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Abstract

We introduce the algorithmic problem of finding a locally
rainbow path of length ` connecting two distinguished ver-
tices s and t in a vertex-colored directed graph. Herein, a path
is locally rainbow if between any two visits of equally col-
ored vertices, the path traverses consecutively at leaset r dif-
ferently colored vertices. This problem generalizes the well-
known problem of finding a rainbow path. It finds natural ap-
plications whenever there are different types of resources that
must be protected from overuse, such as crop sequence opti-
mization or production process scheduling. We show that the
problem is computationally intractable even if r = 2 or if one
looks for a locally rainbow among the shortest paths. On the
positive side, if one looks for a path that takes only a short
detour (i.e., it is slightly longer than the shortest path) and
if r is small, the problem can be solved efficiently. Indeed,
the running time of the respective algorithm is near-optimal
unless the ETH fails.

Introduction
Many graph connectivity problems are studied with addi-
tional constraints to make them applicable to real-world
problems. Typical constraints include forbidden pairs of ver-
tices or edges in the solution or — if the graph is colored —
requiring that the solutions are rainbow (no two elements
in the solution have the same color) or properly colored
(no two adjacent elements have the same color). Examples
for such constraints on problems can be found for spanning
trees (Broersma and Li 1997; Darmann et al. 2011), Steiner
trees (de Uña et al. 2016; Ferone, Festa, and Guerriero 2022;
Halldórsson et al. 2018), but most notably for paths (Alon,
Yuster, and Zwick 1995; Agrawal et al. 2020; Bhattacharya
2010; Bentert, Kellerhals, and Niedermeier 2023).

For paths, the properly edge-colored variant forbids two
equally colored edges to appear subsequently in the path.
What, to the best of our knowledge, has not been consid-
ered yet, is any model that forbids a visited color for the
next, say r, subsequent vertices of the path. For example,
this allows the modeling of protecting certain types of re-
sources from overuse. This for example is relevant for crop
sequence optimization: here, different colors model different
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Figure 1: A digraph whose vertices are colored with four col-
ors, with a shortest 2-rainbow (but not 3-rainbow) s-t path.

types of crops which, depending on the season, have differ-
ent impacts on soil health (Dury et al. 2012; Turchetta et al.
2022; Benini et al. 2023). Other applications include holi-
day trip planning (different colors modeling different types
of leisure activities), production process scheduling (differ-
ent colors modeling different workers or machines).

More concretely, given a vertex-colored graph, we pro-
pose the concept of locally rainbow paths, in which every
subpath of bounded length is required to carry pairwise dis-
tinct colors. Formally, a path or walk W = (v0, v1, . . . , vq)
in G is r-rainbow if for every i ∈ [0, q − r], the ver-
tices vi, vi+1, . . . , vi+r have pairwise different color (see
Fig. 1). We arrive at the following problem description:

LOCALLY RAINBOW PATH
Input: A digraph G, a vertex-coloring c : V (G)→ C,

two vertices s, t ∈ V (G), two integers r, ` ∈ N0.
Question: Is there an r-rainbow s-t path of length at

most ` in G?
We also consider LOCALLY RAINBOW WALK, where we

look for s-t walks with the same constraints. LOCALLY
RAINBOW PATH becomes the aforementioned problem of
finding a rainbow path when r = `. If r = 1, then the prob-
lem coincides with finding a properly colored s-t path.

Our contributions. We study the parameterized complex-
ity of LOCALLY RAINBOW WALK and LOCALLY RAIN-
BOW PATH, with a focus on the locality parameter r. We
show that the path variant is NP-hard for any fixed value of
r ≥ 2 (Theorem 16). In contrast, we are able to design an
algorithm with running time 2O(r log r) · nO(1) for the walk
variant (Theorem 1), with n being the number of vertices.
This result is achieved by developing an ordered version of
the representative families technique. We prove this result to
be optimal in the sense that no 2o(r log r) · nO(1)-time algo-
rithm is possible if the ETH holds (Theorem 12).
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Note that an r-rainbow s-t walk of length ` must always
be a path when ` ≤ dist(s, t) + r. Thus, our algorithm for
LOCALLY RAINBOW WALK also applies to the path variant
when the detour length k := ` − dist(s, t) is small. Moti-
vated by this observation and the result of Bezáková et al.
(2019) that finding s-t paths of detour length k is fixed-
parameter tractable for the parameter k, we also investigate
this parameter. While both of our problem variants remain
NP-hard even when k = 0 (Theorem 12), we are able to
give a fixed-parameter tractable algorithm for the combined
parameter k + r (Theorem 19).

We mention in passing that our results also hold when
coloring the edges instead of vertices (and adapting local
rainbowness accordingly). Furthermore, our (nontrivial) al-
gorithmic results also hold when looking for paths of length
exactly `. Proofs of results marked with F are deferred to
the paper’s full version.

