
An Eager Satisfiability Modulo Theories Solver for Algebraic Datatypes

Amar Shah, Federico Mora, Sanjit A. Seshia
University of California, Berkeley

amarshah1000@berkeley.edu, fmora@berkeley.edu, sseshia@eecs.berkeley.edu

Abstract

Algebraic data types (ADTs) are a construct classically found
in functional programming languages that capture data struc-
tures like enumerated types, lists, and trees. In recent years,
interest in ADTs has increased. For example, popular pro-
gramming languages, like Python, have added support for
ADTs. Automated reasoning about ADTs can be done using
satisfiability modulo theories (SMT) solving, an extension of
the Boolean satisfiability problem with first-order logic and
associated background theories. Unfortunately, SMT solvers
that support ADTs do not scale as state-of-the-art approaches
all use variations of the same lazy approach. In this paper, we
present an SMT solver that takes a fundamentally different
approach, an eager approach. Specifically, our solver reduces
ADT queries to a simpler logical theory, uninterpreted func-
tions (UF), and then uses an existing solver on the reduced
query. We prove the soundness and completeness of our ap-
proach and demonstrate that it outperforms the state of the art
on existing benchmarks, as well as a new, more challenging
benchmark set from the planning domain.

1 Introduction
Boolean satisfiability (SAT) solvers have been shown to
efficiently solve a number of NP-hard problems in areas
such as AI planning (Kautz, Selman et al. 1992), verifica-
tion (Clarke et al. 2001), and software testing (Cadar et al.
2008). Satisfiability modulo theories (SMT) solvers are a
natural extension to SAT solvers that can reason about first-
order structures with background theories (Barrett et al.
2021), allowing them to tackle more general problems or
to accept more succinct inputs. For example, SMT solvers
can reason about bit-vectors (Brummayer and Biere 2009),
floating-point numbers (Rümmer and Wahl 2010), strings
(Bjørner et al. 2012), and algebraic data types (ADTs) (Bar-
rett, Fontaine, and Tinelli 2017).

The power behind ADTs lies in how they can succinctly
express complex structures at a high-level of abstraction
while avoiding common programming pitfalls, like null
pointer dereferencing (Hoare 1975). For most of their his-
tory, ADTs lived exclusively inside functional programming
languages, like NPL (Burstall 1977), Standard ML (Milner
1997), and Haskell (Hudak et al. 2007). Recently, however,

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the interest in ADTs has exploded with a number of main-
stream languages being released with support for ADTs,
e.g., Rust (Jung et al. 2021), or have added support, e.g.,
Python (Salgado 2023) and Java (Goetz 2022).

Automated reasoning about ADTs is important because
this construct appears in many different software applica-
tions. As the popularity of ADTs grows, the demand for ef-
ficient SMT solvers will continue to increase. Unfortunately,
the state-of-the-art tools in this space are already struggling
to keep up. We demonstrate this empirically by generating a
new benchmark set and showing that existing solvers, work-
ing together, are only able to solve 56.2% of the new queries
in under 20 minutes per query (Sec. 5.2).

This imbalance between programming languages and
SMT solvers is due to a gap in the SMT solving literature.
Oppen (1980) was the first to give a decision procedure for
the quantifier-free theory but ADTs do not seem to have per-
meated the community much further. In 2003, a consorted
effort to unify the SMT community began with the first of-
ficial input standard and competition, called SMT-LIB and
SMT-COMP (Barrett et al. 2011), respectively. ADTs were
not officially integrated into the standard until 2017, as part
of version 2.6 (Barrett, Fontaine, and Tinelli 2017). In the
most recent iteration of SMT-COMP, only two solvers par-
ticipated in the ADT track, the least of any track, and both
solvers use a variation of the same solving approach: a lazy
SMT architecture combined with theory-specific reasoning
based on the work by Oppen from 1980 (see Sec. 6).

We propose a new solving technique that departs from the
standard approach in the community. Instead of a lazy ap-
proach, we take an eager approach (Barrett et al. 2021) that
translates the original SMT formula into an equi-satisfiable
formula without ADT elements. Our work fills the gap in the
literature on SMT solving for ADT queries, and, by doing
so, solves more queries than existing solvers (see Sec. 5.1).
More importantly, we make the largest empirical contribu-
tion to the solving community on SMT-COMP benchmarks,
solving different queries than existing tools (see Sec. 5.2).

1.1 Overview and Contributions
The rest of this paper is organized as follows. In Sec. 2 we
describe ADTs, satisfiability, and our approach through an
example planning problem called blocks world. In Sec. 3 we
formally define ADTs and give the necessary background

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8099

B

A

(a) Initial configuration

B

A

B A

(b) First move

B AB A

(c) Second move

B AB

A

(d) Third move

B

A

(e) Target configuration

Figure 1: Solution (1b, 1c, and 1d) to a simple blocks world puzzle. 1a is the initial configuration; 1e is the target configuration.

on first-order logic and model theory to understand our ap-
proach. In Sec. 4 we describe our eager reduction from ADT
queries to queries containing only uninterpreted functions
(UF). Sec. 4 includes a proof of soundness and complete-
ness along with a complexity analysis. In Sec. 5 we describe
a prototype implementation of our approach, called Algar-
oba, and we evaluate it over two research questions. We find
that Algaroba outperforms the state of the art overall and in
terms of contribution to the solving community. Sec. 5 also
describes a new benchmark set consisting of blocks world
queries. This set addresses an important gap in the existing
literature: the queries in this set contain all important kinds
of ADTs, but are not easy to solve. We survey related work
in Sec. 6 and then conclude in Sec. 7 with future work. Over-
all, we make the following contributions.

1. We define a notion of query depth and a finite, quantifier-
free reduction from ADT queries to UF queries that uses
depths. This is a new eager solving approach.

