, (Schwaller et al. 2020) employ BERT (Devlin
et al. 2018), a bidirectional transformer language model,
for learning the representation of molecules involved in
chemical reactions based on their sequential SMILES ex-
pressions. This learned representation is then utilized in a
subsequent regression model to predict yields. Similarly,
(Kwon et al. 2022) employ molecular graphs to represent
molecules within chemical reactions and utilize graph neural
networks to learn useful features for yield prediction. These
current yield prediction models exhibit strong performance
on specially curated reaction datasets, such as the High-
Throughput (HTE) datasets (Ahneman et al. 2018; Perera
et al. 2018). However, when applied to real-world tasks, their
efficacy diminishes significantly (Saebi et al. 2023). One pri-
mary reason for this decline is the pervasive issue of uncer-
tainty in real-world yield prediction datasets, manifesting in
two major aspects.

High sensitivity of yield. In chemical reactions, structural
isomers—compounds with identical molecular formulas but
different arrangements of atoms—can significantly impact
the yield. Even minor structural variations within the reac-
tants themselves can lead to pronounced discrepancies in
the resulting yields. For example, the addition of a methoxy
group that is far from the reaction center can lower the reac-
tion center by as much as 55% (Schierle et al. 2020). This
highlights how real-world reactions can be extremely sen-
sitive to slight variations in the reactants and products in-
volved. Existing models, as referenced by (Schwaller et al.
2021), primarily utilize single-modal data such as graphs or
sequences, and thus may not adequately capture the subtle
structural variations in molecules. These subtle yet critical
variations include minor differences in stereochemistry and
the presence of specific functional groups, both of which can
have a significant impact on reaction pathways and yields.

Uncertainty in the yield measurement. The yield from
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the reaction process depends on many factors in the reaction
cycle, including the properties of the molecules, the envi-
ronmental condition, and human operations. As a result, the
same reaction can exhibit significant yield variations. For ex-
ample, (Liu, Moroz, and Isayev 2023) pointed out that the
yield standardized deviation can be as large as 23.7% when
the same reaction was reported by different research groups.
Although (Kwon et al. 2022) considered yield prediction un-
certainty and introduced an uncertainty-related loss for train-
ing the prediction model, the inherent intricacies of data un-
certainty hinder a precise prediction.

To address the aforementioned challenges, we propose
an advanced Uncertainty-Aware Multimodal model (UAM)
for yield prediction by taking into account multi-modal fea-
tures to combat the prediction uncertainty. Specifically, we
introduce a multi-modal feature extractor that integrates
sequence features, graph structural features, and human-
defined reaction condition features to acquire a more com-
prehensive representation of reactants and products. More-
over, aided by cross-modal contrastive learning, we facil-
itate modal fusion to capture the shared information and
distinctive features across modalities to alleviate discrep-
ancies induced by the high sensitivity of yield. Addition-
ally, we incorporate a Mixture-of-Experts (MoE) module to
enhance model expressiveness without additional computa-
tional costs. This facilitates a dynamic equilibrium between
the model’s sensitivity to variations and its ability to discern
reaction types. Last, we introduce an uncertainty quantifi-
cation module, which mitigates the inherent training uncer-
tainty of the model while focusing on quantifying the uncer-
tainty presented in the data itself, thereby enhancing predic-
tive accuracy.

Our contributions in this work are summarized as follows:

• We study the reaction yield prediction problem and pro-
posed a novel model called UAM to tackle the uncer-
tainty issue by fusing multi-modal molecular features;

• We explore an innovative and effective way to utilize
cross-modal contrastive learning and an additional MoE
module is added to enhance the reaction representation;

• Experimental results on three real-world datasets demon-
strate the effectiveness of UAM in comparison to the
state-of-the-art approaches.

