
An Approximate Skolem Function Counter*

Arijit Shaw1,2, Brendan Juba3, Kuldeep S. Meel4

1 Chennai Mathematical Institute, India
2 IAI, TCG-CREST, Kolkata, India

3 Washington University in St. Louis, USA
4 University of Toronto, Canada

Abstract

One approach to probabilistic inference involves counting
the number of models of a given Boolean formula. Here, we
are interested in inferences involving higher-order objects,
i.e., functions. We study the following task: Given a Boolean
specification between a set of inputs and outputs, count the
number of functions of inputs such that the specification is
met. Such functions are called Skolem functions.
We are motivated by the recent development of scalable ap-
proaches to Boolean function synthesis. This stands in rela-
tion to our problem analogously to the relationship between
Boolean satisfiability and the model counting problem. Yet,
counting Skolem functions poses considerable new challenges.
From the complexity-theoretic standpoint, counting Skolem
functions is not only #P -hard; it is quite unlikely to have
an FPRAS (Fully Polynomial Randomized Approximation
Scheme) as the problem of synthesizing a Skolem function
remains challenging, even given access to an NP oracle.
The primary contribution of this work is the first algorithm,
SkolemFC, that computes an estimate of the number of
Skolem functions. SkolemFC relies on technical connections
between counting functions and propositional model counting:
our algorithm makes a linear number of calls to an approxi-
mate model counter and computes an estimate of the number
of Skolem functions with theoretical guarantees. Moreover, we
show that Skolem function count can be approximated through
a polynomial number of calls to a SAT oracle. Our prototype
displays impressive scalability, handling benchmarks compa-
rably to state-of-the-art Skolem function synthesis engines,
even though counting all such functions ostensibly poses a
greater challenge than synthesizing a single function.

1 Introduction
Probabilistic inference problems arise throughout AI and are
tackled algorithmically by casting them as problems such
as model counting (Gomes, Sabharwal, and Selman 2021;
Chakraborty, Meel, and Vardi 2021). In this work, we are
interested in approaching inference questions for higher-order
objects, specifically Skolem functions: that is, we wish to
compute the number of possible Skolem functions for a given
specification F (X,Y). Counting Skolem functions is the

*The full version of the paper: https://arxiv.org/abs/2312.12026
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

natural analog of #SAT for Skolem functions, yet to our
knowledge, it has not been previously studied.

More precisely, recall that given two sets X =
{x1, . . . , xn} and Y = {y1, . . . , ym} of variables and a
Boolean formula F (X,Y) over X ∪ Y , the problem of
Boolean functional synthesis is to compute a vector Ψ =
⟨ψ1, . . . , ψm⟩ of Boolean functions ψi, often called Skolem
functions, such that ∃Y F (X,Y) ≡ F (X,Ψ(X)). Infor-
mally, given a specification between inputs and outputs, the
task is to synthesize a function vector Ψ that maps each as-
signment of the inputs to an assignment of the outputs so that
the combined assignment meets the specification (whenever
such an assignment exists). Skolem synthesis is a fundamen-
tal problem in formal methods and has been investigated by
theoreticians and practitioners alike over the past few decades.
The past few years have witnessed the development of tech-
niques that showcase the promise of scalability in their ability
to handle challenging specifications (Jiang, Lin, and Hung
2009; Tabajara and Vardi 2017; Rabe et al. 2018; Akshay
et al. 2019; Golia et al. 2021).

The scalability of today’s Skolem synthesis engines is
reminiscent of the scalability of SAT solvers in the early
2000s. Motivated by the scalability of SAT solvers (Froleyks
et al. 2021), researchers sought algorithmic frameworks for
problems beyond satisfiability, such as MaxSAT (Ansótegui,
Bonet, and Levy 2013; Li and Manya 2021), model count-
ing (Gomes, Sabharwal, and Selman 2021; Chakraborty,
Meel, and Vardi 2021), sampling (Chakraborty, Meel, and
Vardi 2014), and the like. The development of scalable tech-
niques for these problems also helped usher in new applica-
tions, even though the initial investigation had not envisioned
many of them. In a similar vein, motivated in part by this
development of scalable techniques for functional synthesis,
we investigate the Skolem counting problem. We observe in
Section 1.2 that algorithms for such tasks also have potential
applications in security and the engineering of specifications.
Being a natural problem, we will see that our study also natu-
rally leads to deep technical connections between counting
functions and counting propositional models and the devel-
opment of new techniques, which is of independent interest.

Counting Skolem functions indeed raises new technical
challenges. The existing techniques developed in the context
of propositional model counting either construct (implicitly
or explicitly) a representation of the space of all models (Thur-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8108

ley 2006; Dudek, Phan, and Vardi 2020; Sharma et al. 2019)
or at least enumerate a small number of models (Chakraborty,
Meel, and Vardi 2013, 2016; Soos and Meel 2019; Yang
and Meel 2023), which in practice amounts to a few tens
to hundreds of models of formulas constrained by random
XORs. Such approaches are unlikely to work in the context
of Skolem function counting, where even finding one Skolem
function is hard, and there are no techniques that enable the
enumeration of Skolem functions.

1.1 Technical Contribution
The primary contribution of this work is the development
of a novel algorithmic framework, called SkolemFC, that
approximates the Skolem function count with a theoretical
guarantee, using only linearly many calls to an approximate
model counter and almost-uniform sampler. First, we ob-
serve that Skolem function counting can be reduced to an
exponential number of model counting calls, serving as a
baseline Skolem function counter. The core technical idea of
SkolemFC is to reduce the problem of approximate Skolem
function counting to only linearly many (in m = |Y |) calls
to propositional model counters. Of particular note is the
observation that SkolemFC can provide an approximation to
the number of Skolem functions without enumerating even
one Skolem function. As approximate model counting and
almost-uniform sampling can be done by logarithmically
many calls to SAT oracle, we show that Skolem function
counting can also be reduced to polynomially many calls to a
SAT oracle.

