
Approximate Integer Solution Counts over Linear Arithmetic Constraints

Cunjing Ge1, 2

1National Key Laboratory for Novel Software Technology, Nanjing University, China
2School of Artificial Intelligence, Nanjing University, China

gecunjing@nju.edu.cn

Abstract

Counting integer solutions of linear constraints has found in-
teresting applications in various fields. It is equivalent to the
problem of counting lattice points inside a polytope. How-
ever, state-of-the-art algorithms for this problem become too
slow for even a modest number of variables. In this pa-
per, we propose a new framework to approximate the lat-
tice counts inside a polytope with a new random-walk sam-
pling method. The counts computed by our approach has
been proved approximately bounded by a (ϵ, δ)-bound. Ex-
periments on extensive benchmarks show that our algorithm
could solve polytopes with dozens of dimensions, which sig-
nificantly outperforms state-of-the-art counters.

Introduction
As one of the most fundamental type of constraints, linear
constraints (LCs) have been studied thoroughly in many ar-
eas. In this paper, we consider the problem of counting ap-
proximately the number of integer solutions of a set of LCs.
This problem has many applications, such as counting-based
search (Zanarini and Pesant 2007; Pesant 2016), simple tem-
poral planning (Huang et al. 2018), probabilistic program
analysis (Geldenhuys, Dwyer, and Visser 2012; Luckow
et al. 2014), etc.. It also includes as a special case sev-
eral combinatorial counting problems that have been stud-
ied, like that of estimating the permanent of a matrix (Jerrum
and Sinclair 1989; Gamarnik and Katz 2010; Harviainen,
Röyskö, and Koivisto 2021), the number of contingency ta-
bles (Cryan et al. 2002; Desalvo and Zhao 2020), solutions
to knapsack problems (Dyer et al. 1993), etc.. Moreover, it
can be incorporated as a subroutine for #SMT (LA) (Ge et al.
2018). Since a set of LCs represents a convex polytope, its
integer solutions correspond to lattice points inside the poly-
tope. Accordingly, we do not distinguish the concepts of
polytopes and sets of LCs in this paper.

It is well-known that counting lattice points in a poly-
tope is #P-hard (Valiant 1979). On the implementation front,
the first practical tool for lattice counting is LATTE (Lo-
era et al. 2004), which is an implementation of Barvi-
nok’s algorithm (Barvinok 1993, 1994). The tool BARVI-
NOK (Verdoolaege et al. 2007) is the successor of LATTE

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with an in general better performance. In practice, it often
still has difficulties when the number of variables is greater
than 10 (preventing many applications). The relation be-
tween the number of lattice points inside a polytope and the
volume of a polytope has been studied for approximate inte-
ger counting (Ge et al. 2019). However, it is inevitable that
the approximation bounds may far off from exact counts. A
more recent work (Ge and Biere 2021) introduced factoriza-
tion preprocessing techniques to reduce polytopes dimen-
sionality, which are orthogonal to lattice counting, they also
require polytopes in specific forms.

An algorithm for sampling lattice points in a polytope
was introduced in (Kannan and Vempala 1997), which can
be used to approximate the integer solution count, though
we are not aware of any implementation. Since then, there
have been a lot of works about sampling real points, such
as Hit-and-run method (Lovász 1999; Lovász and Vempala
2006a), and approximating polytopes’ volume (Lovász and
Deák 2012; Cousins and Vempala 2015, 2018). As a result,
the state-of-the-art volume approximation algorithms could
solve general polytopes around 100 dimensions. Naturally,
we wonder if they could be extended to integer cases.

The primary contribution of this paper is a novel approx-
imate lattice counting algorithm, in detail, it includes new
methods with theoretical results as follows.

• A lattice sampling method is introduced, which is a com-
bination of Hit-and-run random walk and rejection sam-
pling. We proved that it generates samples in distribution
limited by Hit-and-run method, which is nearly uniform.

• A dynamic stopping criterion is proposed, which could
be calculated by variance of approximations while run-
ning. We proved that errors of outputs approximately lie
in [1− ϵ, 1+ ϵ] with probability at least 1− δ, given ϵ, δ.

We evaluated our algorithm on an extensive set of random
and application benchmarks. We not only compared our tool
with integer counters, but also with #SAT counters by trans-
lating LCs into propositional logic formulas. Experimental
results show that our approach scales to polytopes up to
80 dimensions, which significantly outperforms the state-of-
the-art counters. We also observe that counts computed by
our algorithm are bounded well by theoretical guarantees.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8022

Background
In this section, we first present definitions of notations, and
then briefly describe the sampling and volume approxima-
tion algorithms which inspired us.

Notations and Preliminaries
Definition 1. A linear constraint is an inequality of the form
a1x1 + · · ·+ anxn op b, where xi are numeric variables, ai
are constant coefficients, and op ∈ {<,≤, >,≥,=}.

Without loss of generality, a set of linear constraints can
be written in the form of: {Ax⃗ ≤ b⃗}, where A is a m × n

coefficient matrix and b⃗ is a 1 × n constant vector. In the
view of geometry, a linear constraint is a halfspace, and a set
of linear constraints is an n-dimensional polytope.
Definition 2. An n-dimensional polytope is in the form of

P = {x⃗ ∈ Rn : Ax⃗ ≤ b⃗}.
Naturally, Zn represents the set of all integer points

(points with all integer coordinates). Thus integer models
of the linear constraints can be represented by {x⃗ ∈ Zn :

Ax⃗ ≤ b⃗}. It is the same as the integer points inside the cor-
responding polytope, i.e.,

{x⃗ ∈ Zn : Ax⃗ ≤ b⃗} = P ∩ Zn.