Related Work
Molecular Representation Learning
Molecular representation learning is a crucial link between
machine learning and chemistry and is gaining rising aware-
ness in computational chemistry. Early techniques manu-
ally compute chemical descriptors like Morgan fingerprints
(Pattanaik and Coley 2020; Sandfort et al. 2020) or Den-
sity functional theory (DFT) descriptors (Hu et al. 2003)
to obtain numerical vector representations of molecules.
Lately, deep learning is gaining attention with two main cat-
egories: sequence-based and graph-based methods. The first
category builds upon the practice that molecules are often
represented as SMILES string (Weininger, Weininger, and
Weininger 1989). These methods leverage sequence deep

neural network models such as Recurrent Neural Network
(Segler et al. 2018) and Transformer (Schwaller et al. 2019,
2021) to effectively encode molecular information. The sec-
ond category, graph-based methods, concentrates on the
atom-atom connection patterns within molecules (Guo et al.
2023c). This approach stems from the understanding that a
molecule’s activity and properties are often closely linked to
its structural information. Although SMILES string captures
sequential details, they can lose global context in cases of
lengthy SMILES sequences. In contrast, graph-based molec-
ular representation (Hu et al. 2019; Guo et al. 2021; Wang
et al. 2021; Li, Zhao, and Zeng 2022) preserves structural in-
formation by naturally mapping molecules into graphs with
atoms as nodes and bonds as edges. However, molecular rep-
resentations that rely on a single modality have inherent lim-
itations. Graph-based models may not inherently represent
the stereochemistry of molecules, such as the R/S configu-
ration in chiral centers or E/Z configuration in double bonds.
SMILES, however, can be extended to include stereochemi-
cal information by using or symbols. While human-defined
features incorporate abundant domain knowledge, they re-
quire complex pre-computation and may not produce the
most task-relevant and generalizable molecular features. In
this paper, we propose a multi-modal molecular represen-
tation encoding followed by a late fusion, so it effectively
captures the inherent characteristics of chemical reactions.

Reaction Yield Prediction
Chemical reaction yield prediction is a crucial application in
machine learning for chemical synthesis. The reaction yield
is typically a certain percentage of the theoretical chemi-
cal conversion. Therefore, in evaluating the reaction yield,
the representation learning of both reactants and products
plays an important role. Earlier, (Ahneman et al. 2018) uti-
lizes molecular descriptors with off-the-shelf machine learn-
ing models such as Random Forest to predict cross-coupling
reactions. However, such methods are limited to specific re-
action categories and require expert intuition to select the ap-
propriate chemical fingerprints. Deep learning has enabled
the utilization of sequence-based and graph-based mod-
els for general reaction yield prediction (Guo et al. 2021,
2023a,b). For instance, YieldBert (Schwaller et al. 2020,
2021) employs transformers to encode reaction SMILES for
context-dependent molecular information. Meanwhile, other
approaches (Gilmer et al. 2017; Kwon et al. 2022) lever-
age GNNs to predict yields using graph-based molecular
representations. However, due to the inherent limitations of
learning representations from single-model data, these mod-
els exhibit suboptimal performance on real-world datasets.
They fail to account for the uncertainty arising from fac-
tors such as reaction conditions (temperature, time), side re-
actions, reactant degradation, and other influences. (Kwon
et al. 2022) is the most related work to ours for considering
uncertainty in yield prediction. However, it merely predicted
additional variance for auxiliary training without conduct-
ing an intricate and comprehensive analysis of uncertainty
inherent in chemical reactions. In this paper, we analyze the
sources of uncertainty and employ uncertainty quantification
techniques to enhance the performance of yield predictions.
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Figure 1: The framework of our approach UAM, which consists of three encoders: graph encoder, SMILES encoder, and
human-defined feature encoder. The top part shows the contrastive pre-training for combining the representation from SMILES
and graph encoder. The lower part depicts the encoding process for human-defined features. This process is structured with a
densely-connected layer, followed by the Mixture of Experts (MoE) module, and then another series of dense layers. The late
fusion module is designed by either voting fusion, feature concatenation, or self-attention weighted fusion for predicting the
yields. The SMILES and graph encoders are initially pre-trained through contrastive learning, and then, along with the dense
layers, the MoE and fusion modules, they undergo an end-to-end fine-tuning.

Methodology
In this section, we first define the multi-modal yield predic-
tion problem and then present the details of our model.

Problem Definition Let R = {R1, ..., RN} be a set of
chemical reactions and Y = {y1, ..., yN} be the reaction
yields representing the percentage conversion of reactants
into products, where N is the number of reactions. Given
a reaction Ri ∈ R, our model’s input comprises molecular
graphs {Gi

r1 , ..., G
i
rn , G

i
p1
, ..., Gi

pm
}, SMILES sequence Si,

and human-defined features Hi (e.g., molecular fingerprints,
reaction conditions), where r denotes reactants, p represents
products, and n and m are their respective quantities. Typi-
cally, most of the reactions involve n=2 reactants and m=1
or 2 products. The yield of a reaction yi is a real value be-
tween 0 and 1. The goal of yield prediction is to develop a
mapping function, fΘ : R → Y . This function involves en-
coding Ri into representation vectors and subsequently as-
sociating these vectors with the prediction target yi.