2. We prove the soundness and completeness of our ap-
proach and show that it generates at most a finite number
of assertions.

3. We generate a new benchmark set that contains all im-
portant kinds of ADTs and is not trivial to solve. Existing
benchmarks do not enjoy both these properties.

4. We implement our reduction approach in a prototype tool
called Algaroba and we compare its performance to the
state of the art. We find that Algaroba outperforms exist-
ing tools and that it makes the largest empirical contribu-
tion to the community of solvers.

2 Illustrative Example and New Benchmark
To better understand ADTs, satisfiability queries, our ap-
proach, and the benchmark set that we generate in Sec. 5,
consider the classic blocks world problem first proposed by
Winograd (1971). We use a version of the problem that Suss-
man (1973) used to illustrate the Sussman anomaly (Russell
2010) and that Gupta and Nau (1992) used to show that the
associated decision problem is NP-Hard.

In the simplified version of the blocks world problem,
there is a table with (possibly empty) stacks of blocks on
it (an initial configuration), a desired way that the stacks
should be arranged (a target configuration), and three rules:

1. blocks can only be taken from the top of a stack;
2. blocks can only be placed on the top of a stack; and
3. only one block can be moved at a time.

The general problem is to find a sequence of legal moves
that leads from the initial configuration to the target config-
uration. The associated decision problem is to determine if
there is such a sequence of length less than some input k.

Fig. 1 shows an example blocks world solution. The ini-
tial configuration is given in Fig. 1a, the target configuration
in Fig. 1e, and Figs. 1b, 1c, and 1d show a sequence of three
legal moves that solve the problem, where faded blocks de-
note the previous position of the block moved at that step.

The blocks world problem is a useful illustrative example
for an ADTs solver because the encoding uses three impor-
tant kinds of ADTs: sum, product, and inductive types. The
following OCaml code gives the required type definitions for
the example in Fig. 1.
1 type block = A | B
2 type tower =
3 | Empty
4 | Stack of {top: block; rest: tower}
5 type config =
6 | table of {l:tower; c:tower; r:tower}

Specifically, this code defines an enumerated type for
blocks (block at line 1), a record type for table configu-
rations (config at line 5), and an inductive type for stacks
(tower at line 2). Variables of an enumerated type can take
on any of the values listed in the type definition. For exam-
ple, variables of type block can take on the values A or
B. Variables of a record type can take on any combination of
values of the type arguments listed in the type definition. For
example, variables of type config can take on a triple of
any three tower values. Enumerated types are the simplest
form of a sum type, while records are the simplest form of a
product type. ADTs allow for definitions that are both sum
and product types. For example, variables of type tower
can either be Empty or they can be a Stack but not both
(sum). When these variables take on a Stack value, they
are a pair of block and tower values (product). Notice
that the definition of tower depends on itself. This makes
tower an inductive type as well.

The blocks world problem is a useful illustrative example
for satisfiability queries for two reasons. First, satisfiability-
based solutions for similar planning problems have been
around for decades (Kautz and Selman 1996). Second, en-
coding the problem as a satisfiability problem is simple
when using bounded model checking (Biere et al. 1999)
for bounded-horizon planning (e.g., see Rintanen (2003)).
Specifically, the bounded model checking-based encoding
is given by a transition system and a specification. The
transition system starts at the initial configuration, and, at
each step, makes a non-deterministic choice of which legal

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8100

move to make. The specification is that the transition sys-
tem never reaches the target configuration. Given this tran-
sition system, specification, and a bound k, bounded model
checking will generate a satisfiability query whose solutions
are assignments to the non-deterministic choices—concrete
choices that get us to the target configuration from the initial
configuration in less than k steps. SMT solvers, like our new
solver, generate these solutions or prove that none exist. We
use this encoding in Sec. 5 to generate a new benchmark set.

The blocks world problem also gives a useful intuition
for our approach. While variables of inductive data types,
like tower, can take on arbitrarily large values (e.g., a
stack of a million A blocks), there is a bound on the size
of relevant values. For the blocks world problem in Fig. 1
it would never make sense to have a tower value of size
greater than two. Such a bound exists for all quantifier-free
ADT queries; the problem is that automatically inferring the
bound and using it to speed up solving was non-trivial. In
this paper, we give an automated procedure for computing
an over-approximation of this bound, and then we use this
over-approximation to replace ADT functions with uninter-
preted functions along with quantifier-free axioms.

3 Background
We assume a basic understanding of first-order logic. For
a complete introduction, we refer the reader to Lubarsky
(2008). Many-sorted first-order logic is like first-order logic
but with the universe partitioned into different sorts (Bar-
rett et al. 2021). We use many-sorted first-order logic and
assume all terms are well-sorted, i.e. that we never apply a
function to a term of the incorrect sort. In practice, standard
type checking algorithms will catch these issues.

A first-order theory is a set of formulas (axioms). For
example Equality and Uninterpreted Functions (Burch and
Dill 1994) (UF) uses axioms to restrict the possible inter-
pretations of = (reflexivity, symmetry, transitivity) and all
function symbols (congruence). A satisfiability modulo the-
ories (SMT) query is a formula-theory pair. For a formula
ϕ, there are free variables (which we will just call variables)
and uninterpreted function symbols that we (usually) want
to find an interpretation for. A structure is a universe along
with a function that describes how all non-logical symbols
must be interpreted over the universe. When a structureM
satisfies a formula ϕ, then we say that M is a model of ϕ
and we denote this as M |= ϕ. As a slight abuse of nota-
tion, for a set of formulas Φ = {ϕi}, we use M |= Φ to
mean M |=