In this paper, we assume that the polytopes are bounded,
i.e., finite number of integer solutions, otherwise, it can be
easily detected via Integer Linear Programming (ILP). Note
that in our experiments, the running time of ILP is usually
negligible compared to that of the integer counting.
Definition 3. More notations:
• Let A = (A⃗1, ..., A⃗m)T and hi = A⃗ix⃗ ≤ bi, given P =

{Ax⃗ ≤ b⃗}, i.e., P = h1 ∩ ... ∩ hm.
• Let Vol(K) denote the volume of a given convex set K,

which is the Lebesgue measure of |K| in Euclidian space.
• Let C(x⃗) denote the unit cube centered at x⃗.
• Let B(x⃗, r) denote the ball centered at x⃗, of radius r.

Hit-and-run Method
Hit-and-run random walk method was first introduced in
(Berbee et al. 1987), whose limiting distribution is proved to
be uniform. It was employed and improved for volume ap-
proximation by (Lovász 1999; Lovász and Vempala 2006a).
Experiments (Ge et al. 2018) showed that a variation called
Coordinate Directions Hit-and-run is more efficient in prac-
tice. Thus we also adopt this variation, which is called Hit-
and-run for short in the rest of paper. It samples a real point
from p⃗ in a given convex body K by the following steps:
• Select a direction from n coordinates uniformly.
• Generate the line l through p⃗ with above direction.
• Pick a next point p⃗′ uniformly from l ∩K.
• Start from p′ and repeat above steps w times.

Earlier works (Lovász and Vempala 2006a) proved that Hit-
and-run method mixes in w = O(n2) steps for a random
initial point and O(n3) steps for a fixed initial point. How-
ever, further numerical studies (Lovász and Deák 2012; Ge
et al. 2018) reported that w = n is sufficient for nearly uni-
formly sampling in polytopes with dozens of dimensions.

Multiphase Monte-Carlo Algorithm
Multiphase Monte-Carlo Algorithm (MMC) is a polynomial
time randomized algorithm, which was first introduced in
(Dyer, Frieze, and Kannan 1991). At first, the complex-
ity is O∗(n23), it was reduced to O∗(n3) by a series of
works (Lovász 1999; Lovász and Vempala 2006b; Cousins
and Vempala 2018). It consists of the following steps:

• Employ an Ellipsoid method to obtain an affine trans-
formation T , s.t., B(⃗0, 1) ⊂ T (P) ⊂ B(⃗0, ρ), given a
ρ > n. Note that Vol(P) = Vol(T (P)) · det(T).

• Construct a series of convex bodies Ki = T (P) ∩
B(⃗0, 2i/n), i = 0, ..., l, where l = ⌈n log2 ρ⌉. Then

Vol(T (P)) = Vol(Kl) = Vol(K0) ·
l−1∏
i=0

Vol(Ki+1)

Vol(Ki)
.

Specifically, K0 = B(⃗0, 1) and Kl = T (P).
• Generate a set Si of sample points by Hit-and-run in
Ki+1, where |Si| = f(l, ϵ, δ). Then count |Ki ∩ Si| and
use ri =

|Ki∩Si|
|Si| to approximate the ratio Vol(Ki+1)

Vol(Ki)
.

• At last, Vol(P) ≈ Vol(B(⃗0, 1)) ·
∏l−1

i=0 ri · det(T).
Note that the function f(l, ϵ, δ) determines the number of

samples with given ϵ, δ, s.t., relative errors of outputs are
bounded in [1− ϵ, 1 + ϵ] with probability at least 1− δ.

Algorithm
To apply MMC framework and Hit-and-run random walk on
lattice counting problem, there are some difficulties:

• How to efficiently sampling lattice points nearly uni-
formly inside a polytope?

• How to construct a chain of polytopes and then approxi-
mate ratios among them like MMC?

• How many sample points are sufficient, given ϵ, δ? Could
relative errors be computed while algorithm running?

In this section, we will propose new algorithms to answer
above questions, with theoretical analysis.

Lattice Sampling
To sampling lattice points in a given polytope P , we apply
Hit-and-run random walk method with rejection sampling.

Intuitively, a real point p⃗ = (p1, ..., pn) corresponds to
a lattice point [⃗p] = ([p1], ..., [pn]). So lattice points can
be generated by Hit-and-run method and number rounding,
noted [.]. However, the distribution of lattices generated by
sampling real points directly in P is not uniform. Because
the probability of sampling a lattice point u⃗ closed to poly-
topes’ facets may be smaller than a point v⃗ which C(v⃗) ⊂ P .

Example 1. In Figure 1, the probability of a blue point
picked by sampling directly in P , is smaller than a red point.
Now let us consider shifting c to l1, l2 and l3. Note that
C(u3) ⊂ a ∩ b ∩ l2 ⊂ a ∩ b ∩ l3, but C(u3) ̸⊂ a ∩ b ∩ l1.
Then the probability of picking u3 by sampling real points in
a ∩ b ∩ l2 or a ∩ b ∩ l3 is the same as red points.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8023

Figure 1: An illustration of shifting facets. Here P =
△ABC = a∩b∩c, where a, b and c are inequalities (half-
spaces) correspond to AB, BC, AC, respectively. Inequal-
ities l1, l2, l3 are parallel to c. Red points {v1, ..., v5} and
blue points {u1, ..., u9} are lattice points in P s.t. C(vi) ⊂
P and C(ui) ̸⊂ P respectively.

Therefore, our approach first enlarges P to P ′ by shift-
ing facets of P . Then it repeatedly generates real points in
P ′ and rejects samples whose corresponding lattice points
outside P . Obviously, the larger P ′, the larger probability of
rejection. Now we have a further question:
• How to obtain such P ′ as small as possible?