Model Architecture The architecture of our approach is
shown in Figure 1. The model consists of four components:
graph encoder, SMILES encoder, human-defined feature en-
coder, and multi-modal fusion. The SMILES and graph en-
coders are pre-trained with a contrastive learning strategy.
Subsequently, these encoders, in conjunction with the dense
layers, MoE and fusion modules, are subjected to end-to-
end fine-tuning. The embedding vectors for the reactant-
product SMILES sequences are represented as fS , while
those for the reactant-product molecular graphs are denoted

as fG. The human-defined reaction features, after being pro-
cessed through a mixture-of-experts feature encoder, are
represented as low-dimensional features fH . These features,
derived from the three modalities, are then fed into a per-
ceiver for late fusion. Finally, we introduce an uncertainty
quantification module to enhance the model’s performance.
The following sections detail each component of the model.

Graph Encoder. For reaction Ri, the graph encoder en-
codes the reactants and products separately, and concate-
nates them as the output embedding f i

G:

f i
G = Concat

[
Enc(Gi

r1), . . . ,Enc(Gi
pm

)
]
. (1)

As shown in Figure 2, the graph encoder includes a node
information propagation module and a graph-level global
pooling module. The node information propagation module
has two components: feature mapping for nodes and edges,
and feature aggregation. Considering the atom heterogene-
ity and bonding affinity in molecules, we designed a high-
frequency information capture layer to enrich the features
of the nodes. The graph-level pooling part can be a simple
permutation invariant function such as Max and Mean, or a
more sophisticated algorithm like GlobalAttention.

SMILES Encoder. Similar to YieldBert (Schwaller et al.
2020, 2021), the SMILES encoder is constructed by stack-
ing multiple transformer encoders (Vaswani et al. 2017). It
can capture long-range dependencies of elements in reac-
tions and obtain the embedding vector of reaction SMILES
sequence:

f i
S = Enc(Si) (2)
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Figure 2: Graph Encoder, including atom and bond feature
propagation, as well as graph-level pooling.

For a detailed introduction to the encoders, please re-
fer to the implementation at https://github.com/jychen229/
Multimodal-reaction-yield-prediction.

Multi-Modal Contrastive Learning To integrate the
long-range dependencies identified in SMILES sequences
with the spatial and structural information derived from
molecular graphs, we employ a multi-modal contrastive
learning strategy. Our approach is built based on the idea
that the encoding vectors derived from SMILES sequences
and those from molecular graphs should be similar if they
correspond to the same reaction, and distinct if they refer
to different reactions. Specially, we consider (f j

S , f
j
G) as a

positive pair, as they represent the same reaction Ri through
both molecular graph and sequence modalities. Conversely,
pairs such as (f j

S , f
k
G) and (fk

S , f
j
G), where k ̸= j, are con-

sidered negative pairs, since these SMILES sequences and
molecular graphs correspond to different reactions. To en-
sure that positive pairs have closely aligned encoding vectors
and negative pairs have divergent ones, we minimize the fol-
lowing contrastive training loss, with learnable temperature
τ ∈ R+:

Lc = −1

2
log

e⟨f
j
G,fj

S⟩/τ∑N
k=1 e

⟨fj
G,fk

S⟩/τ
− 1

2
log

e⟨f
j
G,fj

S⟩/τ∑N
k=1 e

⟨fk
G,fj

S⟩/τ
,

where e⟨,⟩ ensures dimension flexibility by transforming the
multi-modal encoded vectors through a nonlinear projection
to fixed-dimensional vectors for contrastive learning (Zhang
et al. 2022). In the pre-training stage, the SMILES encoder
and graph encoder are trained using this contrastive learning
loss on the input dataset. These pre-trained encoders will be
fine-tuned later with other modules.

Mixture-of-Experts Feature Encoder The human-
defined features include Morgan fingerprints, Mordred
features, and QM descriptors (Liu, Moroz, and Isayev
2023). Due to the complexity of reactions, these features
are often represented as high-dimensional sparse vectors. In
order to extract and compress the most relevant information
from these high-dimensional inputs, we employ a sparse
MoE model, which is designed to uncover the shared
subspaces common to subsets of reactions. Each expert
can specialize in different aspects found within the high-
dimensional data, and characterize the common features
shared by specific subsets of reactions. The router automates

expert assignment for each reaction’s feature extraction.
The nature that only a subset of experts is activated per
input significantly reduces computational load.

