The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Using Symmetries to Lift Satisfiability Checking

Pierre Carbonnelle!, Gottfried Schenner?, Maurice Bruynooghe', Bart Bogaerts®, Marc Denecker!

KU Leuven, Belgium
2Siemens, Austria
3Vlrije Universiteit Brussels, Belgium
{pierre.carbonnelle, maurice.bruynooghe, marc.denecker } @kuleuven.be,
gottfried.schenner @siemens.com, bart.bogaerts @vub.be

Abstract

We analyze how symmetries can be used to compress struc-
tures (also known as interpretations) onto a smaller domain
without loss of information. This analysis suggests the pos-
sibility to solve satisfiability problems in the compressed do-
main for better performance. Thus, we propose a 2-step novel
method: (i) the sentence to be satisfied is automatically trans-
lated into an equisatisfiable sentence over a “lifted” vocabu-
lary that allows domain compression; (ii) satisfiability of the
lifted sentence is checked by growing the (initially unknown)
compressed domain until a satisfying structure is found. The
key issue is to ensure that this satisfying structure can always
be expanded into an uncompressed structure that satisfies the
original sentence to be satisfied.

We present an adequate translation for sentences in typed
first-order logic extended with aggregates. Our experimental
evaluation shows large speedups for generative configuration
problems. The method also has applications in the verification
of software operating on complex data structures. Our results
justify further research in automatic translation of sentences
for symmetry reduction.

1 Introduction

In made-to-order manufacturing, the configuration problem
is the problem of finding a configuration of components
that satisfies the customer requirements and feasibility con-
straints (Felfernig et al. 2014). Such problems can be solved
by choosing a formal vocabulary and by representing the
customer requirements and the feasibility criteria as a logic
sentence to be satisfied. A structure satisfying the sentence
(a model) represents an acceptable configuration.

Methods to solve configuration problems do not scale
well, and various heuristics have been used to improve per-
formance (Schenner and Taupe 2017). Configurations of-
ten have components that are interchangeable. They are the
source of many redundancies in the search space that nega-
tively impact performance. The standard approach is to add
symmetry breaking rules (Crawford et al. 1996). Here, we
use another approach: we reformulate the problem to reduce
symmetries (Gent, Petrie, and Puget 2006). This approach
has been less studied, and is more an art than a science.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

7961

We observed that solutions to configuration problems can
be compressed in what we call a “lifted model”, and that the
solution of the original problem can be obtained by expand-
ing the lifted model. This suggested that configuration prob-
lems, and, more generally, satisfiability problems, could be
solved in the compressed domain: if the compressed domain
is significantly smaller, it could lead to better performance.

As a toy example, consider the following pigeonhole
problem: “given 10 pigeons and 5 pigeonholes, assign each
pigeon to a pigeonhole such that each hole has (at most) 2
pigeons.” With the appropriate vocabulary, a solution is:

Pigeon = {p17 cee 7p10} (])
Hole = {hy,...,hs5} 2)
ZSITL = {(plahl)v(p27h2)7'"7(p57h5)7 (3)

(6, h1), (7, h2),..., (P10, hs)}

Note the symmetries: another solution is obtained by ex-
changing 2 pigeons or 2 holes in the interpretation of isIn.
This solution can be compressed to:

Pigeon = {p1} (4)
Hole = {h;} (5)
mul = {p1 — 10,h; — 5} (6)
isIn = {(p1,h1)} @)

where the mul function indicates how many concrete do-
main elements each “lifted” domain element represents,
and thus allows the domain compression. The lifted pigeon
(resp. hole) represents 10 concrete pigeons (resp. 5 concrete
holes).

Even though the compressed structure only has 2 domain
elements (p1, hy, excluding the naturals), it contains enough
information to allow us to expand it into a model isomorphic
to the original model. Following the theory we develop in
Section 3, the expansion is as follows:

P1 ~ P1,---,P10
hlwhl,...,hg)

(p1,hy) ~ {(p1,h1), .., (ps, hs), (Ps, h1), - . -, (P10, hs)}
Furthermore, in Section 4, we present a translation of sen-

tences in typed first-order logic extended with aggregates
into sentences that allow domain compression. We show that



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

a sentence in that language is equisatisfiable with its trans-
lation, given the number of concrete elements in each type:
if either one is satisfiable, the other one is too. This anal-
ysis allows us to solve satisfiability problems in the com-
pressed domain. The novel method operates in two steps: (i)
the sentence to be satisfied is automatically translated into
a “lifted” sentence over the “lifted” vocabulary; (ii) satisfia-
bility of the lifted sentence is checked by step-wise growing
the compressed domain' until a satisfying structure is found.
Crucially, this satisfying structure can always be expanded
into a model of the original sentence.