Related work. Finding a rainbow path is known to be NP-
hard (Chen, Li, and Shi 2011) and fixed-parameter tractable
with respect to the number of colors (Kowalik and Lauri
2016; Uchizawa et al. 2013). While finding a properly col-
ored path is trivially linear-time solvable, it is less obvious
that this is also solvable in that time in an (undirected) edge-
colored graph. This was shown by Szeider (2003).

The field of finding paths of detour length exactly or at
least k is rather active, with the former being easier to tackle
than the latter. Bezáková et al. (2019) prove both variants
to be fixed-parameter tractable, however, for the latter vari-
ant only on undirected graphs. While there has been some
progress on directed graphs, most recently by Jacob, Wło-
darczyk, and Zehavi (2023), it is open whether finding a path
with detour length at least one is polynomial-time solvable.

Another closely related and more applied area is that
of finding resource-constrained paths. Here, the graph car-
ries arc (or vertex) weights and the desired s-t path must
not accumulate more than a given threshold of that weight.
The problem is known to be NP-hard (Handler and Zang
1980) and studied in many variations (Ford et al. 2022; Ir-
nich and Desaulniers 2005; Pugliese and Guerriero 2013).
A variation close to our setting introduces so-called replen-
ishment arcs, at which one may “drop off” the weight accu-
mulated so far (Smith, Boland, and Waterer 2012). This set-
ting is relevant in airline/train crew scheduling (weight rep-
resents duty hours, replenishment arcs correspond to crew
overnight rests) and aircraft/train routing (weight represents
machine hours, replenishment arcs correspond to mainte-
nance events) and also has ties with electric vehicle rout-
ing problems (weight represents battery discharge, replen-
ishment arcs correspond to charging events) (Adler et al.
2016; Zündorf 2014). Our rainbowness constraint is simi-
lar in that it “replenishes” any colors that were visited more
than r steps ago.

Preliminaries
We denote by Z, N0, and N the set of all, the non-negative,
and the positive integers, respectively. For n,m ∈ Z we
denote by [n,m] := {i ∈ Z | n ≤ i ≤ m} the set of inte-
gers between n and m and define [n] := [1, n]. We denote

by e ≈ 2.718 Euler’s number and by ω < 2.373 the matrix
multiplication constant (Alman and Williams 2021).

Let σ := (a1, . . . , an) be a sequence. We denote by |σ| :=
n its length, i.e., the number of elements in σ, and also call σ
an n-sequence. We write x ∈ σ if x = ai for some i ∈
[n]. If every element in σ is contained in a set U , then we
say that σ is a sequence on (or over) U . A sequence σ′ is a
substring or consecutive subsequence of σ if there are i <
j ∈ [n] with σ′ = (ai, ai+1, . . . , aj). If i = 1 or j = n, then
we also say that σ begins with or ends on σ′, respectively.
If ρ = (b1, . . . , bm) is a sequence, then we denote by σ◦ρ :=
(a1, . . . , an, b1, . . . , bm) the concatenation of σ and ρ. For
sequences σ1, . . . , σn, we denote by©n

i=1σi = σ1 ◦· · ·◦σn
their consecutive concatenation.

Graph theory. For basic notations on (directed) graph the-
ory see, e.g., (Diestel 2016; Bang-Jensen and Gutin 2009).
A digraph G is a tuple (V,A) with A ⊆ V × V . In this
work, all digraphs contain no self-loops, i.e., no arcs from
the set {(v, v) | v ∈ V }. For a digraph G = (V,A) we also
denote by A(G) the arc set A and by V (G) the vertex set V .
We call a digraph G symmetric if (v, w) ∈ A(G) ⇐⇒
(w, v) ∈ A(G). The symmetrization of the digraph G is the
graph (V,A(G) ∪ {(v, w) | (w, v) ∈ A(G)}). For two ver-
tices v, w ∈ V (G), a v-w walk W = (u0 = v, u1, . . . , uq =
w) (of length q) is a sequence of vertices from V such
that (ui−1, ui) ∈ A(G) for every i ∈ [q]. A v-w walk is
a path if all vertices are pairwise different. A digraph G is
weakly connected if in its symmetrization G∗ it holds true
that for any (v, w) ∈ V × V there is an v-w path. Through-
out, unless stated otherwise, we denote by n := |V (G)|
and m := |A(G)| and assume the input digraph G to be
weakly connected (and hence n ≤ m − 1). For a vertex v,
we denote by N−(v) := {w ∈ V (G) | (w, v) ∈ A(G)}.

Color sequences and compatibility. Let G be a digraph
and let c : V (G) → C be a vertex coloring. Recall that we
call a path or walk W = (v0, v1, . . . , vq) in G r-rainbow
if for every i ∈ [0, q − r], the vertices vi, vi+1, . . . , vi+r
have pairwise different color. The color sequence of W
is σ := (c(v0), . . . , c(vq)). We sometimes also call σ r-
rainbow if W is r-rainbow. For two r-rainbow sequences
σ = (a1, . . . , an) and ρ = (b1, . . . bm), we say that σ
is r-compatible to ρ if a path or walk with color se-
quence σ ◦ ρ is r-rainbow. Formally, σ is r-compatible to ρ
if {amax(1,n−j+1), . . . , an} ∩ {b1, . . . , bmin(r−j+1,m)} = ∅
for all j ∈ [r].