Specifically, for the input features H , we first process
them through a dense layer and then feed the obtained xH

into the MoE layers. The router, a gate function with train-
able weights: G(xH) = Softmax (Wg · xH), assigns each
input reaction to t out of k experts, E = {E1, ..., Ek}. Each
experts Ei is a feed-forward network (FFN). One MoE layer
presents the output:

MoE(xH) =
t∑

i=1

G(xH)i · Ei(xH) (3)

which is a linear combination of the outputs from t FFNs.
If required, MoE(xH) can be passed through another MoE
layer that possesses the same functional design. Following
(Shazeer et al. 2017), we introduce an auxiliary loss La to
encourage balanced routing to all experts. The output of
MoE is transformed as fH by another dense layers to get
integration with fG and fS .

Late Fusion and Prediction The multi-modal reaction
representation fG, fS and fH can be incorporated with var-
ious strategies such as voting fusion, feature concatenation,
or self-attention weighted fusion, all aimed at effectively
predicting the corresponding yield. The final prediction is
denoted as ŷ. We next introduce our prediction loss with un-
certainty quantification.

Uncertainty Quantification Uncertainty is commonly
categorized into aleatoric uncertainty and epistemic uncer-
tainty. In reaction yield prediction, we further attribute un-
certainty to model uncertainty and data uncertainty. Our
model aims to minimize model uncertainty while employing
the Bayesian learning framework (Kendall and Gal 2017) to
model data uncertainty to enhance prediction performance
and assist users in better evaluation reactions.

Molecules in chemical reactions often contain conform-
ers of differing energy levels, which could result in different
yields being reported for the same reaction. Therefore, we
consider the reaction yield ŷ as a random variable to account
for the data uncertainty. By learning a probability distribu-
tion with the features x = {fG, fS , fH}, we sample from
the distribution to obtain the final yield prediction. Taking
the normal distribution as an example, we learn the mean
µ(x) and variance σ(x) of the distribution, and obtain the fi-
nal prediction through the reparameterization trick (Kingma
and Welling 2013):

ŷ = µ(x) + ϵ ∗ σ(x) (4)
where ϵ is an input independent variable, and p(ϵ) ∼
N (0, 1). The introduction of reparameterization enables
models to consider uncertainty while maintaining differen-
tiability, ensuring end-to-end training.

Based on the above uncertainty quantification, the predic-
tion loss function is defined as follows:

Lu =
1

N

N∑
i=1

[
1

σ (xi)
2 ∥yi − µ (xi)∥2 + log σ (xi)

2

]
.

(5)
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To reduce the model uncertainty, we employ the regular-
ization method proposed in (Wu et al. 2021), where an addi-
tional KL-divergence loss Lr is introduced.

During the end-to-end training process, the overall loss
function L is defined by combining the prediction loss with
uncertainty quantification Lu, the aforementioned auxiliary
loss La for MoE, and the regularized dropout loss Lr:

L = αLu + βLa + γLr (6)

where α, β and γ are hyper-parameters. More details of
the loss functions and the implementation code are avail-
able at https://github.com/jychen229/Multimodal-reaction-
yield-prediction.

Experiment
Experimental Setup
Datasets We use three evaluation datasets (see Table 1),
two of which are popularly employed High-throughput ex-
periment (HTE) datasets and the third one is constructed
from patent literature by expert chemists.

• High-throughput (HTE) datasets. We used Buchwald-
Hartwig dataset (Ahneman et al. 2018) and Suzuki-
Miyaura dataset (Perera et al. 2018), which respectively
involve high-throughput experiments on the class of Pd-
catalyzed Buchwald-Hartwig C-N cross-coupling reac-
tions and Suzuki-Miyaura cross-coupling reactions.

• Amide coupling reaction (ACR) dataset1. This is
a recently launched large literature dataset, contain-
ing 41,239 amide coupling reactions extracted from
Reaxys (Reaxys 2020). It is considerably more com-
plex than the two HTE datasets. In addition to the
SMILES representations of reactants and products, it fur-
nishes contextual information about the reactions, in-
cluding time, temperature, reagents, conditions, and sol-
vent, which are important for yield prediction.