Naturally, P ′ should contain all unit cubes centered at lat-
tice points in P , i.e.,

C(p⃗) ⊂ P ′, ∀p⃗ ∈ P ∩ Zn.

Without loss of generality, let us consider shifting the ith
facet A⃗ix⃗ ≤ bi. The hyperplane shifting problem is equiva-
lent to the following optimization problem

min b′i s.t. C(p⃗) ⊂ A⃗ix⃗ ≤ b′i, ∀p⃗ ∈ P ∩ Zn.

⇔max b′i s.t. [C(p⃗) ∩ A⃗ix⃗ = b′i] ̸= ∅, ∃p⃗ ∈ P ∩ Zn.

⇔max A⃗ix⃗ s.t. x⃗ ∈
⋃

p⃗∈P∩Zn

C(p⃗), x⃗ ∈ Rn.

In the worst case, assume there is a lattice point q⃗ on the ith
facet of P , i.e., A⃗iq⃗ = bi. Then we have

⇔max A⃗ix⃗ s.t. x⃗ ∈ C(q⃗), x⃗ ∈ Rn.

⇔ bi +max A⃗ix⃗ s.t. x⃗ ∈ C (⃗0), x⃗ ∈ Rn. (1)

The optimization problem of Equation (1) can be solved by
Linear Programming (LP), e.g., Simplex algorithm.

Algorithm 1 is the pseudocode of our sampling method.
It first enlarges P to P ′ by the shifting method. Next it ap-
plies the Shallow-β-Cut Ellipsoid method on P ′ which is the
same as MMC. It obtains an affine transformation T such
that B(0, 1) ⊂ T (P ′) ⊂ B(0, 2n). Then it samples a lattice
point q⃗ by [T−1(p⃗)], where p⃗ is a real sample point generated
by Hit-and-run in T (P ′), and T−1 is the inverse transforma-
tion of T . The algorithm only accepts samples inside P . At
last it repeats above steps till |S| = s. The parameter w will
be discussed later in Section .

Why we adopt an affine transformation T before random
walks? Intuitively, it could transform a ‘thin’ polytope P ′

into is a well-rounded one T (P ′). Thus it is easier for Hit-
and-run walks to get out of corners.

Algorithm 1: Sample() – Sample s lattice points in P

Input: P , s
Parameter: w
Output: S

1: for each A⃗ix⃗ ≤ bi in P do
2: vi ← Simplex(max A⃗ix⃗ s.t. {− 1

2 ≤ xi ≤ 1
2})

3: end for
4: P ′ ← {Ax⃗ ≤ b⃗+ v⃗}
5: T ← Ellipsoid(P ′)
6: p⃗← 0⃗, S ← ∅
7: repeat s times
8: do
9: p⃗← HitAndRun(T (P ′), p⃗, w)

10: q⃗ ← [T−1(p⃗)]
11: while q⃗ ̸∈ P
12: S ← S ∪ {q⃗}
13: end repeat

The following results show that Algorithm 1 generates lat-
tice sample points in nearly uniform.

Lemma 1. The probability of acceptance is |P∩Zn|
Vol(P ′) , if Hit-

and-run is a uniform sampler.

Proof. Assume x⃗ is generated by Hit-and-run method. Then

Prob(x⃗ accepted) = Prob([T−1(x⃗))] ∈ P)

=Prob(x⃗ ∈ ∪p⃗∈P∩ZnT (C(p⃗)))

=
Vol(∪p⃗∈P∩ZnT (C(p⃗)))

Vol(T (P ′))

=

∑
p⃗∈P∩Zn Vol(C(p⃗))/ det(T)

Vol(P ′)/ det(T)
=
|P ∩ Zn|
Vol(P ′)

.

Theorem 1. Each point x⃗ ∈ P ∩ Zn gets picked with the
same probability, if Hit-and-run is a uniform sampler.

Proof. Consider an arbitrary point x⃗ ∈ P ∩Zn. Let p⃗ repre-
sents a real point generated by Hit-and-run in T (P ′). Then

Prob(x⃗ picked) =
Prob(p⃗ ∈ T (C(x⃗)))

Prob(p⃗ accepted)

=
Vol(T (C(x⃗)))

Vol(T (P ′))
· Vol(P ′)

|P ∩ Zn|
=

1

|P ∩ Zn|
.

From Lemma 1, we observe that the acceptance could be
very small when |P ∩ Zn| ≪ Vol(P ′).

Polytopes Chain Generation
Now we consider a chain of polytopes {P0, ..., Pl} s.t.

|P ∩ Zn| = |P0 ∩ Zn| ·
l−1∏
i=0

|Pi+1 ∩ Zn|
|Pi ∩ Zn|

,

|Pi+1 ∩ Zn|
|Pi ∩ Zn|

∈
{
[rmin, rmax] i ≤ l − 2,

[rmin, 1) i = l − 1.

(2)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8024

Algorithm 2: Subdivision() – Obtain the polytopes chain
Input: P , s
Parameter: rmax, rmin, µ
Output: l, {Pi}, {Si}

1: P0 ← GetRect(P)
2: i← 0, j ← 1 and S0 ← ∅
3: while j ≤ m do
4: Si ← Sample(Pi, s)
5: H ← Rn

6: while |Si∩H∩hj|
|Si| > rmax and j ≤ m do

7: H ← H ∩ hj, j ← j + 1
8: end while
9: k ← min(j,m)

10: if |Si∩H∩hk|
|Si| ≥ rmin then

11: H ← H ∩ hk, j ← k + 1
12: else
13: do
14: A⃗′

k ← A⃗k or Disturb(Ak, µ) since second loop

15: find min b′k s.t. |Si∩H∩A⃗′
kx⃗≤b′k|

|Si| ≥ rmin, b′k ≥ bk
16: while no feasible b′k found
17: H ← H ∩ A⃗′

kx⃗ ≤ b′k
18: end if
19: Pi+1 ← Pi ∩H
20: i← i+ 1
21: end while
22: return i, {P0, ..., Pi}, {S0, ..., Si}

where [rmin, rmax] bounds ratios close to 1
2 , like [0.4, 0.6].