Parameterized complexity. Let Σ be a finite alphabet
and Σ∗ = {x ∈ Σn | n ∈ N0}. A parameterized prob-
lem P is a subset {(x, k) | x ∈ Σ∗, k ∈ N0} ⊆ Σ∗ × N0,
where k is referred to as the parameter. A parameterized
problem P is fixed-parameter tractable (in FPT) if every
instance (x, k) is solvable in f(k) · |x|O(1) time, where f
is some computable function only depending on k. The Ex-
ponential Time Hypothesis (ETH) (Impagliazzo and Paturi
2001; Impagliazzo, Paturi, and Zane 2001) states that there
exists some fixed ε > 0 such that 3-SAT cannot be decided
in 2ε·n · (n + m)O(1) time on any input with n variables
and m clauses. For more details, see Cygan et al. (2015).
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Walks
In this section we study the parameterized complexity of
LOCALLY RAINBOW WALK with respect to the parameter r.
Note that all results obtained here also hold for finding short-
est r-rainbow paths, i.e., paths with length ` = dist(s, t).
We will see that the problem is fixed-parameter tractable, by
providing an rO(r) · nO(1)-time algorithm. Indeed, although
the length of a walk is not bounded in the input size, we
can show that the above running time holds even if we ask
whether there exists an r-rainbow s-t walk of any length.
Finally, we prove a asymptotically tight running time lower
bound based on the Exponential Time Hypothesis (ETH).

Fixed-Parameter Tractability
In this section we show the following.
Theorem 1. LOCALLY RAINBOW WALK can be solved
in O((r · e)ωr · `m) time, where m is the number of arcs in
the input graph and ω is the matrix multiplication constant.

Note that this does not yet prove fixed-parameter tractabil-
ity for LOCALLY RAINBOW WALK parameterized by r as
the walk may become very long, i.e., ` may not be bounded
polynomially in the input size or by any function in r. Later
in this section we will show that we can always find a solu-
tion whose length is bounded by a function in r; thus proving
fixed-parameter tractability with r.

Our algorithm will build a family Wp
v of r-rainbow

length-p s-v walks for every length p and each vertex v us-
ing dynamic programming in a Dijkstra fashion — that is,
it will extend the walks along the arcs of the graph. To en-
sure that the r-rainbowness is maintained in this process we
only need to remember the sequence σ = (c1, . . . , cr) at the
end of the color sequence of any walk W . So we want to
compute for each v ∈ V (G) and p ∈ [`] the family

Wp
v :=

σ
∣∣∣∣∣∣
|σ| = min{p+ 1, r} and G contains
an r-rainbow length-p s-v walk
whose color sequence ends on σ

 . (1)

Note that trivial dynamic programming on these families
would blow up their size to O(|C|r), which is too large for
our purposes. Yet, σ restricts the choice in colors for the next
r vertices on the path: The path may only continue with a se-
quence ρ of colors to which σ is r-compatible. If however,
for some sequence ρ there are multiple sequences inWp

v that
are r-compatible to ρ, then it suffices to remember only one
of them. We call the remaining family an ordered represen-
tative forWp

v and define it formally as follows.
Definition 2 (Ordered representative). Let p, r ∈ N
with p ≤ r and let W be a family of sequences of length
at most p. A subfamily Ŵ ofW is an ordered r-representa-
tive forW (written Ŵ ⊆rorep W) if the following holds for
every sequence ρ of length at most r: If there exists a σ ∈ W
that is r-compatible to ρ, then there exists a σ̂ ∈ Ŵ that is
r-compatible to ρ.

To compute an ordered r-representative forWp
v we make

use of an algorithm by Fomin et al. (2016) to compute rep-
resentatives of (unordered) set families. Let us first define
(unordered) representatives for families of sets.

Definition 3 (Unordered representative). Let F be a family
of p-element sets and q ∈ N. A subfamily F̂ of F is a q-
representative for F (written F̂ ⊆qrep F ) if the following
holds for every set Y of size at most q: If F contains a set X
disjoint from Y , then F̂ contains a set X̂ disjoint from Y .

While Fomin et al. (2016) state their results for families of
independent sets of a matroid, for our purposes, the simpler
definition for set families (a special case) suffices.
Proposition 4 ((Fomin et al. 2016)). There is an algorithm
that, given a family F of p-sets over a universe U and an
integer q ∈ N0, computes in time O

(
|F| ·

(
p+q
p

)
pω + |F| ·(

p+q
q

)ω−1)
a q-representative F̂ for F of size at most

(
p+q
p

)
.

We will first show how to translate a sequence σ into a
corresponding (unordered) set so that we can make use of the
concept of representatives for unordered set families. After
that, we are ready to devise an algorithm for Theorem 1.