To measure the impact of the algorithm, we implement
SkolemFC and demonstrate its potential over a set of bench-
marks arising from prior studies in the context of Skolem
function synthesis. Out of 609 instances, SkolemFC could
solve 375 instances, while a baseline solver could solve only
eight instances. For context, the state-of-the-art Skolem func-
tion synthesis tool Manthan2 (Golia et al. 2021) effectively
tackled 509 instances from these benchmarks, while its pre-
cursor, Manthan (Golia, Roy, and Meel 2020), managed only
356 instances with a timeout of 7200 seconds.

1.2 Applications
This problem arises in several potential application areas.

Specification engineering. The first and primary motiva-
tion stems from the observation that specification synthe-
sis (Albarghouthi, Dillig, and Gurfinkel 2016; Prabhu et al.
2021) (i.e., the process of constructing F (X,Y)) and func-
tion synthesis form part of the iterative process wherein one
iteratively modifies specifications based on the functions that
are constructed by the underlying engine. In this context,
one helpful measure is to determine the number of possible
semantically different functions that satisfy the specification,
as often a large number of possible Skolem functions indi-
cates the vagueness of specifications and highlights the need
for strengthening the specification. Note that the use of the
count is qualitative here, and hence an approximate order of
magnitude (log count) suffices.

Diversity at the specification level. In system security and
reliability, a classic technique is to generate and use a diverse

variety of functionally equivalent implementations of com-
ponents (Baudry and Monperrus 2015). Although classically,
this is achieved by transformations of the code that preserve
the function computed, we may also be interested in produc-
ing a variety of functions that satisfy a common specification.
Unlike transformations on the code, it is not immediately
clear whether a specification even admits a diverse collection
of functions – indeed, the function may be uniquely defined.
Thus, counting the number of such functions is necessary to
assess the potential value of taking this approach, and again
a rough order of magnitude estimate suffices. Approximate
counting of the functions may also be a useful primitive for
realizing such an approach.

Uninterpreted functions in SMT. A major challenge in
the design of counting techniques for SMT (Chistikov, Dim-
itrova, and Majumdar 2015; Chakraborty et al. 2016) lies in
handling uninterpreted functions (Kroening and Strichman
2016). Since Skolem functions capture a restricted but large
enough class of uninterpreted functions (namely, the case
where a given uninterpreted function is allowed to depend
on all X variables), progress in Skolem function counting is
needed if we hope to make progress on the general problem
of counting of uninterpreted functions in SMT.

Evaluation of a random Skolem function. Although syn-
thesis of Skolem functions remains challenging in general, we
note that approximate counting enables a kind of incremen-
tal evaluation by using the standard techniques for reducing
sampling to counting. More concretely, given a query input,
we can estimate the number of functions that produce each
output: this is trivial if the range is small (e.g., Boolean),
and otherwise, we can introduce random XOR constraints to
incrementally specify the output. Once an output is specified
for the query point, we may retain these constraints when
estimating the number of consistent functions for subsequent
queries, thereby obtaining an approximately uniform function
conditioned on the answers to the previous queries.

1.3 Organization
The rest of the paper is organized as follows: we discuss
related work in Section 2 and present notation and prelim-
inaries in Section 3. We then present the primary technical
contribution of our work in Section 4. We present the empiri-
cal analysis of the prototype implementation of SkolemFC in
Section 5. We finally conclude in Section 6.

2 Related Work
Despite the lack of prior studies focused on the specific prob-
lem of counting Skolem functions, significant progress has
been made in synthesizing these functions. Numerous lines
of research have emerged in the field of Skolem function
synthesis. The first, incremental determinization, iteratively
pinpoints variables with distinctive Skolem functions, mak-
ing decisions on any remaining variables by adding provi-
sional clauses that render them deterministic (Rabe 2019;
Rabe and Seshia 2016; Rabe et al. 2018). The second line
of research involves obtaining Skolem functions by eliminat-
ing quantifiers using functional composition and reducing

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8109

the size of composite functions through the application of
Craig interpolation (Jiang, Lin, and Hung 2009; Jiang 2009).
The third, CEGAR-style approaches, commence with an ini-
tial set of approximate Skolem functions, and proceed to
a phase of counter-example guided refinement to improve
upon these candidate functions (John et al. 2015; Akshay
et al. 2017, 2018). Work on the representation of specifica-
tion F (X,Y) has led to efficient synthesis using ROBDD
representation and functional composition (Balabanov and
Jiang 2011), with extensions to factored specifications (Taba-
jara and Vardi 2017; Chakraborty et al. 2018). Notable ad-
vancements include the new negation normal form, SynNNF,
amenable to functional synthesis (Akshay et al. 2019). Fi-
nally, a data-driven method has arisen (Golia, Roy, and Meel
2020; Golia et al. 2021), relying on constrained sampling to
generate satisfying assignments for a formula F .