Baselines We evaluated the proposed method against three
types of baselines: sequence models, graph-based models,
and multi-modal models:

• One-hot (Chuang and Keiser 2018) represents the chem-
ical reaction as one-hot vectors of reactants and products,
indicating the presence or absence of each component.

• YieldBert (Schwaller et al. 2020, 2021) takes reaction
SMILES as input and applies the large-scale sequence
model BERT for yield prediction and is fine-tuned on the
dataset based on the rxnfp pre-trained model.

• MPNN (Kwon et al. 2022), a graph-based model, repre-
sents reaction as a set of molecular graphs and utilizes
graph neural networks for prediction.

• YieldGNN (Saebi et al. 2023) conducts prediction by
combining molecular graphs and chemical features such
as Morgan substructure fingerprints calculated by Rdkit
(Landrum et al. 2019) and canonical MDS using Tani-
moto similarity metric.

1Available at https://github.com/isayevlab/amide reaction data

Dataset No. reactions

Buchwald-Hartwig reaction 3,955
Suzuki-Miyaura reaction 5,760
Amide coupling reaction 41,239

Table 1: The statistics of experimental datasets.

Model MAE ↓ RMSE ↓ R2 ↑
Mordred 15.99 ± 0.14 21.08 ± 0.16 0.168 ± 0.010
YieldBert 16.52± 0.20 21.12± 0.13 0.172± 0.016
YieldGNN 15.27± 0.18 19.82± 0.08 0.216± 0.013
MPNN 16.31± 0.22 20.86± 0.27 0.188± 0.021

Ours 14.76 ± 0.15 19.33 ± 0.10 0.262 ± 0.009

Table 2: Results on the Amide coupling reaction dataset.

Implementation Details Our model is implemented by
Pytorch and optimized with Adam optimizer and cosine
learning rate scheduler with warming up. For the graph-level
pooling module, the model utilizes a transformer decoder.
The expert assignment in MoE is configured with t=1 and
k=6. For the HTE datasets, we adopted the experimental set-
tings from the (Kwon et al. 2022) to ensure a fair compari-
son. In the experiments on the ACR dataset, the late fusion
module is designed with feature concatenation, and the MoE
is structured with two stacked layers. We adopted a train/-
valid/test split of 6/2/2 and employed early-stopping for
avoid overfitting. Regarding the baseline models, for Yield-
Bert, we utilized the model with augmented data. As for
YieldGNN, the human-defined features utilized as inputs are
identical to those employed in our model. To ensure the ro-
bustness of evaluation, we perform 10 random shuffles of
each dataset, and we subsequently report both the mean and
the standard deviation of these results. All experiments are
executed on a single NVIDIA RTX3090 GPU. Additional
details of the model architecture and specific experimental
settings can be found at the shared GitHub link.

Results on the ACR Dataset
The performance of UAM and baselines on the ACR dataset
are reported in Table 2, where the best results are highlighted
in bold and the second best baseline scores are underlined. It
is observed that UAM achieved the best performance com-
pared to all baselines. Other observations are as follows: No-
tably, we observe that all models exhibit suboptimal predic-
tive performance on this dataset, with R2 consistently below
0.5. This phenomenon stems from the inherent complexity
of the ACR dataset and the presence of numerous incongru-
ous reaction yields. On the contrary, our UAM results sig-
nificantly surpass those of the baseline models in terms of
three key metrics: R2, mean absolute error (MAE), and root
mean squared error (RMSE). In comparison to the baseline
model, our approach has achieved an improvement of nearly
25% in terms of R2 performance. This underscores the sub-
stantial efficacy of our model’s enhancements in addressing
uncertainty in real-world datasets. It is indeed the uncer-
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Model MAE ↓ RMSE ↓ R2 ↑
One-hot 6.08 ± 0.08 9.02 ± 0.16 0.890 ± 0.005
YieldBert 3.09± 0.12 4.80± 0.26 0.969± 0.004
YiledGNN 3.89 ± 0.14 6.01 ± 0.21 0.953 ± 0.003
MPNN 2.92± 0.06 4.43± 0.09 0.974± 0.001

Ours 2.89 ± 0.06 4.36 ± 0.10 0.976 ± 0.001

Table 3: Results on the Buchwald–Hartwig reactions dataset.