Consider two r-rainbow walks Wσ and Wρ with color se-
quences σ = (a1, . . . , ap) and ρ = (b1, . . . , bq). We wish
to define two functions π and π′ that map color sequences
to subsets of C × [r] such that σ is r-compatible to ρ if and
only if π(σ) ∩ π′(ρ) = ∅. By definition, σ is r-compatible
to ρ if and only if bi does not equal any of the last r − i+ 1
entries of σ. Define

π′(ρ) := {(bi, i) | i ∈ [min{r, q}]} and
π(σ) := {(aj , i) | i ∈ [r], j ∈ [p− (r − i), p] ∩N}.

(2)

Then, (bi, i) /∈ π(σ) if and only if bi does not appear among
the last r − i + 1 entries of σ. In other words, we have the
following.
Observation 5. A sequence σ is r-compatible to a se-
quence ρ if and only if π(σ) ∩ π′(ρ) = ∅.

We now have the promised connection between ordered
and unordered representatives.
Lemma 6. LetW be a family of p-sequences and let F :=

{π(σ) | σ ∈ W}. If F̂ is an r-representative of F ,
then Ŵ := {σ | π(σ) ∈ F̂} is an ordered r-representa-
tive ofW .

Proof. Consider a sequence ρ = (b1, . . . , br). Suppose
that σ = (a1, . . . , ap) ∈ W is r-compatible to ρ. Then by
Observation 5, π(σ) is disjoint from π′(ρ). Therefore, there
is a set π(σ̂) ∈ F̂ which is disjoint from π′(ρ); Thus by
Observation 5, σ̂ is r-compatible to ρ.

Consequently, we can use Proposition 4 to compute or-
dered r-representatives.
Corollary 7 (F). There is an algorithm that, given a fam-
ilyW of p-sequences over a universe U and an integer r ∈
N0, computes in timeO

(
|W|·(r ·e)rrω+ |W|·(r ·e)(ω−1)r

)
an ordered r-representative Ŵ ofW of size at most (r · e)r.

Ordered representatives are transitive, just like their un-
ordered counterparts (Fomin et al. 2016).

Observation 8 (F). If Ŵ ⊆rorep W̃ and W̃ ⊆rorep W ,
then Ŵ ⊆rorep W .

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8015



With a way to efficiently compute ordered r-representa-
tives at hand, we can compute an r-rainbow s-t walk of
length ` with the following routine. Recall that we are given
a graphGwith two terminals s and t, a coloring c : V (G)→
C, and two integers r and ` as input.

Algorithm 1. Set Ŵ0
s := {(c(s))} and for all v ∈ V (G) \

{s}, set Ŵ0
v := ∅. Now, for each p = 1, 2, . . . , ` compute

for all v ∈ V (G) the set N p
v . If p < r, then N p

v :=⋃
u∈N−(v)

{
(a1, . . . , ap+1)

∣∣∣∣∣ (a1, . . . , ap) ∈ Ŵp−1
u and

c(v) = ap+1 /∈ {a1, . . . , ap}

}
If p ≥ r, then N p

v :=⋃
u∈N−(v)

{
(a2, . . . , ar+1)

∣∣∣∣∣ (a1, . . . , ar) ∈ Ŵp−1
u and

c(v) = ar+1 /∈ {a1, . . . , ar}

}
.

Compute an ordered r-representative Ŵp
v ⊆rorep N p

v . Return
yes if and only if Ŵq

t 6= ∅ for some q ∈ [`].
Let us show that Algorithm 1 indeed computes representa-

tives of the familyWp
v as defined in equation (1), and hence,

is correct.
Lemma 9. For each v ∈ V (G) and p ∈ [0, `], the family
Ŵp
v computed by Algorithm 1 contains at most (r · e)r sets

and is an ordered r-representative ofWp
v as defined in (1).

Proof. Our proof is by induction. By the initial assignments
of Ŵ0

v , the statement holds for p = 0. Now, fix some p ∈ [`]

and assume that Ŵp−1
u ⊆rorep Wp−1

u for all u ∈ V (G).
Let ρ = (b1, . . . , bq) be a color sequence with q ≤ r and

let v ∈ V (G). Suppose that there exists a sequence σ ∈ Wp
v

that is r-compatible to ρ. We claim that there exists a σ̂ ∈
Ŵp
v that is r-compatible to ρ; thus proving that Ŵp

v ⊆rorep
Wp
v . As the bound on |Ŵp

v | then follows from Corollary 7,
we are done once the claim is proven. We will prove the
claim first for p ≥ r and afterwards for p < r.