A related problem in the descriptive complexity of func-
tions definable by counting the Skolem functions for fixed
formulas have been shown to characterize #AC0 (Haak and
Vollmer 2019). By contrast, we are interested in the prob-
lem where the formula is the input. Our algorithm also bears
similarity to the FPRAS proposed for the descriptive com-
plexity class #Σ1 (Durand et al. 2021), which is obtained
by an FPRAS for counting the number of functions satisfy-
ing a DNF over atomic formulas specifying that the func-
tions must/must not take specific values at specific points.
Nevertheless, our problem is fundamentally different in that
it is easy to find functions satisfying such DNFs, whereas
synthesis of Skolem functions is unlikely to be possible in
polynomial time.

The specifications for the functions are often expressed
in terms of quantified Boolean formulas (QBFs). Another
quantitative question on QBFs is AllQBF (Becker et al. 2012),
finding all assignments of the free variables of a given QBF
such that the formula evaluates to true. CountingQBF (Shukla
et al. 2022) poses a similar query within a quantitative aspect.
However, their relevance to counting functions isn’t clear.

3 Notation and Preliminaries
We use lowercase letters (with subscripts) to denote propo-
sitional variables and uppercase letters to denote a subset of
variables. The formula ∃Y F (X,Y) is existentially quanti-
fied in Y , where X = {x1, . . . , xn} and Y = {y1, . . . , ym}.
By n and m we denote the number of X and Y variables
in the formula. Therefore, n = |X|,m = |Y |. For simplic-
ity, we write a formula F (X,Y) as F if the X,Y is clear
from the context. A model is an assignment (true or false)
to all the variables in F , such that F evaluates to true. Let
Sol(F)↓S denote the set of models of formula F projected
on S ⊆ X ∪ Y . If S = X ∪ Y , we write the set as Sol(F).
Let σ be a partial assignment for the variables X of F . Then
Sol(F ∧ (X = σ)) denotes the models of F where X = σ.

NP Oracles and SAT oracles. Given a Boolean formula
F , an NP oracle determines the satisfiability of the formula.
A SAT solver is a practical tool solving the problem of satis-
fiability. Following definition of Delannoy and Meel (2022),
a SAT oracle takes in a formula F and returns a satisfying

assignment σ if F is satisfiable and⊥ otherwise. The SAT or-
acle model captures the behavior of the modern SAT solvers.

Propositional Model Counting. Given a formula F and
a projection set S, the problem of model counting is
to compute |Sol(F)↓S |. An approximate model counter
takes in a formula F , projection set S, tolerance param-
eter ε, and confidence parameter δ, and returns c such
that Pr

[
|Sol(F)↓S |

1+ε ≤ c ≤ (1 + ε)|Sol(F)↓S |
]
≥ 1 − δ. It

is known that log(n) calls to a SAT oracle are neces-
sary (Chakraborty et al. 2023) and sufficient (Chakraborty,
Meel, and Vardi 2016) to achieve (ε, δ) guarantees for approx-
imately counting the models of a formula with n variables.

Propositional Sampling. Given a Boolean formula F and
a projection set S, a sampler is a probabilistic algorithm
that generates a random element in Sol(F)↓S . An almost
uniform sampler G takes a tolerance parameter ε along with
F and S, and guarantees ∀y ∈ Sol(F)↓S ,

1
(1+ε)|Sol(F)↓S | ≤

Pr[G(F, S, ε) = y] ≤ (1+ε)
|Sol(F)↓S | . Delannoy and Meel (2022)

showed, log(n) many calls to a SAT oracle suffices to gener-
ate almost uniform samples from a formula with n variables.

Skolem Functions. Given a Boolean specification
F (X,Y) between set of inputs X = {x1, . . . , xn} and
vector of outputs Y = ⟨y1, . . . , ym⟩, a function vector
Ψ(X) = ⟨ψ1(X), ψ2(X), . . . , ψm(X)⟩ is a Skolem func-
tion vector if yi ↔ ψi(X) and ∃Y F (X,Y) ≡ F (X,Ψ).
We refer to Ψ as the Skolem function vector and Ψi as the
Skolem function for yi. We’ll use the notation Skolem(F, Y)
to denote the set of possible Ψ(X) satisfying the condition
∃Y F (X,Y) ≡ F (X,Ψ(X)). Two Skolem function vectors
Ψ1 and Ψ2 are different, if there exists an assignment
σ ∈ Sol(F)↓X for which Ψ1(σ) ̸= Ψ2(σ).

For a specification ∃Y F (X,Y), the number of Skolem
functions itself can be as large as 2n·2

m

, and the values of n
and m are quite large in many practical cases. Beyond being
a theoretical possibility, the count of Skolem functions is
often quite big, and such values are sometimes difficult to
manipulate and store as 64-bit values. Therefore, we are inter-
ested in the logarithm of the counts, and define the problem
of approximate Skolem function counting as following:

Problem Statement. Given a Boolean specification
F (X,Y), tolerance parameter ε, confidence parameter δ, let
ℓ = log(|Skolem(F, Y)|), the task of approximate Skolem
function counting is to give an estimate Est, such that
Pr [(1− ε)ℓ ≤ Est ≤ (1 + ε)ℓ] ≥ 1− δ.

In practical scenarios, the input specification is often given
as a quantified Boolean formula (QBF). The output of the
synthesis problem is a function, which is expressed as a
Boolean circuit. In our setting, even if two functions have
different circuits, if they have identical input-output behavior,
we consider them to be the same function. For example, let
f1(x) = x and f2 = ¬(¬x). We’ll consider f1 and f2 to be
the same function.