Model MAE ↓ RMSE ↓ R2 ↑
One-hot 8.55 ± 0.08 12.27 ± 0.15 0.809 ± 0.023
YieldBert 6.60± 0.27 10.52± 0.48 0.859± 0.012
YiledGNN 6.96 ± 0.25 11.00 ± 0.37 0.845 ± 0.011
MPNN 6.12± 0.22 9.47± 0.46 0.886± 0.010

Ours 6.04 ± 0.18 9.23 ± 0.40 0.888 ± 0.009

Table 4: Results on the Suzuki–Miyaura reactions dataset.

tainty within the dataset that hinders the accurate predictions
of baselines. Furthermore, UAM not only demonstrates the
highest predictive accuracy but also exhibits smaller stan-
dard deviations, showcasing the model’s stability. We can
also find that YieldGNN outperforms MPNN on the ACR
dataset. This can be attributed to YieldGNN’s incorporation
of human-defined features, enabling more accurate predic-
tions than MPNN. However, YieldBert and MPNN, which
solely utilize sequence or graph structural information, yield
less favorable results. And our model not only leverages in-
formation from three modalities but also employs enhanced
feature extractors, resulting in superior performance on the
large-scale real-world dataset.

Results on Two HTE Datasets
The performance of UAM and baseline models on the two
HTE datasets are reported in Table 3 and 4. The results of
the baseline models are reported from (Kwon et al. 2022).
One can observe that most of the models have achieved R2

values exceeding 0.95 or 0.85 on these two datasets. This
can be attributed to the relatively homogeneous reaction
types within the HTE datasets, rendering the intrinsic fea-
tures of reactions easier to extract. Building upon this foun-
dation, our model has achieved noticeable enhancements,
affirming the superiority of our model’s encoders. Further-
more, while YieldGNN, MPNN, and our model all incorpo-
rate GNN modules, YieldGNN’s performance lags slightly
behind. This discrepancy arises due to the adoption of the
encoder-decoder pooling architecture in both our model and
MPNN, which inherently outperforms the graph convolution
utilized in YieldGNN.

Notably, one can observe that our model’s performance
improvement on the ACR dataset surpasses that on the HTE
dataset by a significant margin. This phenomenon can be at-
tributed to the characteristic of the HTE dataset, which con-
sists of reactions carefully curated by chemists, resulting in
a relatively straightforward linkage between yields and re-
actions. Consequently, nearly all baseline models achieve

100 200
Training Set Size

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

R
2

Ours
Ours-LP
MPNN
YieldBert

Figure 3: Label efficient learning performance on the Buch-
wald–Hartwig reactions dataset.

R2 values above 0.95 or 0.85. In contrast, the ACR dataset
represents a large-scale real-world dataset, as we mentioned
earlier, and the inherent uncertainty within the dataset poses
challenges for baseline models to make accurate predic-
tions. The model design of the UAM effectively addresses
these challenges, leading to substantial performance en-
hancements.

Performance of Label Efficient Learning
We conducted further analysis of the model’s performance
within the context of Label Efficient Learning. Here, we
additionally implemented a variant of our model with Lin-
ear Probe (Ours-LP). In this setting, the parameters of both
the graph encoder and the SMILES encoder are held con-
stant, while the human-defined feature encoder is omitted
from the configuration. Training is exclusively conducted for
the regressor component of the model. The results in Figure
3 show that our models demonstrate superior performance
compared to the baseline models when trained on a limited
number of samples (2.5% and 5% of the original training
set). Particularly, Ours-LP attains optimal performance. This
achievement can be attributed to the benefits of contrastive
learning pretraining, which effectively captures the shared
and complementary information among different modalities.
This underscores the substantial potential of our model in
scenarios where limited literature-recorded data are avail-
able for specific reaction categories.

Ablation Studies
In this section, we study the influence of different compo-
nents in our model, including the uncertainty quantification
loss function Lu, the regularized dropout loss Lr, features
from the three modalities, and the MoE module. We report
the main results in Table 5.