If p ≥ r, then σ is an r-sequence (a2, . . . , ar+1) and there
exists an r-rainbow length-p s-v walk W whose color se-
quence ends on σ. Let a1 be the color that W visits just be-
fore visiting the colors in σ, that is, the color sequence of W
ends on (a1, . . . , ar+1). Further, let u be the penultimate
vertex visited by W and let W ′ be the length-(p − 1) sub-
walk ofW ending on u. Then the color sequence ofW ′ ends
on σ′ := (a1, . . . ar). Let ρ′ := (ar+1) ◦ ρ. Observe that σ′
is r-compatible to ρ′, due to σ being r-compatible to ρ and
W ′ being r-rainbow. Thus, by our induction hypothesis and
the definition of ordered r-representatives, there exists a se-
quence σ̂′ ∈ Ŵp−1

u that is r-compatible to ρ′. Let Ŵ ′ be the
s-uwalk corresponding to σ̂′ and let σ̂′ := (â′1, . . . , â

′
r). De-

fine σ̂ := (â′2, . . . , â
′
r) ◦ (ar+1). As u ∈ N−(v) and c(v) =

ar+1 /∈ {â′1, . . . , â′r}, we have that σ̂ ∈ N p
v . Finally, ob-

serve that σ̂ is r-compatible with ρ. Thus, N p
v ⊆rorep Wp

v .
Since Ŵp

v ⊆rorep N p
v , the claim follows for p ≥ r due to the

transitivity of ordered r-representatives (Observation 8).
If p < r, then σ is a (p+ 1)-sequence (a1, . . . , ap+1) and

there exists an r-rainbow length-p s-v walk W whose color

sequence ends on σ. Indeed, σ is the entire color sequence
of W . This case is similar to the above, but there is no color
that is visited before σ in W . Hence, in this case, σ′ :=
(a1, . . . , ap) and σ̂ := σ̂ ◦ (ap+1). The remainder of the
proof is the same.

Next, we show that the algorithm runs in the claimed run-
ning time. Theorem 1 then follows from Lemmas 9 and 10.
Lemma 10 (F). Algorithm 1 runs inO((r · e)ωr · `m) time
on m-arc digraphs.

Bounding the length of the walk. Note that the length of
a walk may be significantly longer than the running time
of the above algorithm for LOCALLY RAINBOW WALK.
Hence, Theorem 1 does not imply fixed-parameter tractabil-
ity for the problem of finding an r-rainbow s-t walk of any
length. We can however show that we can always find an
r-rainbow s-t walk in which the number of visits to each
vertex is bounded by a function in r. The idea is as follows.
Consider a vertex v that is visited multiple times by an r-
rainbow walk W . Relevant for us are the consecutive subse-
quences of length r−1 of the color sequence τ ofW that ap-
pear immediately before and after each visit of v. Consider
the i-th visit and let σi and ρi be the consecutive length-
(r−1) subsequences of τ before and after the i-th visit of v,
that is, the sequence σi ◦ c(v) ◦ ρi is a consecutive subse-
quence of τ . Now, if for a later visit, say the j-th visit of v,
we have that σi◦c(v) is r-compatible to ρj , then we can skip
all vertices between i and j. We will show that the number
of visits to v is bounded by a function in r, or else we can
skip visits. For this, we will make use of a skewed variant
(Frankl 1982) of the seminal Bollobás’ Two Families Theo-
rem (Bollobás 1965). Details are deferred to the appendix.

Combining the above with Theorem 1, we can prove that
deciding whether a graph contains an r-rainbow s-t walk is
fixed-parameter tractable when parameterized by r.
Corollary 11 (F). Given a vertex-colored m-arc digraph
and two vertices s and t, one can decide inO((r · e)r(ω+1) ·
m) time whether the graph contains an r-rainbow s-t walk.

A Matching Lower Bound
A close look at the above algorithm shows that using the
algorithm by Fomin et al. (2016) to compute ordered r-re-
presentatives is actually not optimal as the underlying un-
ordered representative family also stores representatives for
any set Y which does not correspond to π′(ρ) for any se-
quence ρ. This raises hope for a more efficient algorithm.
We can however show that finding an algorithm with a run-
ning time with an exponent that is asymptotically smaller
than ours (Theorem 1) would break the Exponential Time
Hypothesis (ETH) (Impagliazzo and Paturi 2001). The pro-
vided reduction also proves the problem to be NP-hard. It
also holds for shortest walks, and thus also for shortest paths.
Altogether, we will prove the following in this section.
Theorem 12 (F). Even if ` = dist(s, t) and on acyclic
digraphs, both LOCALLY RAINBOW WALK and LOCALLY
RAINBOW PATH are NP-hard and, unless the ETH fails,
cannot be solved in 2o(r log r) · nO(1) time on n-vertex di-
graphs.
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= {(1, 2), (2, 2)} = {(1, 1), (2, 2), (2, 3), (3, 3)} = {(2, 1), (3, 1), (3, 2)}

· · ·
s u2

u3 um
t

w2,1
1

w3,3
2

v1,22

Figure 2: Example for the construction of Theorem 12 on a 3 × 3-grid with F = { , , . . . , }. Gray (thin) arcs exist inde-
pendently of the current subset Fi ∈ F . Black arcs point to elements in Fi and are the only way to reach the top copy. The
highlighted path selects the hitting set {(1, 2), (2, 1), (3, 3)}, thereby visiting, i.a., w2,1

1 , v1,22 , and w3,3
2 . The path visits one

black arc for each Fi ∈ F .