∧n
1 ϕi. Similarly, we use ϕ |= ψ to mean ev-

ery model of ϕ is a model of ψ. For a model M, we use
the notation M[x] or M[f] to represent the variable x or
the function f interpreted in the modelM. We say that an
SMT query (ϕ,T) is sat iff there exists a modelM such that
M |= T ∪ {ϕ}. Otherwise we say the query is unsat. SMT
solvers (Barrett et al. 2021) take an SMT query and return
sat if there is an assignment to all functions and variables
that satisfies the formula and the theory axioms. The distinc-
tive aspect of SMT solvers is that they perform an encoding
to SAT, either implicitly or explicitly. Eager SMT solvers
perform a satisfiability-preserving reduction to SAT in a sin-

• ∀ s⃗ is-f(f(s⃗)) = True

• ∀ r⃗ is-f(g(r⃗)) = False for constructors g ̸= f

• ∀ t⃗ f i(f(s⃗)) = s⃗i for every selector f i of f
• ∀ t is-f(t)→ ∃ s⃗ f(s⃗) = t

• ∀ t ∀ s if s is a descendant of t, then s ̸= t

Figure 2: Axioms for corresponding constructors f , testers
is-f , and selectors f i. The last axiom is acyclicality.

gle phase (e.g., see Seshia (2005)) whereas lazy solvers per-
form an iterative encoding, on demand.

A theory literal is a logical formula with no conjunctions
(∧) or disjunctions (∨). These are the base units of SMT
solving and are the equivalent of literals in SAT solving. Our
approach will be easier to understand when queries are in
negation normal form (NNF) and flat. A formula is in NNF if
only theory literals are negated. It is flat if all theory literals
are of the form ¬(x1 = x2), x1 = x2, x1 = g(x2, ..., xn)
where xi are variables. We will transform ADT queries into
UF queries through a theory reduction.

Definition 3.1 (Theory Reduction). A theory T reduces to a
theory R if there is a computable function m such that

(ψ,T) is sat↔ (m(ψ),R) is sat

3.1 Theory of Algebraic Data Types
We denote the theory of algebraic data types as ADT. It con-
tains the full theory of UF and additional structure given by:

Definition 3.2 (ADT (Barrett, Fontaine, and Tinelli 2017)).
(1) An ADT A with sort σ is a tuple consisting of:
• A finite set of constructor functions AC , where we say a

function f : σ1 × ...× σl → σ has sort σ and arity l
• A finite set of selectors AS , such that there are m selec-

tors f1, ..., fm with f i : σ → σi for each constructor
f ∈ AC with arity m.

• A finite set of testers AT and a bijection p : AC →
AT which sends f 7→ is-f where is-f : σ →
{True,False}

(2) Every ADT A satisfies the axioms given in Fig. 2, where
for two terms s and t, if s can be obtained by applying a
sequence of l selectors to t, then we say s is an lth descendant
of t and t is the lth ancestor of s.

An ADT term is any expression of an ADT sort. The set
of normal ADT terms is the smallest set containing (1) con-
stants (0-ary constructors), (2) constructors applied to only
normal ADT terms. It is useful to think of normal terms as
trees: constants are leaves and we can build larger trees by
applying constructors to normal terms.

As an example, the tower definition from earlier uses
two constructors: Empty and Stack. These are the two
possible ways to build a tower. Empty is a function
that takes no inputs and outputs a tower. Stack is a

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8101

Algorithm 1: Reduce(ψ)

ψ1 ← NNF(ψ)
ψ2 ← Flatten(ψ1)
k← Number of ADT variables in ψ2

ψ3 ← Apply Fig. 4a rewrite rules A & B to ψ2

ϕ1, ..., ϕm ← Apply Fig 4b 1, 2, & 3 using k to ψ3

ψ∗ ← ψ3 ∧ ϕ1 ∧ ... ∧ ϕm
return UF-SMT-Solver(ψ∗)

function that takes a block and a tower and outputs a
tower. Each corresponding constructor has a set of selec-
tors. Empty has no selectors and so it is a normal term, but
Stack has two selectors, top and rest. In OCaml, we
apply selectors using dot notation, e.g., x.top. Selectors
can be thought of as de-constructors—we use them to get
back the terms constructed a tower. The tower definition
implicitly defines two testers: is-Empty and is-Stack
These predicates take a tower and return true iff the argu-
ment was built using the matching constructor.

4 Eager Reduction of ADT to UF
We propose a new SMT solver for the ADT theory. For
a quantifier-free input formula ψ, our solver generates a
quantifier-free formula ψ∗ in UF and then calls an exist-
ing UF solver to get a final result. We cannot compute a
quantifier-free reduction directly, since ADT axioms have
universal quantifiers. Instead, we only instantiate the ADT
axioms over terms that are relevant to the input query.

When the universe of the input query is finite (e.g., it
only contains enums), we instantiate the entire universe (see
Sec. 4.1). Otherwise, we follow the procedure in Alg. 1. This
procedure transforms the input query to NNF, flattens the re-
sult, and then applies the rewrite rules in Fig. 4a and adds the
axioms Fig. 4b. The depth of a query is the number of vari-
ables in the flattened NNF version of the query. In Alg. 1, the
depth is k. The depth is linear in the size of the input query
because the NNF and flattening transformations introduce at
most a linear number of variables.

Rules A and B from Fig. 4a correspond to rewriting
constructor and selector applications respectively so that
they work well with other constructor, selectors and testers.
Rule B contains existential quantifiers, but these are handled
through Skolemization (replacing existentially bound vari-
ables by free variables). Axioms 1 and 2 from Fig. 4b ensure
that only one tester returns true for each term, and that the
this tester corresponds to a constant iff the term is a constant.
Axiom 3 encodes the ADT acyclicality constraint.

To better understand Axiom 3 and acyclicality, consider
the following example query. Let x and y be of type tower
defined in Sec. 2. The query
1 (is-Stack x) && (is-Stack y)
2 && (y = x.rest) && (x = y.rest)

is unsat because any satisfying assignment would need to
violate acyclicality. Fig. 3 illustrates this: there is a circu-
lar dependency between x and y. Therefore, to avoid spu-
rious models, we must encode the acyclicality property in
our reduction. The challenge is that we need to capture this

x.top

x.rest

y.top

y.rest

x.rest = y

y.rest = x

x y

Figure 3: Visual representation of an unsat query.

seemingly infinite property using a only finite number of
quantifier-free formulas.