Illustrative Example. Let’s examine a formula defined
on three sets of variables X,Y0, Y1, where each set con-
tains five Boolean variables, interpreted as five-bit integers:

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8110

Algorithm 1: Stopping Rule (ε, δ)

1: t← 0, x← 0, s← 4 ln(2/δ)(1 + ε)/ε2

2: while x < s do
3: t← t+ 1
4: Generate Random Variable Zt

5: x← x+ Zt

6: Est← s/t
7: return Est

∃Y0Y1F (X,Y0Y1), where F represents the constraint for fac-
torization, X = Y0 × Y1, Y0 ≤ Y1, Y0 ̸= 1. The number of
Skolem functions of F gives the number of distinct ways to
implement a factorization function for 5-bit input numbers.
There exist multiple X’s for which there are multiple factor-
izations: A Skolem function S1 may factorize 12 as 4 × 3
and a function S2 may factorize 12 as 2× 6.

Stopping Rule Algorithm. Let Z1, Z2, . . . denote inde-
pendently and identically distributed (i.i.d.) random variables
taking values in the interval [0, 1] and with mean µ. Intu-
itively, Zt is the outcome of experiment t. Then the Stopping
Rule algorithm (Algorithm 1) approximates µ as stated by
Theorem 3.1 (Dagum et al. 1995; Dagum and Luby 1997).

Theorem 3.1 (Stopping Rule Theorem). For all 0 < ε ≤
2, δ > 0, if the Stopping Rule algorithm returns Est, then
Pr[µ(1− ε) ≤ Est ≤ µ(1 + ε)] > (1− δ).

FPRAS. A Fully Polynomial Randomized Approximation
Scheme (FPRAS) is a randomized algorithm that, for any
fixed ε > 0 and any fixed probability δ > 0, produces an
answer that is within a factor of (1+ ε) of the correct answer,
and does so with probability at least (1− δ), in polynomial
time with respect to the size of the input, 1/ε, and log(1/δ).

4 Algorithm
In this section, we introduce the primary contribution
of our paper: the SkolemFC algorithm. The algorithm
takes in a formula F (X,Y) and returns an estimate for
log(|Skolem(F, Y)|). We first outline the key technical ideas
that inform the design of SkolemFC and then present the
pseudocode for implementing this algorithm.

4.1 Core Ideas

Since finding even a single Skolem function is computa-
tionally expensive, our approach is to estimate the count of
Skolem functions without enumerating even a small num-
ber of Skolem functions. The key idea is to observe that the
number of Skolem functions can be expressed as a prod-
uct of the model counts of formulas. A Skolem function
Ψ ∈ Skolem(F, Y) is a function from 2X to 2Y . A useful
quantity in the context of counting Skolem functions is to
define, for every assignment σ ∈ 2X , the set of elements
in 2Y that Ψ(X) can belong to. We refer to this quantity as
range(σ) and formally define it as follows:

Algorithm 2: SkolemFC(F (X,Y), ε, δ)

1: εf ← 0.6ε, δf ← 0.4δ, s← 4 ln(2/δf)(1 + εf)/εf
2

2: εs ← 0.2ε, δc = 0.4δ/ms, εc ← 4
√
2− 1

3: εg = 0.1ε, δg = 0.1δ
4: G(X,Y, Y ′) := F (X,Y) ∧ F (X,Y ′) ∧ (Y ̸= Y ′)
5: while x < s do
6: σ ← AlmostUniformSample(G,X, εs)
7: c← log(ApproxCount(F ∧ (X = σ), εc, δc))/m
8: x← x+ c
9: t← t+ 1

10: g ← ApproxCount(G,X, εg, δg)
11: Est← s/t×m× g
12: if (g log(1 + εc) > 0.1Est) then return ⊥
13: return Est

Definition 4.1.

range(σ) =

{
Sol(F ∧ (X = σ))↓Y |Sol(F ∧ (X = σ))| > 0

1 otherwise

Lemma 4.2. |Skolem(F, Y)| = ∏
σ∈2X

|range(σ)|

Proof. First of all, we observe that

∀σ ∈ 2X , ∀π ∈ range(σ), ∃Ψ s.t. Ψ(σ) = π

which is easy to see for all σ ∈ 2X for which there ex-
ists π ∈ 2Y such that F (σ, π) = 1. As for σ ∈ 2X

for which there is no π such that F (σ, π) = 1, Skolem
functions that differ solely on inputs σ /∈ Sol(F)↓X are
regarded as identical. Consequently, such inputs have no
impact on the count of distinct Skolem functions, result-
ing in range(σ) = 1 for these cases. Recall, Skolem(F, Y)
is the set of all functions from 2X to 2Y . It follows that
|Skolem(F, Y)| = ∏

σ∈2X
|range(σ)|.

Lemma 4.2 allows us to develop a connection between
Skolem function counting and propositional model counting.
As stated in the problem statement, we focus on estimating
log |Skolem(F, Y)|. To formalize our approach, we need to
introduce the following notation:

Proposition 4.3.

log |Skolem(F, Y)| =
∑
σ∈S2

log |Sol(F ∧ (X = σ))|

where, S2 := {σ ∈ 2X | |Sol(F ∧ (X = σ))| ≥ 2}

Proof. From Lemma 4.2, we have |Skolem(F, Y)| =∏
σ∈2X

|range(σ)|. Taking logs on both sides, partitioning 2X

into S2 and 2X\S2, and observing that log |range(σ)| = 0
for σ /∈ S2, we get the desired result.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8111

4.2 Algorithm Description
The pseudocode for SkolemFC is delineated in Algorithm 2.
It accepts a formula ∃Y F (X,Y), a tolerance level ε, and
a confidence parameter δ. The algorithm SkolemFC then
provides an approximation of log |Skolem(F, Y)| following
Proposition 4.3. To begin, SkolemFC almost-uniformly sam-
ples σ from S2 at random in line 6, utilizing an almost-
uniform sampler. Subsequently, SkolemFC approximates
|Sol(F ∧ (X = σ))| through an approximate model counter
at line 7. The estimate Est is computed by taking the prod-
uct of the mean of c’s and |S2|. In order to sample σ ∈ S2,
SkolemFC constructs the formula G whose solutions, when
projected to X represent all the assignments σ ∈ S2 (line 4).
Finally, SkolemFC returns the estimate Est as logarithm of
the Skolem function count.