We will provide a polynomial-time reduction from the
k × k PERMUTATION HITTING SET problem, where one
is given a family F of subsets of a universe [k]× [k] (which
we will treat like a grid with k rows and columns), and
one is asked whether there is a hitting permutation, that
is, a bijection ϕ : [k] → [k] such that each F ∈ F con-
tains an element (i, ϕ(i)) with i ∈ [k]. Unless the ETH
fails, k × k PERMUTATION HITTING SET cannot be solved
in 2o(k log k) · (k + |F|)O(1) time (Lokshtanov, Marx, and
Saurabh 2018).

The rough idea for the construction is as follows (see
Fig. 2 for an illustrative example): For each set in F , we
create a pair of copies (lower and upper) of our universe,
which we will be able to traverse column by column. Each
row receives a color, and the subpath length r := k is set
with the intention that we always have to visit the colors in
the same order for each set in F . Hence, for each F ∈ F ,
we must pick the same permutation. Now, we always start
“left” of the two copies for F , and we can always go to the
lower copy, but in order to get to the next set in F , we need
to get to the upper copy; This is only possible if one element
from our permutation is in F . Hence, there is an r-rainbow
s-t walk (indeed, by construction, it will always be a path)
if and only if there is a hitting permutation for F .

As r = k in our reduction, an algorithm running in time
2o(r log r) · nO(1) would refute the ETH. Details about the
reduction can be found in the appendix.

Remarkably, the ETH lower bound holds even if one
asks whether there exists an r-rainbow s-t walk of arbitrary
length. This complements the fixed-parameter tractability of
Corollary 11.

Corollary 13. Unless the ETH breaks, there is no 2o(r log r) ·
nO(1)-time algorithm for the problem of deciding whether
there is an r-rainbow s-t walk of arbitrary length in a given
vertex-colored acyclic digraph with n vertices.

Finally, as every r-rainbow s-t walk in the constructed in-
stance is a shortest s-t path, we can add to every arc (u, v)
its antiparallel arc (v, u). The resulting graph thus is sym-
metric.

Corollary 14. Even if ` = dist(s, t) and on symmetric di-
graphs, both LOCALLY RAINBOW WALK and LOCALLY
RAINBOW PATH are NP-hard and, unless the ETH breaks,
cannot be solved in 2o(r log r) · nO(1)-time on n-vertex di-
graphs.

Paths
In this section, we study the parameterized complexity of
LOCALLY RAINBOW PATH with respect to the locality pa-
rameter r and the detour length k := `− dist(s, t).

NP-Hardness for Constant Locality Values
We now provide a dichotomy for LOCALLY RAINBOW
PATH parameterized by the locality parameter r. Obviously,
if r = 0 then any s-t path is a solution. We will now show
that the problem remains efficiently solvable when r ≤ 2,
but prove NP-hardness for all values r ≥ 3.

Clearly, if r > 0, we can assume that there is no arc (u, v)
with c(u) = c(v) in our digraph. Thus, the task of finding
a 1-rainbow s-t path (or s-t walk) reduces to finding any
s-t path.
Observation 15. Finding a shortest 1-rainbow s-t walk or
s-t path is linear-time solvable.

As soon as r ≥ 2, the problem becomes much harder.
Theorem 16 (F). LOCALLY RAINBOW PATH is NP-hard
for any fixed value of r ≥ 2.

We provide a polynomial-time reduction from 3-SAT,
where given a Boolean formula φ in conjunctive normal
form such that each clause contains exactly three literals (3-
CNF), the question is whether there exists a truth assignment
to the variables for which φ evaluates to true. The problem
is known to be NP-hard, even if each variable appears ex-
actly twice positive and twice negative in the given formula
(Berman, Karpinski, and Scott 2003, Theorem 1). We pro-
vide our construction for r = 2 and describe afterwards how
it can be adapted to the case when r > 2.

In a nutshell, our reduction works as follows (compare
with Fig. 3). Our path first needs to go through the vari-
able gadgets, in which there are two branches (for true and
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Figure 3: (a) The variable gadget and (b) the clause gadget
in the construction of Theorem 16. (c) An example showing
how a literal path corresponding to literal x̄i in clause cj
is attached to the variable gadget at v̄1i . (d) The connection
between the last variable gadget and the first clause gadget.

false) for each variable. Afterwards, it needs to go through
the clause gadgets, in which there is a branch for each literal.
Each branch visits a vertex of the corresponding variable
gadget. As we are looking for a path, this vertex must be on
the branch that was not yet visited by our path. Finally, the
colors in the graph are chosen such that taking any forbid-
den turn (e.g., from a variable gadget directly into a clause
gadget) would breach the local rainbowness constraint. For
details on the proof of Theorem 16 we refer to the appendix.

We close this section by remarking that, on symmetric
digraphs, finding a shortest 2-rainbow path becomes effi-
ciently solvable. (The case r ≥ 3 remains NP-hard by a
reduction similar to the one above.) The idea here is to trans-
form the vertex coloring into an edge coloring (i.e., every
symmetric arc is assigned one color). We say that a walk is
properly colored (with respect to some edge coloring) if no
two consecutive symmetric arcs share the same color.