Notice that the lifted model for a variation of the pigeon-
hole problem above with 100 times more pigeons and holes
has the same number of lifted domain elements as the base
case: the multiplicity of each lifted domain element is simply
multiplied by 100. As a result, and unlike traditional sym-
metry breaking methods, our method solves that pigeonhole
problem in constant time with respect to the domain size
(excluding the naturals).

We evaluate this method by comparing the time needed
to find solutions for generative configuration problems dis-
cussed in the literature. Our method has significantly better
performance than the traditional one for problems whose so-
lution can be substantially compressed.

Our paper is structured as follows: after introducing our
notation, we analyze how symmetries can be used to com-
press structures onto a smaller domain without loss of in-
formation (Section 3), and describe how to lift a concrete
sentence so that it is equisatisfiable with the lifted sentence
(Section 4); we describe the method, evaluate it on genera-
tive configuration problems (Section 5), and discuss applica-
tions in Boolean Algebra of sets with Presburger Arithmetic
(BAPA) (Section 6) before concluding with a discussion.

2 Preliminaries

This section introduces the logic language supported by our
method, and the concept of permutation of a structure.

Typed First Order Logic With Aggregates

We call FO(Type, Aggregate) the language we support. We
assume familiarity with first order logic (Enderton 1972). A
vocabulary X is a set of type, predicate, and function sym-
bols. Predicates and functions have a type signature (e.g.
f:T — T, where T denotes a tuple of types). Some sym-
bols are pre-defined: type B (booleans), Q (rationals), equal-
ity, arithmetic operators and arithmetic comparisons. Terms
and formulae are constructed from symbols according to
the usual FO syntactic rules. We also allow sum aggregates
(written as ZEGT:¢>t oras »__(tif ¢)). A cardinality ag-
gregate #{z € T | ¢} is a shorthand for a sum aggregate
whose term ¢ is 1. Quantification and aggregation can only
be over finite types. Terms and formulas must be well-typed.
A formula without free-variable is called a sentence.

A Y-structure I, consists of a domain and an interpre-
tation of each symbol of vocabulary Y. The interpretations

'An iterative method is required because the size of the com-
pressed domain is not known in advance.

7962

of types are disjoint and finite (except Q which is infinite).
The interpretation p! of a predicate p is a set of tuples d of
domain elements of appropriate types. The interpretation f/
of a function f is a set of pairs (d, d), also denoted by d — d.

An extended structure is a structure with a variable assign-
ment, i.e., with a mapping from variable z to values d, de-
noted [Z : d]. The value of a formula or term in an extended
structure is computed according to the usual FO semantic
rules, which require that the interpretation of function sym-
bols be total functions over their domain. A Y'-structure is a
model of a sentence if the value of the sentence is true in the
structure, i.e., if it satisfies it. Satisfiability checking in typed
FO logic is the problem of deciding whether a sentence has
a model, given the interpretation of the types.

Permutations and Orbits

A permutation of a set is a bijection from that set to itself.
We denote a permutation by 7, and its inverse by 7. The
identity permutation, 7¥, maps every element of the set to
itself. The order of a permutation is the smallest positive
number n such that 7™ is the identity permutation. Hence,
the nth permutation of an element is equal to its “nth modulo
the order” permutation.

Cycles are permutations that map elements in a cyclic

fashion. A cycle is denoted by (d'd?---d™). A permuta-
tion over a finite set has a unique decomposition into disjoint
cycles. Its order is the least common multiple (lcm) of the
length of its cycles.
The permutation of a tuple of elements d is denoted by
7(d) and is equal to (7(dy), ..., 7(dy)). The m-orbit of an
element d (resp. of a tuple of elements d) is the set of its
repeated permutations o.(d) = {x'(d) | i € N} (resp.
or(d) = {r*(d) | i € N}).

3 Lossless Compression of Structures

In this section, we discuss how, and when, a concrete struc-
ture with symmetries can be compressed into a lifted struc-
ture over a smaller domain without loss of information, and
how a lifted structure can be expanded into a concrete one.

Symmetries in a structure [ are described by a domain
permutation 7 (Devriendt et al. 2016): it is a permutation
of the domain of I that maps numbers to themselves, and
other domain elements in 7 to domain elements in 7.
Since numbers are mapped to themselves by the permuta-
tion, and since types besides Q are finite, the permutation is
composed of cycles.

A domain permutation induces a structure transforma-
tion. The interpretation in the transformed structure, denoted
(), is defined as follows:

* the type of domain element d in 7(I) is its type in I;

« atuple d' is in the transformed Jinterpretation of predicate
symbol p if and only if 7=*(d’) is in the original inter-
pretation of p:

D) = (@ |7 (@) e p'} = {n(d) | de '

* atuple (d' — d') is in the transformed interpretation of

function symbol f if and only if 7= 1(d’) — 7= 1(d') is



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

in the original interpretation of f:
frO={(d —d) [ (77 (d) > 7N d) € 1)
={(n(d) — 7(d) | (d —d) e f'}

Definition 1 (Automorphism) A permutation 7 that trans-
Sforms a structure into itself, i.e., such that I = w(I), is an
automorphism of the structure.