The main loop of SkolemFC (from lines 5 to 9) is based
on the Stopping Rule algorithm presented in Section 2. The
Stopping Rule algorithm is utilized to approximate the mean
of a collection of i.i.d. random variables that fall within
the range [0, 1]. The method repeatedly adds the outcomes
of these variables until the cumulative value reaches a set
threshold s. This threshold value is influenced by the in-
put parameters ε and δ. The result yielded by the algorithm
is represented as s/t, where t denotes the number of ran-
dom variables aggregated to achieve the threshold s. In the
context of SkolemFC, this random variable is defined as
log(ApproxCount(F ∧ (X = σ), εc, δc))/m. Line 12 asserts
that the error introduced by the approximate model counting
oracle is within some specific bound.

Oracle Access. We assume access to approximate model
counters and almost-uniform samplers as oracles. The no-
tation ApproxCount(F, P, ε, δ) represents an invocation of
the approximate model counting oracle on Boolean formula
F with a projection set P , tolerance parameter ε, and confi-
dence parameter δ. AlmostUniformSample(F, S, ε) denotes
an invocation of the almost uniform sampler on a formula F ,
with projection set S and tolerance parameter ε. The particu-
lar choice of values of εs, εc, δc, εg , δg used in the counting
and sampling oracle aids the theoretical guarantees.

4.3 Illustrative Example
We will now examine the specification of factorization as out-
lined in Section 3, and investigate how SkolemFC estimates
the count of Skolem functions meeting that specification.

1. In line 4, SkolemFC constructsG such that |Sol(G)↓X | =
7, Sol(G)↓X = {12, 16, 18, 20, 24, 28, 30}.

2. In line 6, it samples σ from Sol(G)↓X . Let’s con-
sider σ = 30. Then Sol(F ∧ (X = σ))↓Y0,Y1

=
{(2, 15), (3, 10), (5, 6)}. Therefore, c = log(3) in line 7.

3. Suppose in the next iteration it samples σ = 16. Then
Sol(F ∧ (X = σ)) = {(2, 8), (4, 4)}. Therefore, c =
log(2) in line 7.

4. Now suppose that the termination condition of line 5 is
reached. At this point, the estimate Est returned from
line 11 will be ≈ (log(3)+log(2))

2 × 7 ≈ 6.

5. Finally, SkolemFC will return the value Est= 6.

Note that the approach is in stark contrast to the state-of-
the-art counting techniques in the context of propositional
models, which either construct a compact representation of
the entire solution space or rely on the enumeration of a small
number of models.

4.4 Analysis of SkolemFC
Let F (X,Y) be a propositional CNF formula over variables
X and Y . In the section we’ll show that SkolemFC works as
an approximate counter for the number of Skolem functions.
We create a formula G(X,Y, Y ′) = F (X,Y)∧F (X,Y ′)∧
(Y ̸= Y ′) from F (X,Y), where Y ′ is a fresh set of variables
and m = |Y ′|. We show that, if we pick a solution from
G(X,Y, Y ′) = F (X,Y) ∧ F (X,Y ′) ∧ (Y ̸= Y ′), then the
assignment to X in that solution to G will have at least two
solutions in F (X,Y).
Lemma 4.4.
Sol(G)↓X =

{
σ | σ ∈ 2X ∧ |Sol(F ∧ (X = σ))| ≥ 2

}
Proof. We can write the statement alternatively as,

σ ∈ Sol(G,X) ⇐⇒ |Sol(F ∧ (X = σ))| ≥ 2

(=⇒) For every element σ ∈ Sol(G), we write σ as
⟨σ↓X , σ↓Y , σ↓Y ′⟩. Now according to the definition ofG, both
⟨σ↓X , σ↓Y ⟩ and ⟨σ↓X , σ↓Y ′⟩ satisfy F . Moreover, σ↓Y and
σ↓Y ′ are not equal. Therefore, |Sol(F ∧ (X = σ))| ≥ 2.

(⇐=) If |Sol(F ∧ (X = σ))| ≥ 2, then F (X,Y) has
solutions of the form ⟨σ, γ1⟩ and ⟨σ, γ2⟩, where γ1 ̸= γ2.
Now ⟨σγ1γ2⟩ satisfies G.

Theorem 4.5. SkolemFC takes in input F (X,Y), ε > 0,
and δ ∈ (0, 1], and returns Est such that

Pr [(1− ε)ℓ ≤ Est ≤ (1 + ε)ℓ] ≥ 1− δ
where, ℓ = log(|Skolem(F, Y)|). Furthermore, it makes
Õ
(
m
ε2 ln

2
δ

)
many calls to a SAT oracle, where Õ hides poly-

log factors in parameters m,n, ε, δ.
We defer the proof to the full version due to space constraints.

5 Experiments
We conducted a thorough evaluation of the performance and
accuracy of results of the SkolemFC algorithm by implement-
ing a functional prototype1 in C++. The following experimen-
tal setup was used to evaluate the performance and quality of
results of the SkolemFC algorithm2.