Our key result is that we only need to enforce acyclicality
for all l < kth descendants, where k is the number of ADT
variables in the flattened query. To see the intuition behind
this, consider the following generalization of the previous
example. Let x1, ..., xk be of type tower. The flat query

(is-Stack x1) &&...&& (is-Stack xk) &&
(x2 = x1.rest) && (x3 = x2.rest) &&...&&
(xk = xk−1.rest) && (x1 = xk.rest)

asserts that there is a cycle of size k. Since, our reduction
asserts acyclicality for all l < kth descendants, we correctly
return unsat on this query. Furthermore, it is impossible to
have a query with a cycle of size more than k using k or
fewer variables (in the flat query), so our encoding is suffi-
cient (see Sec. 4.3 for a full proof).

4.1 Finite Universe Instantiation
If we recognize an ADT has a finite universe, we create con-
stants for every term in the universe and instantiate the ax-
ioms over the entire, finite universe. This is a source of dou-
ble exponential blowup, but ADTs with finite universes are
rare and often small enough to prevent noticeable blowup.

4.2 Complexity Analysis
In the finite universe case, we can have a doubly exponential
blowup. One adversarial case is an ADT that is records of
records of enums:
1 type enum = A | B
2 type rec1 = j of {l: enum; r: enum}
3 type rec2 = k of {m: rec1; s: rec1}

Here, enum has a universe of size two, rec1 has a universe
of size four, and rec2 has a universe of size 16. This gives
a double exponential blowup since we are creating variables
to represent every normal term of every datatype.

In the infinite universe case, we have at worst an exponen-
tial blowup in the size of the query. We know the depth k is
at most linear in the size of the query, however, for a term x
of the tree type definition below, the number of sequences
of selector applications of length up to k is 2k+1 − 2, thus
giving us an exponential blowup in the number of terms.
1 type tree =
2 | Leaf
3 | Node of {left: tree; right: tree}

4.3 Proof of Correctness
In this proof when we refer to a rule or axiom, we mean
those from Fig. 4a and Fig. 4b, respectively. We assume ψ is

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8102

A. f(s⃗) = t =⇒ f(s⃗) = t ∧ is-f(t) ∧
∧m

i=1 f
i(t) = s⃗i

B. f j(t) = tj =⇒ f j(t) = tj ∧
[is-f(t)→ [∃s⃗[f(s⃗) = t ∧

∧m
i=1 f

i(t) = s⃗i]]]

(a) Rewrites

1. Add
∨|AT |

i=1 [is-fi(t) ∧
∧|AT |

j=1,j ̸=i ¬is-fj(t)]
2. For any constant constructor c, add is-c(t)↔ c = t

3. If s is the lth descendant of t and l < k, add s ̸= t

(b) Axioms

Figure 4: Rewrite rules (a) and additional axioms (b) used in Alg. 1

flattened and in NNF (i.e., it is ψ2 in Alg. 1). For simplicity,
we also assume that ψ does not contain any uninterpreted
functions or sorts, but it is not difficult to see how to extend
the proof to include them.

Theorem 4.1. Alg. 1 shows that ADT reduces to UF.
Specifically, (ψ,ADT) is sat↔ (ψ∗,UF) is sat.

Proof. →: If (ψ,ADT) is sat, then there is a modelM |=
ψ ∪ ADT. ψ∗ is ψ modified according to rules A and B
and axioms 1, 2, and 3. Each of these rules and axioms is
consistent with the axioms of ADT in Definition 3.2 and thus
M |= ADT ∪ ψ∗. Since every model in ADT is a model in
UF,M |= UF ∪ ψ∗. Thus, (ψ∗,UF) is sat
←: If (ψ∗,UF) is sat, then we know that there is some

modelN |= UF∪ψ∗. We will assume that ψ∗ is a conjunc-
tion of theory literals. This is permissible since the modifi-
cation from ψ to ψ∗ involves either replacing a theory literal
with a conjunction of theory literals or adding on conjunc-
tions of theory literals to the end of the formula. Thus, the
satisfying assignment to the propositional structure of ψ∗,
will be a superset of a satisfying assignment to the proposi-
tional structure of ψ.

We want to modifyN to create a modelM |= ADT∪ ψ.
As we describe in Section 4.1, if the universe is finite, we
manually instantiate all of the ADT normal terms in the
query. Thus, in the finite universe case, it must be that
ADT |= ψ. We now assume the ADT universe is infinite.

Since we wantM |= ADT, we set the universe ofM to
be all of the ADT normal terms. Consider the set of vari-
ables that appear in ψ∗ which we call V = {x1, ..., xk}. We
describe an algorithm that for all x ∈ V , setsM[x] to some
ADT normal term, such that we ultimately getM |= ψ.
V is the set of variables in ψ∗, thus for each x ∈ V , by ax-

iom 1 there is exactly one tester is-f such that N |= is-f(x).
There are two “base cases” for our construction of M.

First, if f is some constant constructor, by axiom 2 of the
reduction, we know that N [x] = N [f], so we setM[x] ≜
M[f]. Second, if x is some variable that is never set equal
to some constructor application or selected from (either di-
rectly or transitively) then we setM[x] to an ADT normal
term. Since our ADT universe is infinite, we will specifically
pick an ADT normal term t such that it takes at least k + 1
selector applications to get to any of the ADT normal terms
that we have already set. This will prevent any of our dif-
ferent ADT normal term assignments from interfering with
each other—they are too far away in the infinite universe.