Impact of the Uncertainty Quantification Loss Lu To
study the impact of the uncertainty quantification loss Lu,
we switched the loss function back to the normal L2 loss.
The experimental results demonstrated a noticeable decrease
in accuracy. This highlights the crucial role of uncertainty
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Model MAE ↓ RMSE ↓ R2 ↑
Ours 14.76 ± 0.15 19.33 ± 0.10 0.262 ± 0.009

w/o UQ 15.08 ± 0.13 19.63 ± 0.09 0.249 ± 0.009
w/o Lr 14.80 ± 0.16 19.51 ± 0.10 0.261 ± 0.010
w/o MoE 15.12 ± 0.18 20.03 ± 0.13 0.230 ± 0.012

w/o Seq. 14.97 ± 0.16 19.55 ± 0.11 0.261 ± 0.010
w/o Graph 15.06 ± 0.15 19.59 ± 0.10 0.260 ± 0.009
w/o H. 15.83 ± 0.20 20.46 ± 0.18 0.212 ± 0.016

Table 5: Results of ablation study on the ACR dataset. UQ
represents the Uncertainty Quantification, Lr is the regular-
ized dropout loss, Seq represents the SMILES sequence, H.
denotes the human-defined features, and w/o stands for the
ablated model variant without a specific design element.

assessment in real-world datasets. Meanwhile, there was no
significant difference in the standard deviations of the re-
sults when changing the loss functions. This suggests that
the uncertainty quantification does not adversely affect the
robustness of the model.

Impact of the Regularized Dropout Loss Lr We con-
ducted ablation experiments regarding the regularized
dropout loss Lr, for evaluating its effectiveness on mitigat-
ing the model’s intrinsic uncertainty. The results without Lr

indicate that the model’s training-time uncertainty does in-
deed impact its performance to a certain extent.

Impact of Mixture-of-Experts Another key design of
UAM is to introduce Mixture-of-Experts layers. The MoE
module allocates reactions to specific experts, enabling each
FFN to handle particular reaction types. In the ablation
study, we substituted the MoE module with an equally lay-
ered FFN. From Table 5, we observe that the model with-
out MoE exhibited a performance decrease of approximately
10%. This highlights the effectiveness of MoE on extracting
and compressing human-defined features compared to FFN.

To gain a deeper insight into the expert selection process,
we have visualized the distribution of expert selections in
both the first and second MoE layers during the testing phase
of experiments on the ACR dataset, as shown in Fig. 4. On
the left side of the figure, it is evident that in the first layer,
each expert is assigned a varying number of reactions. In
contrast, the distribution of expert selections in the second
layer is considerably more balanced compared to the first.
This allocation in the MoE layers significantly boosts the
model’s ability to expressively handle high-dimensional yet
low-rank molecular descriptors and reaction condition infor-
mation for predictive analysis. Moreover, this data allocation
partitions the overall dataset uncertainty into submodules,
leading to heightened prediction stability.

Impact of Multi-Modal Features We also investigated
the importance of multi-modal features for prediction. From
the results in Table 5, it can be observed that both se-
quence and graph representations have an impact on yield
prediction but are not significant. In comparison, human-
defined features play a vital role in the prediction outcome.

Figure 4: The distribution of expert selection in the first (left)
and second (right) MoE layer.

This phenomenon can be attributed to two reasons: firstly,
the human-defined features include molecular descriptors
like fingerprints, which cover partial sequence and graph
structural information. Secondly, by incorporating the rich
reaction context such as temperature, time, reagents, and
conditions, these features provide a crucial supplement for
yield prediction. Additionally, removing sequence and graph
data has a limited impact on model performance, validating
the partial redundancy in the information contained within
SMILES and graph representations. It is worth mentioning
that while the contribution of each modality varies with spe-
cific datasets, it is evident that the integration of multi-modal
features positively enhances prediction performance.

Conclusion and Broader Impact
In this paper, we address the uncertainty inherent in predict-
ing yields within real-world chemical reaction datasets. We
introduce an uncertainty-aware multi-modal yield prediction
model that synthesizes multi-modal molecular representa-
tion and incorporates a dedicated uncertainty quantification
loss, thereby elevating predictive accuracy. Our experimen-
tal results reveal notable performance enhancements rela-
tive to existing yield prediction models. While our model
has achieved significant improvement over baselines on the
ACR dataset, there is still room for further enhancement. A
promising direction could be the incorporation of additional
modality, particularly those designed to handle 3D graph
data (Schütt et al. 2017; Liu et al. 2021, 2022). This integra-
tion could potentially increase the model’s performance by
providing a more comprehensive understanding of molecu-
lar structures. As our model consists of multiple integrated
modules, another future work will delve into the relation-
ships between these components with the aim of refining
model interpretability.
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