If ratios are close to 0, the computational cost of generat-
ing points in Pi+1 ∩ Zn by sampling in Pi ∩ Zn will in-
crease. On the other hand, l will be a large number when
ratios are close to 1, which is also not computational-wise.
Algorithm 2 presents our method for constructing such Pis.

Recall that in MMC, it eventually approximates the ratio
between volume of P and an inner ball B(⃗0, 1) whose ex-
act volume is easy to compute. It constructs a series of con-
vex body Ki inside P . Lemma 1 indicates that the smaller
polytope, the more difficult to sampling lattice points, nat-
urally, we would like to construct polytopes chain outside
P . Our approach starts from an n-dimensional rectangle
P0 = Rect(P) ⊃ P , whose exact lattice count is also easy
to obtain. Next it constructs P1 ⊃ P by adding new cutting
constraints on P0, s.t. |P1∩Zn|

|P0∩Zn| close to 1
2 . Then it repeatedly

generates P1 ⊃ P2 ⊃ ... until a polytope Pl = P found.

• How to find cutting constraints to halve Pis?

Example 2. In Figure 2, given P = △ABC = a ∩ b ∩ c,
and P0 = ADEF ⊃ P . Now we try to cut P0 with a, b
and c. We observe that |P0∩a∩b∩Zn|

|P0∩Zn| = 10
15 > rmax and

|P0∩a∩b∩c∩Zn|
|P0∩Zn| = 4

15 < rmin. Then we find d parallel to c

s.t. |P0∩a∩b∩d∩Zn|
|P0∩Zn| = 8

15 . Thus P1 = P0 ∩ a ∩ b ∩ d.

Suppose that we already have P0 ⊃ ... ⊃ Pi which Pi ⊂
h1 ∩ ... ∩ hj−1 and Pi ̸⊂ hj. Then cutting constraints for
constructing Pi+1 are found by the following steps:

Figure 2: An example of constructing P0 = ADEF , P1 =
ABCHG and P2 = △ABC = P .

• Step 1. Add constraints hj, hj+1,... repeatedly until a k

is found s.t. |Pi∩hj∩...∩hk∩Zn|
|Pi∩Zn| ≤ rmax or k = m.

• Step 2. If |Pi∩hj∩...∩hk∩Zn|
|Pi∩Zn| ≥ rmin, then Pi+1 = Pi ∩

hj ∩ ... ∩ hk has been found. Note that Pi+1 = Pl = P
when k = m.

• Step 3. Otherwise, it indicates that hk over-cuts the so-
lution space. Then we find an h′

k = A⃗′
kx⃗ ≤ b′k (almost)

parallel to hk s.t. rmin ≤ |Pi∩hj∩...∩h′
k∩Zn|

|Pi∩Zn| ≤ rmax. At
last, let Pi+1 = Pi ∩ hj ∩ ... ∩ hk−1 ∩ h′

k.

About above steps, we may naturally ask:

• How to determine the value of |Pi∩hj∩...∩hk∩Zn|
|Pi∩Zn| ?

Algorithm 2 samples lattice points Si in Pi and then ap-
proximates |Pi∩hj∩...∩hk∩Zn|

|Pi∩Zn| via |Si∩hj∩...∩hk|
|Si| . Since we

aim to obtain Pi+1 s.t. |Pi+1∩Zn|
|Pi∩Zn| close to 1

2 , it is not neces-
sary to approximate very accurately with a mass of samples.

• How to find h′
k in Step 3?

Line 13 to 16 in Algorithm 2 is the loop of finding h′
k. At

the first time of loop, it sets A⃗′
k = A⃗j and searches the mini-

mum b′k ≥ bk s.t. |Si∩H∩A⃗′
kx⃗≤b′k|

|Si| ≥ rmin. We then compute

and sort D = {d : d = A⃗kp⃗, ∀p⃗ ∈ Si ∩ H}. Thus search-
ing b′k is equivalent to scanning D, whose time complexity
is O(|D|) = O(|Si ∩H|) = O(s).

Note that there may be no feasible b′k, as for certain y,
|Si∩H∩A⃗kx⃗≤y|

|Si| > rmax, |Si∩H∩A⃗kx⃗<y|
|Si| < rmin. For exam-

ple, |x1+x2 = 0.99∩Z2| = 0 and |x1+x2 = 1∩Z2| =∞.
Therefore, if our algorithm fails to find a feasible b′k once, it
will generate A⃗′

k = {a′k1, ..., a′kn} by disturbing A⃗k, i.e.,
a′ki ∈ [aki − µ, aki + µ], where µ ∈ R is a small con-
stant. In practice, the loop in line 13–16 (Algorithm 2) usu-
ally finds a feasible b′k by disturbing A⃗′

k once, occasionally
twice, though the loop may not stop in theory in worst cases.

With respect to the size of l, it is easy to find the following
result as every Pi+1 is constructed by nearly halve Pi.