Lemma 17 (F). Let G be a symmetric digraph, c a vertex
coloring, and W an s-t walk. Assume that no two adjacent
vertices have the same color. Then, W is 2-rainbow if and
only if it is properly colored with respect to the edge coloring
c′((u, v)) := {c(u), c(v)}.

As a properly edge-colored s-t path can be found in lin-
ear time in symmetric digraphs (Szeider 2003, Cor. 10), we
obtain the following.

Observation 18. Finding a shortest 2-rainbow s-t walk in
a symmetric digraph is solvable in linear time.

Fixed-Parameter Tractability with Detour Length
We now prove our problem to be fixed-parameter tractable
with respect to r+ k where k denotes the length of a detour
the path may take (i.e., the desired length ` is dist(s, t)+k).

Let us first exclude some degenerate cases. If k < 0,
then ` < dist(s, t), and we have a trivial no-instance at
hand. If k = 0, then any solution must be a shortest path.
As any shortest walk is also a shortest path, we can use
our algorithm for LOCALLY RAINBOW WALK, see Theo-
rem 1. Finally, we may assume that each of the n vertices

di
st

an
ce

to
t

v0 v2 · · · · · · · · · · · · v`

s

t

. . .

vi1 vi2 vij

≤ 2k + 1

Figure 4: An exemplary s-t path P , circles marking distance
separators. The x-axis shows the vertices of P in the order
of their appearance. The y-axis shows the distance of the
current vertex to t. Our algorithm exploits the property that
the subpaths between any two distance separators are short
(i.e., of length at most 2k+ 1) and internally vertex-disjoint.

in G reaches t. In all, we have that dist(s, t) < ` < n and
thus 0 < k < n− dist(s, t).

Theorem 19 (F). LOCALLY RAINBOW PATH can be
solved in rO(r+k) · `n2m time, where n and m are the num-
ber of vertices and arcs of the input digraph, and ` is the
length and k is the detour length of the desired path.

Our approach for Theorem 19 is to merge our above tech-
niques to keep track of the last r vertices with a central ob-
servation for paths with detour length k. To this end, we
will show that any hypothetical solution P ∗ visits in regu-
lar intervals so-called distance separators — see Fig. 4 for
an illustration. At these points, we can partition the search
space as we know that the subpath of P ∗ between two con-
secutive distance separators lies disjoint from any subpath
between two other consecutive distance separators. We then
use a subroutine to compute a representative of all r-rainbow
u-v paths of some fixed length whose running time is fixed-
parameter tractable with respect to its length. This fits into
the promised running time as any two distance separators u
and v are at most 2k + 1 vertices apart (Lemma 22). In-
deed, such distance separators can be found in any path with
bounded detour length. As mentioned earlier, this approach
is inspired by works on parameterizations with respect to
the detour length by Bezáková et al. (2019) and Zschoche
(2023). The challenge in our setting is that we need to keep
track of the ordered representatives.

We start off with a basic observation. We denote for ev-
ery v ∈ V (G) by d(v) := dist(v, t) the distance to t.

Observation 20 (F). For any s-t path P = (s =
v0, . . . , v` = t) with ` ≤ d(s) + k we have i ≤ d(s) −
d(vi) + k for each i ∈ [0, `].

Definition 21 (Distance separator). Let P = (s =
v0, v1, . . . , v` = t) be a path with detour length k := ` −
dist(s, t). Then vi is a distance separator if d(vi) < d(vj)
for all j < i and d(vi) > d(vj) for all j > i.

By definition, if we have two distance separators vi and
vj , j > i, then we know that between vi and vj , P only vis-
its vertices w with d(vi) > d(w) > d(vj). Zschoche (2023)
showed that a path with detour length k regularly visits dis-
tance separators. We need a faintly different statement.
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Lemma 22 (F). Let P = (s = v0, v1, . . . , vp = v) be a
path of length at most d(s)−d(v)+k and let v be a distance
separator. Then, for all i ∈ [0, p− 2k], there is a j ∈ [0, 2k]
such that vi+j is a distance separator.

Our algorithm now guesses the positions of the distance
separators. As the subpaths between the distance separators
are (internally) vertex-disjoint, we then only need to find an
r-rainbow path matching the color sequence of the subpath
to the last distance separator and only uses vertices after this
distance separator. For any two distance separators u and v
in our graph G, we define Gu,v := G[Bu,v ∪ {u, v}]

Bu,v :=

{
{w ∈ V (G) | d(u) > d(w) > d(v)} if u 6= s,

{w ∈ V (G) | d(w) > d(v)} if u = s.