If we are not in one of these base cases, we know that f

is an m-ary constructor for some m > 0. Since x was either
constructed or selected, there are variables y1, ..., ym in V
such that N |=

∧m
i=1 f

i(x) = yi. Note that these variables
are from the original query if x is equal to a constructor ap-
plication, or from Skolemization if x is selected from.

Continuing our construction of M, we recurse on these
yi that have not already been assigned inM. We will even-
tually hit a base case, since there are a finite number of
selector/constructor applications in our original query. For
each i, we set M[f i](M[x]) ≜ M[yi]. Finally, we set
M[x] ≜M[f](M[y1], ...,M[ym]).

If it were possible to have
ψ |= f(y1, ..., ym) ̸= x (1)

hold, then we would have M ̸|= ψ and our current proof
attempt would not go through. However, we will show that
this is never the case.

Note that since N |= ψ∗, if ψ∗ asserts anything about se-
lector applications, these selector applications must be con-
sistent with N . Also, ψ∗ must assert something about se-
lector applications, since we know that x is either equal to
a constructor application or is selected from in the query.
Thus, ψ∗ |=

∧m
i=1 f

i(x) = yi, meaning that ψ∗ asserts the
correct selector behavior. We now use this to guarantee the
correct constructor behavior.

There are two ways that incorrect constructor behavior
could occur in ψ∗: 1. If ψ |= f(y1, ..., ym) = x which con-
tradicts Equation (1). 2. If ψ |=

∧m
i=1 yi = f i(x), but then

by rule B, we would still have ψ∗ |= f(y1, ..., ym) = x
which also contradicts Equation (1) since ψ∗ |= ψ.

We iterate this construction ofM for each variable in V
for at most k rounds, since there are k total variables in V .
Thus, since ψ∗ has the acyclicality Axiom 3 instantiated up
to a depth k, we do not create any cycles inM.

We can also see that M |= ψ since each theory literal
ψi in ψ =

∧p
i=1 ψi will be an equality x = y, disequality

x ̸= y, selector application f j(y) = x, a tester application
is-f(x), or a constructor application f(x1, ..., xm) = y. If it
is any of these, thenM |= ψi by how we definedM. Note
that if it was a constructor application, then by rule A ψ∗

would have the respective selector applications and thus our
construction ofM would satisfy ψi.

Thus,M |= ADT ∪ ψ and so (ψ,ADT) is sat.

5 Empirical Evaluation
In this section we empirically compare the performance of
our approach to state-of-the-art solvers. Specifically, we aim

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8103

120 240 360 480 600 720 840 960 1080 1200

Time Elapsed (s)

0

19

38

57

76

95

114

133

152

171

190

209

N
u

m
b

er
of

Q
u

er
ie

s
S

ol
ve

d

Bouvier (400 Queries, 1200s Timeout)

1. Algaroba (45.75% solved)

4. cvc5 (37.25% solved)

3. Princess (15.75% solved)

2. Z3 (37.25% solved)

Timeout

(a) Bouvier benchmark set.

0 120 240 360 480 600 720 840 960 1080 1200

Time Elapsed (s)

0

31

62

93

124

155

186

217

248

279

310

341

N
u

m
b

er
of

Q
u

er
ie

s
S

ol
ve

d

Blocks world (500 Queries, 1200s Timeout)

1. Algaroba (61.4% solved)

3. cvc5 (34.8% solved)

4. Princess (16.8% solved)

2. Z3 (56.2% solved)

Timeout

(b) Blocks world benchmark set.

Figure 5: Number of queries solved (y) in less than x seconds for Bouvier and blocks world benchmark sets using a 1200s
timeout. Higher (more queries solved) left (in less time) points are better. The legend lists the contribution rank and percentage
of queries solved for each solver. Algaroba solves the most queries and achieves the highest contribution rank for both sets.

to answer the following research questions.

RQ1 How does the overall performance of our approach
compare to the state of the art?

RQ2 How complementary is the performance of our ap-
proach to that of existing solvers?

We implement a prototype of our approach, called Algar-
oba,1 in approximately 2900 lines of OCaml code. We use
the Z3 API as the default UF back-end solver but we allow
for any UF solver to be used instead. Algaroba takes inputs
in the SMT-LIB language and includes a number of simple
optimizations, like hash-consing (Ershov 1958), incremental
solving, and theory-specific query simplifications. All exper-
iments are conducted on an Ubuntu workstation with nine
Intel(R) Core(TM) i9-9900X CPUs running at 3.50 GHz and
with 62 GB of RAM. All solvers were given a 1200 second
timeout on each query to be consistent with SMT-COMP.
The state-of-the-art solvers in this space are cvc5 (we use
version 1.0.6-dev.214.97a64fc16) and Z3 (we use version
4.12.2). We also include Princess (latest release as of 2023-
06-19) in our evaluation since it is the most related approach.
We describe all three solvers in Sec. 6.

Our evaluation covers two existing benchmark sets from
SMT-COMP, one originally from Bouvier (2021) and one
originally from Barrett, Shikanian, and Tinelli (2007) (BST
for short). These two benchmark sets are useful but limited:
every solver succeeds on every BST query so it is difficult
to draw performance conclusions; Bouvier queries are more
challenging but only contain sum types.

To address these limitations, we introduce a new bench-
mark set consisting of randomly generated blocks world
queries.1 Blocks world queries, which we describe in Sec. 2,
are more challenging to solve than those in BST and, un-
like those from Bouvier, contain sum, product, and inductive
types. To generate blocks world queries we use the same ta-
ble configuration as in Sec. 2 (three places for towers), but

1available at https://github.com/uclid-org/algaroba/tree/aaai24

we randomly select a set of blocks (ranging between two
to 26) and we randomly generate an initial and target con-
figuration (two sets of three random block towers). We call
these three random samples a blocks world setup. For each
blocks world setup, we randomly sample a set of step num-
bers (ranging from one to two times the number of blocks)
and generate a blocks world query for each step number.
This process resulted in 500 individual queries that each ask
“can we get from this initial configuration to this target con-
figuration in exactly this number of steps?”