Baseline. A possible approach to count Skolem functions,
following Lemma 4.2, is given in Algorithm 3. The Count(F)
oracle denotes an invocation of exact model counter. We im-
plemented that to compare with SkolemFC. In the implemen-
tation, we relied on the latest version of Ganak (Sharma et al.
2019) to get the necessary exact model counts. We use a mod-
ified version of the SAT solver CryptoMiniSat (Soos, Nohl,
and Castelluccia 2009) as AllSAT solver to find all solutions
of a given formula, projected on X variables. We call this
implementation Baseline in the following part of the paper.

1Source code: https://github.com/meelgroup/skolemfc/
2All benchmarks and experimental data are available at

https://doi.org/10.5281/zenodo.10404174

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8112

Algorithm 3: Baseline(F (X,Y))

1: Est← 0
2: G(X,Y, Y ′) := F (X,Y) ∧ F (X,Y ′) ∧ (Y ̸= Y ′)
3: SolG← AllSAT(G,X)
4: for each σ ∈ SolG do
5: c← log(Count(F ∧ (X = σ)))
6: Est← Est+ c
7: return Est

Environment. All experiments were carried out on a clus-
ter of nodes consisting of AMD EPYC 7713 CPUs running
with 2x64 real cores. All tools were run in a single-threaded
mode on a single core with a timeout of 10 hrs, i.e., 36000
seconds. A memory limit was set to 32 GB per core.

Parameters for Oracles and Implementation. In the im-
plementation, we utilized different state-of-the-art tools as
counting and sampling oracles, including UniSamp (Delan-
noy and Meel 2022) as an almost uniform sampling oracle,
and the latest version of ApproxMC (Yang and Meel 2023) as
an approximate counting oracle. SkolemFC was tested with
ε = 0.8 and δ = 0.4. That gave the following values to error
and tolerance parameters for model counting and sampling
oracles. The almost uniform sampling oracle UniSamp is
run with εs = 0.16. The approximate model counting ora-
cle ApproxMC in line 7 was run with εc = 4

√
2 − 1 and

δc =
0.32
m·s , where s comes from the algorithm, based on input

(ε, δ) andm is number of output variables in the specification.
We carefully select error and tolerance values εs, εc, δc for
counting and sampling oracles to ensure the validity of final
bounds for SkolemFC while also aiming for optimal perfor-
mance of the counter based on these choices. The relationship
between these values and the validity of bound of SkolemFC
is illustrated in the proof of Theorem 4.5.

In our experiments, we sought to evaluate the run-time per-
formance and approximation accuracy of SkolemFC. Specifi-
cally, the following questions guided our investigation:

RQ1. How does SkolemFC scale in terms of solving in-
stances and the time taken in our benchmark set?

RQ2. What is the precision of the SkolemFC approximation,
and does it outperform its theoretical accuracy guaran-
tees in practical scenarios?

Benchmarks. To evaluate the performance of SkolemFC,
we chose two sets of benchmarks.

1. Efficiency benchmarks. 609 instances from recent works
on Boolean function synthesis (Golia, Roy, and Meel
2020; Akshay et al. 2017), which includes different
sources: the Prenex-2QBF track of QBF Evaluation
2017 and 2018, disjunctive (Akshay et al. 2017), arith-
metic (Tabajara and Vardi 2017) and factorization (Ak-
shay et al. 2017).

2. Correctness Benchmarks. The benchmarks described in
the paragraph above are too hard for the baseline algo-
rithm to solve. As Section 5.1 reveals, the number of
instances solved by the baseline is just eight out of the
609 instances. Therefore, to check the correctness of

Algorithm # Instances solved

Baseline 8
SkolemFC 375

Table 1: Instances solved (out of 609).

0 50 100 150 200 250 300 350 400
Benchmarks

0

5000

10000

15000

20000

25000

30000

35000

R
un

ti
m

e(
s)

SkolemFC

Baseline

Figure 1: Runtime performance of SkolemFC and Baseline.

SkolemFC (RQ2), we used a set of 158 benchmarks from
SyGuS instances (Golia, Roy, and Meel 2021). These
benchmarks have very few input variables (m ≤ 8), and
takes seconds for SkolemFC to solve.

Summary of Results. SkolemFC achieves a huge improve-
ment over Baseline by resolving 375 instances in a bench-
mark set consisting of 609, while Baseline only solved 8. The
accuracy of the approximate count is also noteworthy, with
an average error of a count by SkolemFC of only 21%.

5.1 Performance of SkolemFC

We evaluate the performance of SkolemFC based on two
metrics: the number of instances solved and the time taken to
solve the instances.

Instances Solved. In Table 1, we compare the number of
benchmarks that can be solved by Baseline and SkolemFC.
First, it is evident that the Baseline only solved 8 out of the
609 benchmarks in the test suite, indicating its lack of scala-
bility for practical use cases. Conversely, SkolemFC solved
375 instances, demonstrating a substantial improvement com-
pared to Baseline.

Solving Time Comparison. A performance evaluation of
Baseline and SkolemFC is depicted in Figure 1, which is a
cactus plot comparing the solving time. The x-axis represents
the number of instances, while the y-axis shows the time
taken. A point (i, j) in the plot represents that a solver solved
j benchmarks out of the 609 benchmarks in the test suite
in less than or equal to j seconds. The curves for Baseline
and SkolemFC indicate that for a few instances, Baseline was
able to give a quick answer, while in the long run, SkolemFC
could solve many more instances given any fixed timeout.