On these graphs, we will compute an ordered r-representa-
tive for the family of r-rainbow u-v paths of some length
in Gu,v . Indeed, as we will append these paths to some
r-rainbow s-u path that ends on some color sequence τ ,
we need the family to be r-compatible with τ . We say
that a path P = (v0, . . . , vq) fits τ if τ is r-compatible
to (c(v0), . . . c(vmin{r−1,q})). We will need to compute an
ordered r-representative for the following family for any two
distance separators u and v in G, any integer q ∈ N0, and
any color sequence τ of length at most r:

Pqτ (Gu,v) :=

σ
∣∣∣∣∣∣∣∣
|σ| = min{q + 1, r} and there is
an r-rainbow length-q u-v path
in Gu,v that fits τ and whose
color sequence ends on σ


Computing such families can be done with an adaptation

of Algorithm 1 for walks, the difference being that we addi-
tionally need to remember the set of vertices visited so far
by our path (refer to the full version). Remembering these
vertices comes at the cost of an additional running time fac-
tor of rO(q), where q is the length of the path. As the path
length is an upper bound for r, this proves LOCALLY RAIN-
BOW PATH to be fixed-parameter tractable with respect to
the path length.

Lemma 23 (F). Given a digraph G with m arcs, an in-
teger r, two distance-separators u, v ∈ V (G), an inte-
ger q ∈ N0, and a color sequence τ of length at most r,
one can compute in rO(r+q) ·m time an ordered r-represen-
tative for Pqτ (Gu,v) of size at most rO(r+q).

Now that we know how to compute the families
P̂qτ (Gu,v), we can state the main algorithm. Herein, for ev-
ery p ∈ [0, `] and v ∈ V (G), we are interested in the family

Rpv :=

σ
∣∣∣∣∣
|σ| = min{p+ 1, r} and there is an
r-rainbow length-p s-v path in Gs,v
whose color sequence ends on σ

 . (3)

Hence, there is a length-` r-rainbow s-t path P ∗ if and only
ifR`t is nonempty. As, by Observation 20, P ∗ will have v as
its p-th vertex only if p ≤ d(s)− d(v) + k, we only need to
consider those familiesRpv for which this inequality holds.

Algorithm 2. Set R̂0
s := {(c(s))} and R̂0

v := ∅ for all v ∈
V (G) \ {s}. Now, for each p = 1, 2, . . . , `, for each v ∈
V (G) with p ≤ d(s)− d(v) + k, compute Spv , which is

⋃
u∈V (G),

q∈[min{2k+1,p}]

σ
′◦ σ

∣∣∣∣∣∣∣∣∣∣
∃σ′′ : σ′′◦ σ′∈ R̂p−qu ,

|σ′|=max{0,min{p−q+1,r−q}}
|σ| = min{q, r},
and σ ∈ P̂q(σ′′◦σ′)(Gu,v)


and compute R̂pv ⊆rorep Spv using Corollary 7. Return yes if
and only if R̂`′t 6= ∅ for some `′ ∈ [`].

To prove Theorem 19, we still need to analyze the running
time and show that that R̂pv is an ordered r-representative
forRpv .
Lemma 24 (F). For each v ∈ V (G) and p ∈ [0, `] with p ≤
d(s) − d(v) + k, the family R̂pv computed in Algorithm 2
is of size at most (r · e)r and is an ordered r-representa-
tive for Rpv as defined in (3). Moreover, Algorithm 2 runs
in rO(r+k) · `n2m time.

Conclusion
We introduced a local rainbow constraint to the classic prob-
lem of finding s-t paths and walks, modeling scenarios in
which resources (i.e., colors) are replenished over time. For
walks, we are able to prove fixed-parameter tractability for
the locality parameter r thanks to a new adaptation of the
representative sets technique. In contrast, LOCALLY RAIN-
BOW PATH remains NP-hard even for constant r due to the
added non-local constraint of forbidding self-intersections.
However, when the allowed length of the path is not too
large in comparison to the distance between its endpoints,
then the no-intersection constraints effectively become local
again. This is exploited to prove LOCALLY RAINBOW PATH
to be fixed-parameter tractable with the combined parame-
ter r + k where k is the detour length.

Towards future work, we believe that local rainbowness is
only the tip of the iceberg when it comes to interesting local
constraints. A straightforward generalization would be to al-
low for multi-colored vertices, so as to model a setting in
which multiple types of resources can be used at once. An-
other natural variant would be to relax the local rainbowness
constraint of the subpaths, allowing some bounded number
of vertices to share the same color.

One could also extend our local rainbowness constraint
to other connectivity problems. Canonical candidates would
be the traveling salesperson problem or the problem of find-
ing multiple disjoint s-t paths. Similarly, one could be in-
terested in finding Steiner trees in which all subpaths are
locally rainbow (a generalization of rainbow Steiner trees
(Ferone, Festa, and Guerriero 2022)), or vertex sets whose
deletion destroys all s-t paths that are not locally rainbow.

We already observed that in practice, the locality con-
straint is usually motivated by some regeneration over time.
Therefore, it may be sensible to study the local rainbowness
constraints also on temporal graphs, such as finding tempo-
ral walks (Bentert et al. 2020) or paths (Casteigts et al. 2021;
Zschoche 2023).
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