5.1 RQ1: Overall Performance
To answer our first research question, we time the execu-
tion of Algaroba, cvc5, Princess, and Z3 on all queries in
all three benchmark sets. When more than one solver termi-
nates on a given query we compare the results to check for
disagreements. There was not a single case where one solver
returned sat and another returned unsat; therefore, we focus
the remainder of our evaluation on execution times.

For the BST benchmark set, which consists of 8000
queries, every solver successfully terminates on every query
within the timeout. cvc5 performs the best on average with
an average solve time of 0.05 seconds (compared to 0.08
seconds for Algaroba and 0.10 seconds for Z3). Z3 per-
formed the most consistently with a standard deviation of
0.05 seconds (compared to 0.10 seconds for Algaroba and
0.15 seconds for cvc5). Given the magnitude of these val-
ues, we conclude that the performance differences between
Algaroba, cvc5, and Z3 are negligible on this set. Princess
is the slowest (2.20 seconds on average) and least consistent
(standard deviation of 1.69 seconds) but still effective.

Results are more interesting for the remaining benchmark
sets. Fig. 5a shows the execution times for every solver on
every query in the Bouvier benchmark set (excluding time-
outs). No solver succeeds on more than half the queries in
the set but Algaroba clearly outperforms the rest. In terms
of number of queries solved, Algaroba succeeds on 8.5 per-
centage points more queries than the next best (45.75% ver-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8104

sus cvc5 and Z3’s 37.25%). In terms of average run time
on successful queries, Algaroba is 2.30 times faster than the
next best (190.11 seconds versus Z3’s 437.18 seconds). In
terms of standard deviation on successful queries, Algaroba
is 1.30 times more consistent than the next best (267.13 sec-
onds versus cvc5’s 346.83 seconds).

Fig. 5b shows the execution times for every solver on
every query in the blocks world benchmark set (excluding
timeouts). Again, Algaroba outperforms the state-of-the-art
solvers. Algaroba solves 5.2 percentage points more queries
than the next best (61.4% versus Z3’s 56.2%) but the av-
erage and standard deviation results are more complicated.
Princess is the fastest and most consistent solver on solved
queries (31.89 seconds and 74.77 seconds, respectively) but
it succeeds on 44.6 percentage points fewer queries than Al-
garoba. Compared with Z3, which solves the second most
number of queries, Algaroba is 2.00 times faster (87.34 sec-
onds on average compared to Z3’s 175.05 seconds) and 1.51
times more consistent in terms of standard deviation (198.67
seconds versus Z3’s 300.15 seconds).

Across both interesting benchmarks, Algaroba solves the
most sat queries (167 versus cvc5’s 70), and the second most
unsat queries (322 versus Z3’s 406). The average (median)
increase in query size from our reduction was 259x (146x).
Given the overall success of Algaroba on both interesting
benchmark sets, we answer RQ1 by concluding that our per-
formance compares favorably to the state of the art.

5.2 RQ2: Contribution Rank
Measuring overall performance is useful but it does not
give an accurate perspective on how the community uses
these tools. When faced with an SMT query, practitioners
are likely to use multiple different solvers. This could be in
parallel, like (Rungta 2022), or through algorithm selection,
like (Pimpalkhare et al. 2021). Contribution ranks capture
this practical perspective by evaluating solvers in terms of
how complementary they are to other solvers. A higher rank
means a higher contribution to the community of solvers.

To evaluate how complementary our approach is to ex-
isting solvers, we use SMT-COMP’s contribution ranking.
This ranking uses the notion of a virtual best solver, which
is defined as vb(q, S) ≜ s(q), where S is a set of solvers and
s is the solver in S that terminates most quickly on q. In-
formally, the ranking answers, “which solver can I remove
from the virtual best solver to hurt performance the most?”

In terms of number of queries solved (the primary SMT-
COMP metric), there is a four-way tie on the BST bench-
mark set—all solvers solve all queries. For both other bench-
mark sets, Algaroba is ranked highest. For blocks world, the
virtual best solver without Algaroba succeeds on 56.2% of
the queries, less than Algaroba on its own (61.4%). With Al-
garoba, the virtual best solver succeeds on 62.2%. For Bou-
vier, without Algaroba, the virtual best solver succeeds on
64.25% of the queries. With Algaroba, this number rises to
83.75%. These positive results are in part because Algaroba
solves the most queries, but are mainly due to the unique-
ness of our approach. cvc5 and Z3 use a similar underlying
algorithm, so removing one does not affect the performance
of the virtual best solver. On the other hand, while Princess

is the most similar approach to our own, their reduction is
different enough to not interfere with our ranking. In short,
we solve many queries that no other solver can (108/900).

Given the winning contribution rank of Algaroba on both
interesting benchmark sets, we answer RQ2 by concluding
that our performance is complementary to existing solvers—
we solve many benchmarks that no other solver can.

6 Related Work

Most solvers for quantifier-free ADT queries use a lazy
SMT architecture, i.e., they use a theory specific solver to
handle the data types and a core solver to handle the log-
ical formula (Sebastiani 2007). A common theory solver
will use a combination of congruence closure, syntactic uni-
fication, and acyclicality checks (Barrett, Shikanian, and
Tinelli 2007; Oppen 1980; Reynolds and Blanchette 2017;
Reynolds et al. 2018). This is the case for popular SMT
solvers like cvc5 (Barbosa et al. 2022), SMTInterpol (Christ,
Hoenicke, and Nutz 2012), and Z3 (de Moura and Bjørner
2008). cvc5 and SMTInterpol were the only two partic-
ipants in the most recent SMT-COMP for quantifier-free
ADT queries. We differ in that we take an eager approach.