Theorem 2. The length l of the chain P0, .., Pl constructed
by Algorithm 2 is in O(log2 |P0 ∩ Zn|) in the worst case.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8025

Dynamic Stopping Criterion
Approximating |P ∩ Zn| is factorized into approximating a
series ratios |Pi+1∩Zn|

|Pi∩Zn| by Equation (2). Naturally, we could

approximate ratios via |Pi+1∩Si|
|Si| , where Si is a set of lattice

points sampled in Pi by Algorithm 1. A key question rises:
• How many sample points is sufficient to approximate
|P ∩ Zn| with certain guarantees, like an (ϵ, δ)-bound?

Let Ri denote the random variable of |Pi+1∩Si|
|Si| , and R =∏l−1

i=0 Ri. Note that Ris are mutually independent, since for
each Si, the random walk starts from origin 0⃗ ∈ T (P ′) (see
Algorithm 1). Thus we have the variance of R:

Var(R) = Var(
∏

Ri) = E((
∏

Ri)
2)− [E(

∏
Ri)]

2

=
∏

E(R2
i)− [

∏
E(Ri)]

2

=
∏

[Var(Ri) + E(Ri)
2]−

∏
[E(Ri)]

2. (3)

From Chebyshev inequality, we have:

Prob(|R− E(R)

E(R)
| ≥ ϵ) ≤ Var(R)

ϵ2 · E(R)2
≤ δ

⇒ Var(R) ≤ δ · ϵ2 · E(R)2. (4)

Equation (4) shows when the approximate result lies in [(1−
ϵ)|P ∩Zn|, (1 + ϵ)|P ∩Zn|] with probability at least 1− δ,
i.e., satisfies an (ϵ, δ)-bound. Thus we adopt Equation (4) as
the stopping criterion of approximation.

Given a set of sample Si, let ri = |Pi+1 ∩ Si|/|Si| and
r =

∏l−1
i=0 ri. We use r and ris to approximately represent

E(Ri)s and E(R) respectively (Lemma 3 shows that such
substitutions are safe). Then we split Si into N groups {Sij}
with the same size s/γ, where N = |Si| · γ/s is the number
of groups. Let rij = |Pi+1 ∩ Sij |/|Sij | and Rij denote the
random variable of rij . If Rijs are mutually independent and
follow the same distribution, we have

Var(Ri) = Var(

∑N
j=1 Rij

N
) =

1

N2

N∑
j=1

Var(Rij)

=
Var(Ri1)

N
≈ 1

N

N∑
j=1

(rij − ri)
2

N − 1
.

Note that Rij can be exactly mutually independent if random
walks start from a fixed point, however, it is not actually
necessary. Let vi =

∑ (rij−ri)
2

N(N−1) . As a result, an approximate
stopping criterion is obtained

Var(R) ≈
∏

(vi + r2i)− r2 ≤ δ · ϵ2 · r2. (5)

The pseudocode of the main framework is presented as
Algorithm 3. It first generates s sample points for each Pi

and then computes ris, vis, r and v. If Equation (5) satisfies,
it returns |P0 ∩ Zn| · r, otherwise, it repeats above steps.

Lemma 2. lim|Si|→∞ ri = |Pi+1∩Zn|
|Pi∩Zn| and lim|S|→∞ r =

|P∩Zn|
|P0∩Zn| , if Hit-and-run is a uniform sampler.

Algorithm 3: Approximate Lattice Counts
Input: P
Parameter: ϵ, δ, s, γ
Output: |P ∩ Zn|

1: (l, {Pi}, {Si})← Subdivision(P , s)
2: N ← 0
3: do
4: N ← N + γ
5: for i = 0 to l − 1 do
6: Si ← Si∪ Sample(Pi, s)
7: ri ← |Pi+1 ∩ Si|/|Si|
8: Split Si into N groups Si1, ..., SiN

9: rij ← |Pi+1 ∩ Sij |/|Sij |, j ∈ {1, ..., N}
10: vi ←

∑N
j=1

(rij−ri)
2

N(N−1)

11: end for
12: r ←

∏l−1
i=0 ri

13: v ←
∏l−1

i=0 (vi + ri)
2 − r2

14: while v ≤ δ · ϵ2 · r2
15: return |P0 ∩ Zn| · r

Proof. Note that sampling uniform in Pi and then count the
number of samples in Pi+1 is a Bernoulli trial.

Lemma 3. Equation (4) and (5) are approximately equiva-
lent, regardless of the difference between r and E(R).

Proof. Let c = r/E(R) and ci = ri/E(Ri) represent the
differences. Since ri = ci · E(Ri) = E(ciRi), we have

vi ≈ Var(ciRi) = c2i ·Var(Ri).

Equation (4) can be transformed into

δ · ϵ2 ≥
∏
(Var(Ri) + E(Ri)

2)

E(R)2
− 1

≈ c2

E(R)2
·
∏ Var(Ri) + E(Ri)

2

c2i
− 1

=

∏
(vi + r2i)

r2
− 1. (6)

Note that Equation (6) is the same as Equation (5).

From Lemma 2, 3 and Equation (5), we have
Theorem 3. The output of Algorithm 3 is approximately
bounded in an (ϵ, δ)-bound.

Implementation Details
The setting of parameters in Algorithm 1, 2 and 3 are listed
with explanations as the following:
• ϵ = 0.2 and δ = 0.1. They determine the bounds

of counts computed by our approach. Experimental re-
sults with more pairs of values, such as (0.5, 0.1) and
(0.1, 0.05), can be found in Section .

• w = n. It controls the number of Hit-and-run walks per
real sample point. Earlier theoretical results (Lovász and
Vempala 2006a) showed the upper bounds on w in the
Markov chain is O(n2) for a random initial point and

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8026

(a) ϵ = 0.5, δ = 0.1 (b) ϵ = 0.2, δ = 0.1 (c) ϵ = 0.1, δ = 0.05

Figure 3: Quality of counts computed by ALC with different ϵ and δ on cases whose exact counts are available. Each case was
experimented 10 times, i.e., 10 data points per case. The average running times of experiments in (a) (b) (c) are 0.19s (ϵ = 0.5,
δ = 0.1), 0.81s (ϵ = 0.2, δ = 0.1), 5.73s (ϵ = 0.1, δ = 0.05) respectively.