Every structure has at least one automorphism: the iden-
tity domain permutation. Note that an automorphism maps
the interpretation of any constant to itself, i.e., ¢!()
7(cf()). Thus, the length of the cycle containing ¢! () is 1.

We introduce the new concept of backbone, which plays a
critical role in the compression that we propose. Essentially,
a backbone for an automorphism of I is a set of domain el-
ements obtained by picking one element in each cycle, such
that the interpretation of any symbol can be reconstructed
from its interpretation restricted to the backbone, by apply-
ing the automorphism repeatedly. Formally:

Definition 2 (Backbone) A backbone for an automorphism
m of I is a subset S of the domain of I such that:

* each cycle C of w has exactly one element in S

e for each predicate p/n € X, p' is the union of the m-
orbits of the tuples in p' ~ S™, i.e.,

| ox(d) ={x'(d) |dep’ ~nS",ieN}

dep! nS™

p' =

®)

s for each function f/n € %, f1 is the union of the m-orbits
of the tuples in f1 n (S™ x 9), i.e,

ft U or(d > d)

(d—d)efIn(S™xS)
={ri(d—d)|(d—d)e fl n(S" x S),ieN}

Example 1 For the pigeonhole example in the intro-
duction of the paper, a backbone of automorphism
(p1---p1o)(hy---hs) is S = {p1,h1}. Another is S =
{p2;, ha}.

In all structures, the set of domain elements is a trivial
backbone for the identity automorphism. However, not all
automorphisms have a backbone.

©))

Example 2 Let {a,b} be a (concrete) domain with one type
T. In structure I (resp. I5), function symbol f : T — T
is interpreted as {a — a,b — b} (resp. {a — b,b — a}).
Permutation (ab) is an automorphism of both structures. The
only two subsets S satisfying the first condition of backbone
for (ab) are {a} and {b}. Since f'* can be reconstructed
from flv A (S x S) for both subsets S, both subsets are
backbones of I;. However, none is a backbone of 15 (because
2~ (S x S) = I for both candidate sets S).

A backbone enables us to lift a structure into a structure
with a smaller domain, as we now describe.

Definition 3 (Lifted vocabulary) For a vocabulary ¥, its
lifted vocabulary Y; consists of the symbols of % and, for
any type T of X, a symbol mulr : T — N, called the multi-
plicity function for T.

7963

We will drop the subscript T in the function symbol mulr
when this is unambiguous.

Definition 4 (Lifted structure) Let I be a Y-structure with
an automorphism m having backbone S. A lifted structure L
derived from I is a ¥;-structure such that:

e its domain is S, called the lifted domain,

s for each type predicate T, T* =TT A S;

s for each predicate symbol p/n, p* = p! ~ S™;

s for each function symbol f/n, f¥ = fI n (S™ x S);

e foreachl e S, mult(l) = |o,(1)|, the size of the m-orbit
oflinl.

Example 3 Continuing the pigeonhole problem, the lifted
structure is described by Equations 4-7.

Given the lifted structure L derived from I and the auto-
morphism 7 on the concrete domain I, one can reconstruct
1, i.e., one can expand the lifted interpretations of the type,
predicate and function symbols, essentially by closing them
under repeated application of 7. Formally,

exp(T") = | ox(l) = {='()) [1e T",ie N} (10)
leTL
expy (pt) = U or() = {m'(l) | lepl,ieN} (11)
lepL
expr (f£) = U ox(l 1)
(I=Deft
=il (I—~1efrieN}). (12)

Example 4 Continuing the pigeonhole problem, the expan-
sion of the lifted structure described by Equations 4-7 for
automorphism (p1 - --p1o)(h1---hs) is the structure de-
scribed by Equations 1-3.

In our approach, we need to find lifted structures that can
be expanded into concrete ones. We observe that there is
a simple construction to expand any lifted ¥;-structure L
with lifted domain S that results sometimes (but not always)
in a concrete structure / with an automorphism 7 having
backbone S. This construction is as follows.

Definition 5 (Expansion of lifted domain) An expansion
of the domain S = {l; | i € N} of the lifted ¥;-structure

LisasetD ={d] |3i,jeN:l;e SA1<j< Mul"(l;)}
such that the &) are distinct and Vi : d} = ;.