Counter Call Comparison. We analyze the algorithms’
complexity in terms of counter calls, comparing Baseline and

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8113

50 100 150 200 250 300 350
Instance ID

100

1028

1056

1084

10112

10140

10168

10196

10224

C
ou

nt
er

C
al

ls
ne

ed
ed

SkolemFC

Baseline

Figure 2: Counter calls needed by SkolemFC and Baseline to
solve the benchmarks.

102 103 104

Number of Iterations

10−1

100

101

102

T
im

e
p

er
It

er
at

io
n

Figure 3: Relation between number of iterations needed by
SkolemFC and average time taken in each iteration.

SkolemFC across benchmarks in Figure 2. The x axis repre-
sents benchmarks, and the y axis shows required counter calls,
sorted by the increasing order of calls needed by Baseline. A
red or green point (i, j) signifies that Baseline or SkolemFC,
respectively, requires j counting oracle calls for the ith in-
stance. Baseline requires up to a staggering 10230 counter
calls for some instances, emphasizing the need for a scalable
algorithm like SkolemFC, which incurs significantly fewer
counter calls.

We analyze the scalability of SkolemFC by examining
the correlation between average time per iteration and total
number of iterations, depicted in Figure 3. The point (i, j)
means that if SkolemFC needs i counter calls, the average
time per call is j seconds. The figure showcases diverse
scenarios: some with fewer iterations and longer durations
per call, others with high counts and minimal time per call.

5.2 Quality of Approximation
In the experiments, 158 accuracy benchmarks were measured
using Baseline, enabling comparison between Baseline and
SkolemFC results, shown in Figure 4. The counts’ close align-
ment and error reduction below theoretical guarantees were
observed. We quantify the SkolemFC performance with error
e = |b−s|

b , where b is the count from Baseline and s from
SkolemFC. Analysis of all 158 cases found the average e to
be 0.21, geometric mean 0.19, and maximum 0.496, contrast-
ing sharply with a theoretical guarantee of 0.8. This signifies
SkolemFC substantially outperforms its theoretical bounds.
Our findings underline SkolemFC’s accuracy and potential
as a dependable tool for various applications.

0 20 40 60 80 100 120 140
Instance ID

0

250

500

750

1000

1250

1500

1750

2000

lo
g(

#
S

ko
le

m
F

un
ci

on
s)

ExactCount*(1.8)

ExactCount*(0.2)

SkolemFC Count

Figure 4: SkolemFC’s estimate vs. the theoretical bounds.

6 Conclusion
In conclusion, this paper presents the first scalable approxi-
mate Skolem function counter, SkolemFC, which has been
successfully tested on practical benchmarks and showed im-
pressive performance. Our proposed method employs prob-
abilistic techniques to provide theoretical guarantees for its
results. The implementation leverages the progress made in
the last two decades in the fields of constrained counting and
sampling, and the practical results exceeded the theoretical
guarantees. These findings open several directions for fur-
ther investigation. One such area of potential extension is
the application of the algorithm to other types of functions,
such as counting uninterpreted functions in SMT with a more
general syntax. This extension would enable the algorithm
to handle a broader range of applications and provide even
more accurate results. In summary, this research contributes
significantly to the field of Skolem function counting and
provides a foundation for further studies.

Acknowledgements
We are thankful to Tim van Bremen and Priyanka Golia for
providing detailed feedback on the early drafts of the paper
and grateful to the anonymous reviewers for their construc-
tive comments to improve this paper. We thank Martina Seidl,
Andreas Plank and Sibylle Möhle for pointing out an error

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8114

in the first implementation of the code. This work was sup-
ported in part by National Research Foundation Singapore
under its NRF Fellowship Programme [NRF-NRFFAI1-2019-
0004], Ministry of Education Singapore Tier 2 Grant [MOE-
T2EP20121-0011], Ministry of Education Singapore Tier 1
Grant [R-252-000-B59-114], and NSF awards IIS-1908287,
IIS-1939677, and IIS-1942336. Part of the work was done
during Arijit Shaw’s internship at the National University of
Singapore. The computational work for this article was per-
formed on resources of the National Supercomputing Centre,
Singapore (https://www.nscc.sg).

References
Akshay, S.; Arora, J.; Chakraborty, S.; Krishna, S.; Raghu-
nathan, D.; and Shah, S. 2019. Knowledge Compilation for
Boolean Functional Synthesis. In Proc. of FMCAD.
Akshay, S.; Chakraborty, S.; Goel, S.; Kulal, S.; and Shah, S.
2018. What’s hard about Boolean Functional Synthesis? In
Proc. of CAV.
Akshay, S.; Chakraborty, S.; John, A. K.; and Shah, S. 2017.
Towards parallel Boolean functional synthesis. In Proc. of
TACAS.
Albarghouthi, A.; Dillig, I.; and Gurfinkel, A. 2016. Maximal
specification synthesis. ACM SIGPLAN Notices.
Ansótegui, C.; Bonet, M. L.; and Levy, J. 2013. SAT-based
MaxSAT algorithms. Artificial Intelligence.
Balabanov, V.; and Jiang, J.-H. R. 2011. Resolution proofs
and Skolem functions in QBF evaluation and applications. In
Proc. of CAV.
Baudry, B.; and Monperrus, M. 2015. The multiple facets
of software diversity: Recent developments in year 2000 and
beyond. ACM Computing Surveys (CSUR).
Becker, B.; Ehlers, R.; Lewis, M.; and Marin, P. 2012. AL-
LQBF solving by computational learning. In Proc. of ATVA.
Chakraborty, D.; Chakraborty, S.; Kumar, G.; and Meel, K. S.
2023. Approximate Model Counting: Is SAT Oracle More
Powerful than NP Oracle? In Proc. of ICALP.
Chakraborty, S.; Fried, D.; Tabajara, L. M.; and Vardi, M. Y.
2018. Functional synthesis via input-output separation. In
Proc. of FMCAD.
Chakraborty, S.; Meel, K.; Mistry, R.; and Vardi, M. 2016.
Approximate probabilistic inference via word-level counting.
In Proc. of AAAI.
Chakraborty, S.; Meel, K. S.; and Vardi, M. Y. 2013. A
scalable approximate model counter. In Proc. of CP.
Chakraborty, S.; Meel, K. S.; and Vardi, M. Y. 2014. Balanc-
ing Scalability and Uniformity in SAT-Witness Generator. In
Proc. of DAC.
Chakraborty, S.; Meel, K. S.; and Vardi, M. Y. 2016. Algorith-
mic Improvements in Approximate Counting for Probabilistic
Inference: From Linear to Logarithmic SAT Calls. In Proc.
of IJCAI.
Chakraborty, S.; Meel, K. S.; and Vardi, M. Y. 2021. Approx-
imate model counting. In Handbook of Satisfiability.