(a) Random polytopes. (b) Rotated thin rectangles. (c) Application instances.

Figure 4: Performance comparisons among tools on different families of benchmarks.

O(n3) for a fixed initial point. However, further numer-
ical studies (Lovász and Deák 2012; Ge et al. 2018) re-
ported that w = n is sufficient on polytopes with dozens
of dimensions. They also tried w = 2n and w = n lnn,
but no visible improvement. Thus we adopt w = n.

• s = 2/(δ · ϵ2): It controls the number of samples in one
round. We select this value, as 1/(δ ·ϵ2) uniform samples
are sufficient to approximate ri in (ϵ, δ)-bound. Note that
the total number of samples is determined by the stop-
ping criterion instead of s.

• rmin = 0.4, rmax = 0.6, µ = 0.005 and γ = 10.
In Algorithm 2, P0 = Rect(P) can be easily computed by

LP or ILP. Naturally, LP is cheaper than ILP, but the rectan-
gle generated by ILP is smaller. In practice, the cost of ILP
is usually negligible compared to entire counting algorithm.

In Algorithm 2 and 3, samples in Si ∩ Pi+1 can be reuti-
lized in Si+1. Thus we only have to generate s−|Si∩Pi+1|
new samples for Si+1. (Ge et al. 2018) proved that this tech-
nique has no side-effect on errors for approximating ratios.

Evaluation
We implemented a prototype tool called APPROXLAT-
COUNT (ALC) 1 in C++. Furthermore, we integrated ALC
into a DPLL(T)-based #SMT(LA) counter (Ge et al. 2018).
Experiments were conducted on Intel(R) Xeon(R) Gold

1Source code of ALC and experimental data including bench-
marks can be found at https://github.com/bearben/ALC.

6248 @ 2.50GHz CPUs with a time limit of 3600 seconds
and memory limit of 4 GB per benchmark. The setting of pa-
rameters of ALC has already been presented and discussed
in Section . The benchmark set consists of three parts:

• Random Polytopes: We generated 726 random polytopes
with three parameters (m,n, λ), where n ranges from 3
to 100, m ∈ {n/2, n, 2n} and λ ∈ {20, 21, ..., 210}. A
benchmark is in the form of {Ax⃗ ≤ b⃗,−λ ≤ xi ≤ λ},
where aij ∈ [−10, 10] ∩ Z and bi ∈ [−λ, λ] ∩ Z.

• Rotated Thin Rectangles: To evaluate the quality of ap-
proximations on “thin” polytopes, 180 n-dimensional
rectangles {−1000 ≤ x1 ≤ 1000,−τ ≤ xi ≤ τ, i ≥ 2}
were generated and then rotated randomly, where n ∈
{3, ..., 8} and τ ∈ {0.1, 0.2, ..., 2.9, 3.0}.

• Application Instances: We adopted 4131 benchmarks
(Ge and Biere 2021) from program analysis and simple
temporal planning. The domain of variables is [−32, 31].

We compared our tool ALC with the state-of-the-art
integer counter BARVINOK (Verdoolaege et al. 2007). On
random polytopes, we further compared our approach
with the state-of-the-art propositional model counters AP-
PROXMC4 (Soos and Meel 2019), CACHET (Sang et al.
2004), and GANAK (Sharma et al. 2019). We used the de-
fault settings of APPROXMC4 (ϵ = 0.8, δ = 0.2) and
GANAK (δ = 0.05). Note that they require CNF formulas
as inputs. Thus we first translated linear constraints into bit-
vector formulas, and then translated into propositional CNF

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8027

Dim n 3 4 5 6 7 8 10 12 14 15 20 30 40 50 60 70 80

ALC
#solve 33 33 33 33 33 33 33 30 29 28 22 14 11 10 5 4 1
avg. t̄ 0.03 0.05 0.07 0.19 0.65 0.50 85.6 42.6 48.8 151 156 286 249 1057 515 1684 3090
avg. l̄ 1.6 3.2 4.2 6.1 7.4 8.2 12.3 13.4 15.8 17.6 21.6 24.7 31.6 40.4 31.4 40.3 44

Barvinok #solve 33 33 33 33 22 11 0 0 0 0 0 0 0 0 0 0 0
avg. t̄ 0.22 0.24 2.72 105 1052 1158 — — — — — — — — — — —

Cachet #solve 27 18 17 13 11 9 6 3 2 0 0 0 0 0 0 0 0
avg. t̄ 161 71.8 537 396 291 434 601 483 2159 — — — — — — — —

Ganak #solve 25 17 13 11 9 8 5 3 3 0 0 0 0 0 0 0 0
avg. t̄ 68.7 256 9.4 187 27.6 198 169 390 2909 — — — — — — — —

ApproxMC4 #solve 33 33 32 22 19 13 10 5 4 3 0 0 0 0 0 0 0
avg. t̄ 1.16 9.78 81.3 98.4 136 121 580 608 673 1001 — — — — — — —

Table 1: More statistics of performance on random polytopes with respect to n (33 cases for each n, experiment once per case).

with BOOLECTOR (Niemetz et al. 2018). Translation times
are not included in the running times.