We call d} a base element. Notice that lifted domain
elements with multiplicity zero have no image in D.?
We define a permutation on the set D having the cycles
(li,d? ... dMulL(li)):

1
Definition 6 (Permutation of the expanded domain)
The permutation of an expansion D of a lifted domain
is the function ™ : D — D such that 7(d}) = d*" for

1< < Mul*(1;) — 1, and w(dM*" @y = g1,

3

“Null multiplicities will prove useful for iterative methods in
Section 5



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

The expansion of a lifted tuple [ in a lifted structure is its

m-orbit: 4

expr (1) = o (1) = {w'(I)]i € N} (13)
if none of the expansion of its elements is empty, and is
empty otherwise. The concrete interpretation of symbols is
obtained by expanding the tuples in their lifted interpreta-
tions, as in Equations (10-12).

It follows from the correspondence between Definition 2
and Equations (10-12) that, if 7 and I are constructed from
L in this way, and if [ is actually a structure, then S is a
backbone of 7 in /. When L only has strictly positive mul-
tiplicities, a lifted structure derived from the expansion of L
will be isomorphic to L: in some sense, the compression is
lossless. However, I may not be a structure because the in-
terpretation of a function symbol in / might not be a total
function on its domain, as the following example shows.

Example 5 Consider the lifted structure L with domain
S = {a,b}, with types A" {a}, BL {b}, and
for f + Ax A — B, fl' = {(a,a) — b}. Finally,
let mul(a) mul(b) 2, The expanded domain is
{a',a? b, b%} with permutation (a'a?)(b'b?). The expan-
sion of f¥ is {(a',a') — b', (a2, a®) — b%}. There is no
entry for (a*, a®), so the expansion is not a total function.
Consider now the lifted structure L with domain S =
{a, b}, with type AX = {a}, BF = {b}, for f : A — B,
ft = {a — b}. Finally, mul(a) = 1, mul(b) = 2. The ex-
panded domain is {a*,b', b*} with permutation (a*)(b'b?).
The expansion of f* is {a' — b',a' — b?}. This expansion
gives two different values for o', so it is not a function.

To distinguish lifted structures that can be expanded into
concrete ones from those that cannot, we introduce the no-
tion of regularity.

Definition 7 (Regular function, regular lifted structure)
The lifted interpretation of a function symbol is regular
if its expansion defines a total function in the concrete
domain, i.e., if it specifies exactly one image for every
tuple in the concrete domain. A regular lifted structure is a
lifted structure in which the interpretation of each function
symbol is regular.

Now, we define the expansion of a regular lifted structure:

Definition 8 (Expansion of a regular lifted structure)

Let L be a regular lifted structure over a lifted vocabulary.
Then, I, the expansion of L, is the structure over the
concrete vocabulary defined as follows:

e its domain is the expansion of the lifted domain, having
permutation © derived from L;

e for each type symbol T, TT = exp,.(TT);

s for each predicate symbol p, p' = exp,(p*);

e for each function symbol f, f1 = exp.(f*).

The expansion of a regular lifted structure does not in-
volve any search. The time needed for this expansion is gen-
erally negligible (e.g., less than 0.1 sec for 10,000 concrete
domain elements).

To further characterize regular functions, we introduce
the concept of regular tuples. We use Mul(ly,...,1,) (resp.

7964

Lem(ly, . .., 1y,)) as a shorthand for the product of the multi-
plicities of [; (resp. their least common multiple lcm). First,
we observe that the size of the expansion (Equation 13) of a
tuple [ is finite: it is the order of the permutation defined by
the cycles of its elements, i.e., Lem(ly,...,1,).> Also, the
expansion has at most Mul(lq,...,1,) tuples; it is then the
cross-product of the expansions of its elements. When those
two numbers are identical, we say that the tuple is regular.

Definition 9 (Regular lifted tuple) A lifted tuple is regular
if and only if its expansion is the cross-product of the expan-
sion of its elements.

Example 6 Let (a,b) be a tuple of two lifted domain
elements with mul(a) 2 and mul(b) 4. Its ex-
pansion is {(a',b'), (a?,b?), (a',b%), (a®,b)}, of size
Lem(2,4) = 4. Note that, e.g., the tuple (a',b*) does not
belong to the expansion: thus, (a,b) is not regular. It is
regular when mul(b) = 0 (the expansion of b and of (a,b)
are empty), or when, e.g., mul(b) = 3 (the expansion is
{(ah,b1), (a2,12), (a}, %), (a2, BV, (a1, 17), (a®,0%)}), o
size Lem(2,3) = 6.

Nullary and unary tuples are always regular. An n-ary tu-
ple is regular when one of its elements has multiplicity zero,
or every pair of its elements have multiplicities that are co-
prime.

Proposition 1 (Regular function) A function fL is regular
if, for all tuples 1 in the domain of f*, it holds that (i) |
is regular, and (ii) the multiplicity of | is a multiple of the
multiplicity of its image.