Princess (Hojjat and Rümmer 2017) also takes an eager
approach. However, Princess reduces queries to UF and Lin-
ear Integer Arithmetic (LIA). LIA makes keeping track of
the depth of ADT terms easy, but their reduction results in
queries that are more difficult to solve (see Sec. 5).

The scope of our work is quantifier-free ADT queries.
However, there is existing related work that deals with quan-
tifiers. De Angelis et al. (2020) and Kostyukov, Mordvi-
nov, and Fedyukovich (2021) provide approaches to solving
ADT Constrained Horn Clauses (CHCs). Other approaches
(Suter, Dotta, and Kuncak 2010; Pham and Whalen 2014)
support restricted forms of recursive functions (called cata-
morphisms) via partially evaluating these functions. Kovács,
Robillard, and Voronkov (2017) provides two decision pro-
cedures for quantified ADTs.

7 Conclusions

As the popularity of ADTs continues to grow, the demand
for efficient SMT solvers that can handle ADTs will in-
crease. Unfortunately, there are few existing solvers in this
space and the performance of these solvers can be improved.

We introduced a reduction from quantifier-free ADT
queries to quantifier-free UF queries. This approach is
sound, complete, and eager, while most existing approaches
are lazy. We implemented a prototype tool of our approach
and compared with against existing solvers. We found that
we can solve more queries using less time. More impor-
tantly, we found that we make the largest empirical contri-
bution to the solving community.

In the future, we intend to support proof generation, quan-
tifiers, and hybrid eager and lazy approaches. We will also
experiment with different back-end solvers and techniques
for automatically selecting back-ends per input query.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8105

Acknowledgements
We would like to thank Adwait Godbole, Ameesh Shah, Ji-
won Park and Shangyin Tan for their insightful feedback.
This work was supported in part by a Qualcomm Innovation
Fellowship, NSF grant 1837132, DARPA contract FA8750-
20-C-0156, an Amazon Research Award, Toyota under the
iCyPhy center, a UC Berkeley Summer Undergraduate Re-
search Fellowship, and by Intel under the Scalable Assur-
ance program.

References
Barbosa, H.; Barrett, C.; Brain, M.; Kremer, G.; Lachnitt,
H.; Mann, M.; Mohamed, A.; Mohamed, M.; Niemetz, A.;
Nötzli, A.; Ozdemir, A.; Preiner, M.; Reynolds, A.; Sheng,
Y.; Tinelli, C.; and Zohar, Y. 2022. cvc5: A Versatile and
Industrial-Strength SMT Solver. In Fisman, D.; and Rosu,
G., eds., Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 415–442. Cham: Springer In-
ternational Publishing.
Barrett, C.; de Moura, L.; Ranise, S.; Stump, A.; and Tinelli,
C. 2011. The SMT-LIB Initiative and the Rise of SMT:
(HVC 2010 Award Talk). In Hardware and Software: Veri-
fication and Testing, 3–3. Springer.
Barrett, C.; Fontaine, P.; and Tinelli, C. 2017. The SMT-LIB
Standard Version 2.6. https://smtlib.cs.uiowa.edu/papers/
smt-lib-reference-v2.6-r2017-07-18.pdf.
Barrett, C.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C.
2021. Satisfiability Modulo Theories. In Biere, A.; Heule,
M.; van Maaren, H.; and Walsh, T., eds., Handbook of Satis-
fiability, chapter 33, 1267–1329. IOS Press, second edition.
Barrett, C.; Shikanian, I.; and Tinelli, C. 2007. An Abstract
Decision Procedure for Satisfiability in the Theory of Re-
cursive Data Types. Electronic Notes in Theoretical Com-
puter Science, 174(8): 23–37. Combined Proceedings of
the Fourth Workshop on Pragmatics of Decision Procedures
in Automated Reasoning (PDPAR 2006) and the First In-
ternational Workshop on Probabilistic Automata and Logics
(PaUL 2006).
Biere, A.; Cimatti, A.; Clarke, E.; and Zhu, Y. 1999. Sym-
bolic model checking without BDDs. In Tools and Al-
gorithms for the Construction and Analysis of Systems
(TACAS), 193–207. Springer.
Bjørner, N.; Ganesh, V.; Michel, R.; and Veanes, M. 2012.
An SMT-LIB format for sequences and regular expressions.
SMT, 12: 76–86.
Bouvier, P. 2021. The VLSAT-3 Benchmark Suite. INRIA
Technical Report 516.
Brummayer, R.; and Biere, A. 2009. Boolector: An Efficient
SMT Solver for Bit-Vectors and Arrays. In Kowalewski,
S.; and Philippou, A., eds., Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 174–177.
Berlin, Heidelberg: Springer Berlin Heidelberg.
Burch, J. R.; and Dill, D. L. 1994. Automatic verification of
pipelined microprocessor control. In Computer Aided Veri-
fication (CAV), 68–80. Springer.