Figures 3 (a) (b) (c) show the relative errors (y-axis) of
counts computed by ALC with different (ϵ, δ) settings. The
experiments were conducted on random polytopes (case
91 ∼ 280) and rotated thin rectangles (case 1 ∼ 90) whose
exact counts could be obtained by BARVINOK and CACHET.
We run ALC 10 times on each cases. So there are 10 data
points per case, 2800 data points per figure. We observe that
the counts computed by ALC are bounded well. For exam-
ple, in Figure 3 (b), relative errors should lie in [0.8, 1.2] with
probability at least 90% with ϵ = 0.2, δ = 0.1.

Figures 4 (a) (b) (c) compare running times among tools
on different families of benchmarks. In general, ALC sig-
nificantly outperforms other tools. On random polytopes,
more results with respect to n are listed in Table 1, which
will be discussed later. Figure 4 (b) present the results on ro-
tated thin rectangles. Note that none of cases in this fam-
ily was solved in timeout by APPROXMC4, CACHET or
GANAK, due to larger coefficients and variable domains.
We observe jumps regarding running times of BARVINOK,
as n increases. Figure 4 (c) presents the results of compar-
isons over application instances which are all SMT(LA)
formulas. Since we only integrated ALC and BARVINOK
into the #SMT(LA) counter, we did not compare with other
tools. Note that ‘STN’ is the family of simple temporal
planning benchmarks, others are all generated by analyzing
C++ programs. We find that most benchmarks were solved
in one second by both tools, except ‘shellsort’ and ‘STN’
instances. On ‘shellsort’ instances, ALC significantly out-
performs BARVINOK. On ‘STN’ instances, ALC eventually
gains upper hand as the dimensionality increases.

Table 1 lists the number of solved cases and average
running times (exclude timeout cases) with respect to n.
For each n, there are 33 benchmarks. We find that ALC
could handle random polytopes up to 80 dimensions. “Avg.
l̄” means the average length of polytopes chain (exclude
timeout cases), which grows nearly linear. Note that AP-
PROXMC4, CACHET and GANAK could solve cases with
more variables (max to 15) than BARVINOK here, due to
benchmarks with λ = 1, i.e., −1 ≤ xi ≤ 1, which are in
favor of propositional model counters.

Related Works
There are a few related works which also investigate approx-
imate integer solution counting problem. In (Kannan and
Vempala 1997), an algorithm for sampling lattice points in
a polytope was introduced. Similar to Algorithm 1, it con-
siders an enlarged polytope P ′′ for real points sampling and
then rejects samples outside P , where

P ′′ = {x⃗ : A⃗ix⃗ ≤ bi + (c+
√
2 logm)|A⃗i|)},

c =
√
ln 4

ε and ε is the variational difference between the
uniform density and the probability density of real points
sampling. As a result, they proved that there exists a poly-
nomial time algorithm for nearly uniform lattice sampling
if bi ∈ Ω(n

√
m|A⃗i|). However, in practice, such condition

is often too loose. For example, benchmarks considered in
Section are usually smaller, i.e., bi < n

√
m|A⃗i|, especially

when n ≥ 10, which has a higher difficulty in sampling.
Also note that P ′ computed by our approach is tighter than
P ′′. Thus the probability of rejection by sampling in P ′ is
lower than in P ′′. In addition, back to the time of this work
published, the best real points sampler is only with time
complexity of O∗(n5). Nowadays, the state-of-the-art real
points sampler is in O∗(n3).

A more recent work (Ge and Biere 2021) introduced fac-
torization preprocessing techniques to reduce polytopes di-
mensionality. Suppose a polytope P has been factorized into
F1, ..., Fk, and |P ∩ Zn| =

∏k
i=1 |Fi ∩ Zni |, where ni rep-

resents the dimensionality of Fi. To approximate |P ∩ Zn|
with given ϵ, δ, we have to approximate counts in Fi with
smaller ϵ′, δ′. It indicates that factorization techniques inte-
grated with ALC may not as effective as with exact counters.

Conclusion
In this paper, a new approximate lattice counting frame-
work is introduced, with a new lattice sampling method and
dynamic stopping criterion. Experimental results show that
our algorithm significantly outperforms the state-of-the-art
counters, with low errors. Since our sampling method is lim-
ited by the Hit-and-run random walk, which is only a nearly
uniform sampler, we are interested in an efficient method to
test the uniformity of samplers in the future.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8028

Acknowledgments
This work is supported by National Key R&D Program of
China (2022ZD0116600). Cunjing Ge is supported by the
National Natural Science Foundation of China (62202218),
and is sponsored by CCF-Huawei Populus Grove Fund
(CCF-HuaweiFM202309).