Proof 1 First, we show that the expansion of fL gives at
least one value for every tuple d in the concrete domain of
f. Each element d; of d is in the expansion of a lifted domain
element l; € TL. Tuple I = (11, ,1,) € T is in the lifted
domain of f* as f* is total; it is regular by (i), hence d is in
its expansion and f1(d) is in exp, (fL(1)).

Next, we show that the expansion gives at most one value
for every tuple d in the concrete domain of f. Let d be in the
expansion of I, with Lem (1) = m = Mul(l) by (i). We thus
have 0 < m. The expansion of f* contains the pairs 7 (I —
FEW) and 7™l — fL(1)), for any [ in the domain
of f*~, and for any i and n. The first element of these two
pairs are identical by definition of m; the second elements
are identical by (ii).

4 Translation Into a Lifted Sentence

We now present a translation of a sentence in FO(Type, Ag-
gregate) into a sentence that allows domain compression,
such that the translation is equisatisfiable with the original.
The translation x(¢) of a sentence ¢ is the conjunction of (i)
the transformed sentence x(¢), and (ii) sentences expressing
regularity conditions.

The transformation y(e) of an expression e is defined re-
cursively in Table ??. The left column shows the possible
syntactical forms in the concrete sentence; the middle col-
umn shows the transformation; the third column shows the

3Taking the convention that the lcm of a tuple of numbers con-
taining 0 is 0.



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

regularity constraints added to the translation. The bottom
part of the table shows the regularity constraints added for
each function symbol in the vocabulary to ensure that the
function interpretations are regular (Proposition 1).

Note that sum aggregates and quantified formulas are
transformed by specialized rules (Rules 18, 26, 27)
when possible (see table footnote), and by general rules
(Rules 19, 28, 29) otherwise. Generally, it is beneficial to
do equivalence-preserving transformations of sentences to
obtain sentences of the form allowing application of special-
ized rules. The specialized rules do not require the transla-
tion of p(Z, s) by Rule 21, thus avoiding the regularity con-
straint RC(p(x(t, s))). E.g., for the atom ¢ = s, this regu-
larity constraint would enforce mul(t) = mul(s) = 1 for
each tuple (¢, s) in the lifted equality relation, significantly
reducing the possibility of compression.

The transformation of a sentence consists of adding 0 <
Mul(z) filters (to cope with lifted domains elements with
an empty expansion) and of multiplying the term ¢ in an ag-
gregate term with some decompression factor: in Rule 19,
it is the number Mul(Z) of possible concrete variable as-
signments; in Rule 18, it is that number multiplied by the
fraction of concrete assignments that make p(¢, s) true. The
regularity condition added for an atom (Rule 21) ensures the
translated atom is equisatisfiable with the original atom.

Example 7 The sentence "at most 2 pigeons in each hole”:
Yh € Hole : #{p € Pigeon | isIn(p,h)} < 2.

Its transformation by Rule 18 (with ¢ = true) and 28 is:*
Vh € Hole : 0 < mul(h) =

LZZZ(Z’L’)’) if 0 < mul(p) AisIn(p, h)) < 2.

Zpe Pigeon (

Theorem 1 (Equisatisfiability) An ~ FO(Type, Aggre-
gate) sentence is equisatisfiable with its translation, given
the number of concrete elements in each type.

If I is a model of the sentence, then L constructed by extend-
ing I by setting all multiplicities to one is a model of the
translated sentence: indeed, the added constraints are triv-
ially satisfied, and the translated sentence is equivalent to the
original one. Proving the converse is long and complex. It is
proved by structural induction of two invariants over the syn-
tactic tree of the sentence to be satisfied: (i) a transformed
formula x(¢) is true in L under some variable assignment
[Z : I,] if and only if ¢ is true in I under any variable as-
signments [Z : d,;] such that each d, is in the expansion of
Iy, (ii) similarly, if a transformed term x (¢) has value [ in the
lifted structure L under some variable assignment [Z : [,,],
then, the expansion of the value / contains the value of the
term ¢ in I (the expansion of L), for any variable assignment
[Z : d] such that each d,, is in the expansion of ,,. This
property holds only when the regularity constraints given in
Table ?? hold in the lifted structure. This explains why these
constraints are added to the transformed sentence. The proof
is in the supplementary material (Carbonnelle et al. 2023).

“Recall that a cardinality aggregate is a shorthand for a sum
aggregate whose term is 1.