Chistikov, D.; Dimitrova, R.; and Majumdar, R. 2015. Ap-
proximate counting in SMT and value estimation for proba-
bilistic programs. In Proc. of TACAS.
Dagum, P.; Karp, R.; Luby, M.; and Ross, S. 1995. An
optimal algorithm for Monte Carlo estimation. In Proc. of
FOCS.
Dagum, P.; and Luby, M. 1997. An optimal approximation
algorithm for Bayesian inference. Artificial Intelligence.
Delannoy, R.; and Meel, K. S. 2022. On Almost-Uniform
Generation of SAT Solutions: The power of 3-wise indepen-
dent hashing. In Proc. of LICS.
Dudek, J. M.; Phan, V. H.; and Vardi, M. Y. 2020. ADDMC:
Weighted model counting with algebraic decision diagrams.
In Proc. of AAAI.
Durand, A.; Haak, A.; Kontinen, J.; and Vollmer, H. 2021.
Descriptive complexity of #P functions: A new perspective.
Journal of Computer and System Sciences.
Froleyks, N.; Heule, M.; Iser, M.; Järvisalo, M.; and Suda,
M. 2021. SAT competition 2020. Artificial Intelligence.
Golia, P.; Roy, S.; and Meel, K. S. 2020. Manthan: A data-
driven approach for Boolean function synthesis. In Proc. of
CAV.
Golia, P.; Roy, S.; and Meel, K. S. 2021. Program Synthesis
as Dependency Quantified Formula Modulo Theory. In Proc.
of IJCAI.
Golia, P.; Slivovsky, F.; Roy, S.; and Meel, K. S. 2021. Engi-
neering an efficient boolean functional synthesis engine. In
Proc. of ICCAD.
Gomes, C. P.; Sabharwal, A.; and Selman, B. 2021. Model
counting. In Handbook of satisfiability.
Haak, A.; and Vollmer, H. 2019. A model-theoretic character-
ization of constant-depth arithmetic circuits. Annals of Pure
and Applied Logic.
Jiang, J.-H. R. 2009. Quantifier elimination via functional
composition. In Proc. of CAV.
Jiang, J. R.; Lin, H.; and Hung, W. 2009. Interpolating
functions from large Boolean relations. In Proc. of ICCAD.
John, A. K.; Shah, S.; Chakraborty, S.; Trivedi, A.; and Ak-
shay, S. 2015. Skolem functions for factored formulas. In
Proc. of FMCAD.
Kroening, D.; and Strichman, O. 2016. Decision procedures.
Springer.
Li, C. M.; and Manya, F. 2021. MaxSAT, hard and soft
constraints. In Handbook of satisfiability.
Prabhu, S.; Fedyukovich, G.; Madhukar, K.; and D’Souza, D.
2021. Specification synthesis with constrained Horn clauses.
In Proc. of PLDI.
Rabe, M. N. 2019. Incremental Determinization for Quanti-
fier Elimination and Functional Synthesis. In Proc. of CAV.
Rabe, M. N.; and Seshia, S. A. 2016. Incremental Deter-
minization. In Proc. of SAT.
Rabe, M. N.; Tentrup, L.; Rasmussen, C.; and Seshia, S. A.
2018. Understanding and extending incremental determiniza-
tion for 2QBF. In Proc. of CAV.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8115

Sharma, S.; Roy, S.; Soos, M.; and Meel, K. S. 2019.
GANAK: A Scalable Probabilistic Exact Model Counter.
In Proc. of IJCAI.
Shukla, A.; Möhle, S.; Kauers, M.; and Seidl, M. 2022. Out-
ercount: A first-level solution-counter for quantified boolean
formulas. In Proc. of CICM.
Soos, M.; and Meel, K. S. 2019. BIRD: engineering an
efficient CNF-XOR SAT solver and its applications to ap-
proximate model counting. In Proc. of AAAI.
Soos, M.; Nohl, K.; and Castelluccia, C. 2009. Extending
SAT Solvers to Cryptographic Problems. In Proc. of SAT.
Tabajara, L. M.; and Vardi, M. Y. 2017. Factored Boolean
functional synthesis. In Proc. of FMCAD.
Thurley, M. 2006. sharpSAT–counting models with advanced
component caching and implicit BCP. In Proc. of SAT.
Yang, J.; and Meel, K. S. 2023. Rounding Meets Approxi-
mate Model Counting. In Proc. of CAV.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8116