References
Barvinok, A. I. 1993. Computing the Volume, Counting In-
tegral Points, and Exponential Sums. Discrete & Computa-
tional Geometry, 10: 123–141.
Barvinok, A. I. 1994. Computing the Ehrhart Polynomial
of a Convex Lattice Polytope. Discrete & Computational
Geometry, 12: 35–48.
Berbee, H. C. P.; Boender, C. G. E.; Kan, A. H. G. R.; Schef-
fer, C. L.; Smith, R. L.; and Telgen, J. 1987. Hit-and-run
algorithms for the identification of nonredundant linear in-
equalities. Math. Program., 37(2): 184–207.
Cousins, B.; and Vempala, S. S. 2015. Bypassing KLS:
Gaussian Cooling and an O*(n3) Volume Algorithm. In
Servedio, R. A.; and Rubinfeld, R., eds., Proc. STOC, 539–
548. ACM.
Cousins, B.; and Vempala, S. S. 2018. Gaussian Cooling
and O*(n3) Algorithms for Volume and Gaussian Volume.
SIAM J. Comput., 47(3): 1237–1273.
Cryan, M.; Dyer, M. E.; Goldberg, L. A.; Jerrum, M.; and
Martin, R. A. 2002. Rapidly Mixing Markov Chains for
Sampling Contingency Tables with a Constant Number of
Rows. In Proc. FOCS, 711–720. IEEE Computer Society.
Desalvo, S.; and Zhao, J. 2020. Random sampling of contin-
gency tables via probabilistic divide-and-conquer. Comput.
Stat., 35(2): 837–869.
Dyer, M. E.; Frieze, A. M.; and Kannan, R. 1991. A Random
Polynomial Time Algorithm for Approximating the Volume
of Convex Bodies. J. ACM, 38(1): 1–17.
Dyer, M. E.; Frieze, A. M.; Kannan, R.; Kapoor, A.;
Perkovic, L.; and Vazirani, U. V. 1993. A Mildly Expo-
nential Time Algorithm for Approximating the Number of
Solutions to a Multidimensional Knapsack Problem. Comb.
Probab. Comput., 2: 271–284.
Gamarnik, D.; and Katz, D. 2010. A deterministic approx-
imation algorithm for computing the permanent of a 0, 1
matrix. J. Comput. Syst. Sci., 76(8): 879–883.
Ge, C.; and Biere, A. 2021. Decomposition Strategies to
Count Integer Solutions over Linear Constraints. In Zhou,
Z., ed., Proc. of IJCAI, 1389–1395. ijcai.org.
Ge, C.; Ma, F.; Ma, X.; Zhang, F.; Huang, P.; and Zhang, J.
2019. Approximating Integer Solution Counting via Space
Quantification for Linear Constraints. In Kraus, S., ed.,
Proc. of IJCAI, 1697–1703. ijcai.org.
Ge, C.; Ma, F.; Zhang, P.; and Zhang, J. 2018. Computing
and estimating the volume of the solution space of SMT(LA)
constraints. Theor. Comput. Sci., 743: 110–129.
Geldenhuys, J.; Dwyer, M. B.; and Visser, W. 2012. Proba-
bilistic symbolic execution. In Proc. of ISSTA, 166–176.

Harviainen, J.; Röyskö, A.; and Koivisto, M. 2021. Approx-
imating the Permanent with Deep Rejection Sampling. In
Ranzato, M.; Beygelzimer, A.; Dauphin, Y. N.; Liang, P.;
and Vaughan, J. W., eds., Proc. of NeurIPS, 213–224.
Huang, A.; Lloyd, L.; Omar, M.; and Boerkoel, J. C. 2018.
New Perspectives on Flexibility in Simple Temporal Plan-
ning. In Proc. of ICAPS, 123–131.
Jerrum, M.; and Sinclair, A. 1989. Approximating the Per-
manent. SIAM J. Comput., 18(6): 1149–1178.
Kannan, R.; and Vempala, S. 1997. Sampling Lattice Points.
In Proc. of STOC, 696–700.
Loera, J. A. D.; Hemmecke, R.; Tauzer, J.; and Yoshida,
R. 2004. Effective lattice point counting in rational convex
polytopes. J. Symb. Comput., 38(4): 1273–1302.
Lovász, L. 1999. Hit-and-run mixes fast. Math. Program.,
86(3): 443–461.
Lovász, L.; and Deák, I. 2012. Computational results of
an O∗(n4) volume algorithm. European Journal of Oper-
ational Research, 216(1): 152–161.
Lovász, L.; and Vempala, S. 2006a. Hit-and-Run from a
Corner. SIAM J. Comput., 35(4): 985–1005.
Lovász, L.; and Vempala, S. S. 2006b. Simulated anneal-
ing in convex bodies and an O*(n4) volume algorithm. J.
Comput. Syst. Sci., 72(2): 392–417.
Luckow, K. S.; Pasareanu, C. S.; Dwyer, M. B.; Filieri, A.;
and Visser, W. 2014. Exact and approximate probabilistic
symbolic execution for nondeterministic programs. In Proc.
of ASE, 575–586.
Niemetz, A.; Preiner, M.; Wolf, C.; and Biere, A. 2018.
Btor2, BtorMC and Boolector 3.0. In Chockler, H.; and
Weissenbacher, G., eds., Proc. of CAV, volume 10981 of
Lecture Notes in Computer Science, 587–595. Springer.
Pesant, G. 2016. Counting-Based Search for Constraint Op-
timization Problems. In Proc. of AAAI, 3441–3448.
Sang, T.; Bacchus, F.; Beame, P.; Kautz, H. A.; and Pitassi,
T. 2004. Combining Component Caching and Clause Learn-
ing for Effective Model Counting. In Proc. of SAT.
Sharma, S.; Roy, S.; Soos, M.; and Meel, K. S. 2019.
GANAK: A Scalable Probabilistic Exact Model Counter. In
Kraus, S., ed., Proc. of IJCAI, 1169–1176. ijcai.org.
Soos, M.; and Meel, K. S. 2019. BIRD: Engineering an Ef-
ficient CNF-XOR SAT Solver and Its Applications to Ap-
proximate Model Counting. In Proc. of AAAI, 1592–1599.
AAAI Press.
Valiant, L. G. 1979. The Complexity of Enumeration and
Reliability Problems. SIAM J. Comput., 8(3): 410–421.
Verdoolaege, S.; Seghir, R.; Beyls, K.; Loechner, V.; and
Bruynooghe, M. 2007. Counting Integer Points in Paramet-
ric Polytopes Using Barvinok’s Rational Functions. Algo-
rithmica, 48(1): 37–66.
Zanarini, A.; and Pesant, G. 2007. Solution Counting Algo-
rithms for Constraint-Centered Search Heuristics. In Proc.
of CP, 743–757.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8029