7965

5 Evaluation of the Method

Implementation The goal of the evaluation is to show that
there are satisfiability problems where substantial compres-
sion of the domain is possible, and that the lifted models
can indeed be expanded into concrete ones. A problem is
solved iteratively, starting with empty lifted domains. Given
a domain, the lifted sentence is reduced to a propositional
sentence and its satisfiability is determined with a stan-
dard satisfiability solver capable of arithmetic reasoning. If
the sentence is unsatisfiable with this domain, the sentence
is reduced to a minimal unsatisfiable formula (Lynce and
Marques-Silva 2004), and the domains of the types used in
that formula are extended with one element. This process is
repeated until a model of the sentence is found (it does not
terminate if the original sentence is unsatisfiable for any do-
main size, unless one imposes an upper limit on the size of
lifted domains).

In many experiments, it was sufficient to support the spe-
cial Rules 18, 26-27 for the case where the atom p is of the
form t; = s (e.g., holeOf (p) = h). Then, the transforma-
tion of a sum aggregate per Rule 18 simplifies to:

LS (@) x x(t)

_ 32
mul(x(s)) & ¢y

if 0 < Mul(z) A x(t1)=x(s) A x(¢))

This formula does not use the lcm function, which is not
supported natively by solvers. In other experiments, we used
an interpretation table for lcm.

Problems are expressed in FO(+)°, a Knowledge Repre-
sentation language with support for types, subtypes, and ag-
gregates.5 A FO(-) (lifted) sentence is translated by IDP-
Z3 (Carbonnelle et al. 2022) for use with the Z3 SMT
solver (de Moura and Bjgrner 2008). The overhead of this
translation is negligible.

The source code of our examples is available on GitLab’.
Tests were run using Z3 v4.12.1 on an Intel Core i7-8850H
CPU at 2.60GHz with 12 cores, running Ubuntu 22.04 with
16 GB RAM. We run a modified version of IDP-Z3 v0.10.8
on Python 3.10.

Pigeonhole problem To validate the approach, we first
consider the satisfiability problem of assigning each pigeon
to one pigeonhole, such that each pigeonhole holds (at most)
2 pigeons. Function holeOf : Pigeon — Hole is used to
represent this relation.

When there are twice as many pigeons as holes, the lifted
solution has 1 lifted pigeon and 1 lifted hole, as shown in
the introduction of the paper. As expected, the time needed
to solve the lifted problem is almost constant when it is sat-
isfiable. The correct multiplicities are found quickly by Z3
using a sub-solver specialized for arithmetic. For example,
with 10,000 pigeons, the lifted sentence is solved in only

Shttps://fo-dot.readthedocs.io/

8Subtypes are subsets of types, and are declared as unary pred-
icates in FO(+). Subtypes can be used where types are used: in the
type signature of a symbol and in quantification.

"https://gitlab.com/pierre.carbonnelle/idp-z3-generative



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Expression e Transformation x/(e) Regularity condition
Term
xT T (14)
<() c() (15)
f(©) Fx(@) (16)
@ty @€ {+,— x,+} X(t1) @ x(t2) (17
* Mul(Z)Lem s . _
D S (Mu@Lenbdxal oy (1) if 0 < Mul(z) A p(x(D, x(5) A x())  (18)
zeT:p(t,s)n¢p
2t Ser (Mul(x) x x(t) if 0 < Mul(@) A X(9)) (19)
zeT:¢
Formula
p() p() (0)
p() p(x(1)) RC(p(x())"” 1)
ty ~t27’\»€{< >7\7/} X(tl) NX(tQ) (22)
P1 Q) P2, ) € {n, v,=, <} x(¢1) Q) x(2) (23)
—¢ —x(9) (24)
T = {t,...,tn} > mul(z) = n (25)
_ _ . _ xeT
vieT :p(t,s) = ¢ VzeT:0 < Mul(z) A p(x(1), x(s)) = x(¢) (26)
e T :p(Ls) Ao e T :0 < Mul(z) A p(x(), x(5) A X(¢) (27)
VeeT:¢ VZeT :0< Mul(z) = x(¢) (28)
dzeT: ¢ Iz eT:0< Mul(Z) A x(¢) (29)
for each function f : T — T vz e T : Mul(z) = Lem(Z)  (30)
vzeT:IneN: Mul(z) =n x mul(f(z)) (31
© Rules (18 26, 27) are applied only when vars(f) S {Z} and vars(s) n {Z} = &; Rules (19, 28, 29) are applied otherwise.
™ RC (p(x(1))) is defined as VZ € Ty : p(x(?)) = Mul(Z) = Lem(Z) v Mul(x(F)) = Lem(x()), where Z = vars(p(x(%)))
Table 1: Terms, formulas, and their translation
0.05 sec and the expansion of the lifted model into a con- We evaluate our solving method on three representative

crete one in 0.1 sec. With the same solver and the original GCP discussed in the literature:
sentence, the solution time increases exponentially (4 sec to
solve the problem for 30 pigeons). We are aware that sym-
metry breaking can reduce the complexity, but to the best of