Burstall, R. M. 1977. Design considerations for a functional
programming language. Proc. Infotech State of the Art Conf.
“The Software Revolution”’, 45–57.
Cadar, C.; Ganesh, V.; Pawlowski, P. M.; Dill, D. L.; and
Engler, D. R. 2008. EXE: Automatically generating inputs
of death. ACM Transactions on Information and System Se-
curity (TISSEC), 12(2): 1–38.
Christ, J.; Hoenicke, J.; and Nutz, A. 2012. SMTInterpol:
An Interpolating SMT Solver. In Donaldson, A.; and Parker,
D., eds., Model Checking Software, 248–254. Berlin, Hei-
delberg: Springer Berlin Heidelberg.
Clarke, E.; Biere, A.; Raimi, R.; and Zhu, Y. 2001. Bounded
model checking using satisfiability solving. Formal methods
in system design, 19: 7–34.
De Angelis, E.; Fioravanti, F.; Pettorossi, A.; and Proietti, M.
2020. Removing Algebraic Data Types from Constrained
Horn Clauses Using Difference Predicates. In Peltier, N.;
and Sofronie-Stokkermans, V., eds., Automated Reasoning,
83–102. Cham: Springer International Publishing.
de Moura, L.; and Bjørner, N. 2008. Z3: An Efficient SMT
Solver. In Ramakrishnan, C. R.; and Rehof, J., eds., Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS), 337–340. Berlin, Heidelberg: Springer Berlin Hei-
delberg.
Ershov, A. P. 1958. On Programming of Arithmetic Opera-
tions. Commun. ACM, 1(8): 3–6.
Goetz, B. 2022. JEP 360: Sealed Classes (Preview). https:
//openjdk.org/jeps/360. Accessed: 2023-08-15.
Gupta, N.; and Nau, D. S. 1992. On the complexity of
blocks-world planning. Artificial intelligence, 56(2-3): 223–
254.
Hoare, C. A. R. 1975. Recursive data structures. Interna-
tional Journal of Computer & Information Sciences, 4(2):
105–132.
Hojjat, H.; and Rümmer, P. 2017. Deciding and Interpolating
Algebraic Data Types by Reduction. In 2017 19th Interna-
tional Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC), 145–152.
Hudak, P.; Hughes, J.; Peyton Jones, S.; and Wadler, P. 2007.
A history of Haskell: being lazy with class. In Proceedings
of the third ACM SIGPLAN conference on History of pro-
gramming languages, 12–1.
Jung, R.; Jourdan, J.-H.; Krebbers, R.; and Dreyer, D. 2021.
Safe systems programming in Rust. Communications of the
ACM, 64(4): 144–152.
Kautz, H.; and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In Pro-
ceedings of the national conference on artificial intelligence,
1194–1201.
Kautz, H. A.; Selman, B.; et al. 1992. Planning as Satisfia-
bility. In ECAI, volume 92, 359–363. Citeseer.
Kostyukov, Y.; Mordvinov, D.; and Fedyukovich, G. 2021.
Beyond the Elementary Representations of Program Invari-
ants over Algebraic Data Types. In Programming Lan-
guage Design and Implementation, PLDI 2021, 451–465.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8106

New York, NY, USA: Association for Computing Machin-
ery. ISBN 9781450383912.
Kovács, L.; Robillard, S.; and Voronkov, A. 2017. Coming
to Terms with Quantified Reasoning. In Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Program-
ming Languages, POPL ’17, 260–270. New York, NY, USA:
Association for Computing Machinery.
Lubarsky, R. 2008. Ian Chiswell and Wilfrid Hodges. Math-
ematical logic. Oxford Texts in Logic, vol. 3. Oxford Uni-
versity Press, Oxford, England, 2007, 250 pp. Bulletin of
Symbolic Logic, 14(2): 265–267.
Milner, R. 1997. The definition of standard ML: revised.
MIT press.
Oppen, D. C. 1980. Reasoning About Recursively Defined
Data Structures. J. ACM, 27(3): 403–411.
Pham, T.-H.; and Whalen, M. W. 2014. An Improved
Unrolling-Based Decision Procedure for Algebraic Data
Types. In Cohen, E.; and Rybalchenko, A., eds., Verified
Software: Theories, Tools, Experiments, 129–148. Berlin,
Heidelberg: Springer Berlin Heidelberg.
Pimpalkhare, N.; Mora, F.; Polgreen, E.; and Seshia, S. A.
2021. MedleySolver: Online SMT Algorithm Selection. In
Li, C.; and Manyà, F., eds., Theory and Applications of Sat-
isfiability Testing, volume 12831 of Lecture Notes in Com-
puter Science, 453–470. Springer.
Reynolds, A.; and Blanchette, J. C. 2017. A Decision Pro-
cedure for (Co)datatypes in SMT Solvers. Journal of Auto-
mated Reasoning, 58(3): 341–362.
Reynolds, A.; Viswanathan, A.; Barbosa, H.; Tinelli, C.;
and Barrett, C. 2018. Datatypes with Shared Selectors. In
Galmiche, D.; Schulz, S.; and Sebastiani, R., eds., Auto-
mated Reasoning, 591–608. Cham: Springer International
Publishing.
Rintanen, J. 2003. Symmetry Reduction for SAT Represen-
tations of Transition Systems. In ICAPS, 32–41.
Rümmer, P.; and Wahl, T. 2010. An SMT-LIB theory of
binary floating-point arithmetic. In International Workshop
on Satisfiability Modulo Theories (SMT), 151.
Rungta, N. 2022. A billion SMT queries a day. In Computer
Aided Verification (CAV), 3–18. Springer.
Russell, S. J. 2010. Artificial intelligence a modern ap-
proach. Pearson Education, Inc.
Salgado, P. G. 2023. What’s New In Python 3.10. https:
//docs.python.org/3.10/whatsnew/3.10.html\#summary-
release-highlights. Accessed: 2023-08-15.
Sebastiani, R. 2007. Lazy Satisfiability Modulo Theories.
Journal on Satisfiability, Boolean Modeling and Computa-
tion, 3: 141–224.
Seshia, S. A. 2005. Adaptive Eager Boolean Encoding for
Arithmetic Reasoning in Verification. Ph.D. thesis, Carnegie
Mellon University.
Sussman, G. J. 1973. A Computational Model of Skill Ac-
quisition. Technical report, Massachusetts Institute of Tech-
nology, USA.

Suter, P.; Dotta, M.; and Kuncak, V. 2010. Decision Pro-
cedures for Algebraic Data Types with Abstractions. SIG-
PLAN Not., 45(1): 199–210.
Winograd, T. 1971. Procedures as a representation for data
in a computer program for understanding natural language.
AI-TR. M.I.T. Project MAC.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8107