» the House Configuration and Reconfiguration prob-
lem (Friedrich et al. 2011),

our knowledge, solving time is at least linear in the number ¢ the Organized Monkey Village (Reger, Suda, and
of pigeons for the best symmetry breaking solvers. Voronkov 2016)

We also validated our method on pigeonhole problems * the Rack problem (Feinerer, Salzer, and Sisel 2011;
where the relation between pigeon and holes is represented Comploi-Taupe, Francescutto, and Schenner 2022),
by a bin.ary predicate. The trans'lated sentence uses an in- These problems are expressed using only an equality
terpretation table for [cm. Experiments confirm equisatisfi- predicate and unary symbols, and most regularity constraints
ability, but the complexity is quadratic because of the lcm introduced by our method are trivially satisfied.
table. Finding a more efficient implementation has been left The top half of Table ?? shows results with Z3 (with au-

for future work. tomatic translation of the sentence), the bottom half with the

OR-tools solver® (with manual translation). A more detailed

Generative configuration problems Generative configu- table is provided in the supplementary material (Carbonnelle
ration problems (GCP) are configuration problems in which et al. 2023).

the number of some components has to be found: the num- Solutions to problems with higher suffixes have more
ber of elements in some types is not known in advance. An components than similar problems with lower ones. The
iterative method is thus always required to find them. When table shows near constant time performance on the Rack
the compressed domain is smaller than the concrete domain, ABCD problems. The lifted methods solve each of the 20
the number of iterations needed to solve the lifted sentence occurrences of the ABCD Racks problem in (Comploi-
is smaller than the number of iterations for the original sen-

tence, leading to better performance. Hence, GCP is a good $hitps://google.github.io/or-tools/, used via CPMpy (Guns
application domain for our method. 2019).

7966



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Time #

Lifted? | Lifted Orig. | Lifted Orig.
HCP 1 0.2 0.2 6 10
HCP 3 0.22 1.5 6 27
HRP 1 0.27 0.23 7 10
HRP 3 0.30 6.41 8 25
Monkey 1 0.28  184.66 6 20
Monkey 4 0.27 T 6 52
Rack 2011 0.24 8.82 5 23
Rack A5 0.46 0.86 5 19
Rack A10 0.41 37.52 5 38
Rack A1000 0.54 T 4 2250
Rack ABCD4 1.55 4.37 13 20
Rack ABCD8 2.69 T 13 40
Rack ABCD20 | 3.31 T 13 100
Rack Al 0.61 0.75 5 7
Rack A2 0.64 1.54 5 9
Rack A3 0.62 3.69 5 11
Rack A4 0.65 36.9 5 13
Rack A5 0.65 T 5 19

Table 2: Wall clock time in seconds to solve configuration
problems, and number (#) of used domain elements in mod-
els. Yes: lifted sentence, No: original sentence, T: timeout
after 200 sec.

Taupe, Francescutto, and Schenner 2022) in less than 5 sec-
onds (instead of 6 minutes on average in that paper, using
an ASP solver). These results show that our method has sig-
nificant merits for solving problems with symmetries and a
preponderance of unary symbols.

6 Boolean Algebra of Sets with Presburger
Arithmetic

Lifted domain elements represent disjoint sets of concrete
domain elements. A model search in the lifted domain can
be seen as a model search involving sets. Hence, our work
is highly related to Boolean Algebra of sets with Presburger
Arithmetic (BAPA), a logic that can express constraints on
the cardinality of sets, of their unions and of their intersec-
tions (Kuncak and Rinard 2007; Suter, Steiger, and Kuncak
2011; Bansal et al. 2016). Some problems from verification
of properties of software operating on complex data struc-
tures contain fragments that belong to BAPA.

A sample BAPA statement is |[A| > 1 A A< B A |Bn
C| < 2, where A, B, C are sets, and |A] is the cardinality
of A. The equivalent expression in FO(Type, Aggregate) is
(#{d : A(d)} > 1) A (Vd : A(d) = B(d)) ~ (#{d :
B(d) A C(d)} < 2), where A, B,C' are now unary pred-
icates over a (unique) type whose interpretation is to be
found. This expression can be lifted and solved using our ap-
proach (see the “theories/BAPA” folder in our repository”).
In general, any BAPA sentence can be converted to a con-
crete FO(Type, Aggregate) sentence that only uses unary
predicates, and that can be lifted without regularity con-
straints. Hence, our approach offers a simple way to solve
BAPA problems using any solver capable of reasoning over
the rationals. The performance advantage should be evalu-
ated in future work.

7967

On the other hand, the conversion of a concrete FO(Type,
Aggregate) sentence to BAPA logic is challenging because
FO(Type, Aggregate) is more expressive: it allows n-ary
relations, functions, sum aggregates, and product of cardi-
nalities. Thus, a BAPA solver could not be used to solve,
e.g., generative configuration problems. Still, extensions of
BAPA solvers to handle finite n-ary relations have been im-
plemented in CVC4 (Meng et al. 2017).

A simple approach to represent structures in BAPA is to
use disjoint subsets of the concrete domain, called Venn re-
gions, so that the cardinalities of any set of interest is the sum
of the cardinalities of its Venn regions. Unfortunately, the
number of Venn regions grows exponentially with the num-
ber of sets of interest. Hence, various methods have been
developed to reduce this growth, e.g., by creating new Venn
regions lazily when required (Bansal et al. 2016). Venn re-
gions are similar to our lifted domain elements, and the it-
erative method that creates new Venn region is similar, to
some extent, to our iterative method that creates new lifted
elements when required.

Our method cannot prove the unsatisfiability of a sen-
tence. By contrast, efficient methods have been proposed to
prove the unsatisfiability of BAPA sentences (Suter, Steiger,
and Kuncak 2011).

7 Discussion

Unlike the traditional approach of adding symmetry break-
ing conditions to a formula to accelerate satisfiability check-
ing, we automatically translate the formula to a form with
fewer symmetries. Our results demonstrate the benefits of
this approach for problems with symmetries and a prepon-
derance of unary symbols, and justify further research in au-
tomatic translation for symmetry reduction.

Much work remains to be done in evaluating the method
and determining problem areas where it is useful. Moreover,
the relationship with BAPA logic is worth further explo-
ration because, unlike our method, BAPA can identify un-
satisfiable sentences and our method does not terminate for
such problems. Efficient implementation of the lcm func-
tion is another area of research. Worth exploring is also the
relevance for related areas such as model counting.

Ideally, any compression of a model of a sentence (Sec-
tion 3) should be a model of the lifted sentence. It is unlikely
that this is achievable, as it requires a translation that avoids
all regularity constraints apart from those for functions. This
requires being able to predict the fraction of concrete vari-
able assignments (in the expansion of a lifted assignment)
that make a concrete formula true, given that the translated
formula is true with the lifted assignment. In particular, filter
formulas (in an aggregate) having both free and quantified
variables are problematic.

Still, many refinements of the translation in Table ?? are
feasible. We have already worked out some refinements,
but they cannot be presented within the current space con-
straints. They will be presented in the PhD thesis of one of
the authors (Carbonnelle 2024).



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Acknowledgments

This research received funding from the Flemish Govern-
ment under the “Onderzoeksprogramma Artificiéle Intelli-
gentie (AI) Vlaanderen” programme.

References

Bansal, K.; Reynolds, A.; Barrett, C.; and Tinelli, C. 2016.
A new decision procedure for finite sets and cardinality con-
straints in SMT. In International Joint Conference on Auto-
mated Reasoning, 82-98. Springer.

Carbonnelle, P. 2024. Standard, Interactive and Lifted
Model Expansion using FO(-). Ph.D. thesis, KU Leuven,
Belgium.

Carbonnelle, P.; Schenner, G.; Bruynooghe, M.; Bogaerts,
B.; and Denecker, M. 2023. Using Symmetries to Lift Sat-
isfiability Checking. arXiv:2311.03424.

Carbonnelle, P.; Vandevelde, S.; Vennekens, J.; and De-
necker, M. 2022. IDP-Z3: a reasoning engine for FO(.).
CoRR, abs/2202.00343.

Comploi-Taupe, R.; Francescutto, G.; and Schenner, G.
2022. Applying incremental answer set solving to product
configuration. In et al., A. F., ed., SPLC ’22: 26th ACM Int’l
Systems and Software Product Line Conference, 150-155.
ACM.

Crawford, J. M.; Ginsberg, M. L.; Luks, E. M.; and Roy, A.
1996. Symmetry-Breaking Predicates for Search Problems.
In Aiello, L. C.; Doyle, J.; and Shapiro, S. C., eds., Pro-
ceedings of the Fifth International Conference on Principles
of Knowledge Representation and Reasoning (KR’96), Cam-
bridge, Massachusetts, USA, November 5-8, 1996, 148—159.
Morgan Kaufmann.

de Moura, L.; and Bjgrner, N. 2008. Z3: An Efficient SMT
Solver. In et al., C. R. R., ed., Tools and Algorithms for
the Construction and Analysis of Systems, 14th Int’l Confer-
ence, volume 4963 of Lecture Notes in Computer Science,
337-340. Springer.

Devriendt, J.; Bogaerts, B.; Bruynooghe, M.; and Denecker,
M. 2016. On local domain symmetry for model expansion.
Theory Pract. Log. Program., 16(5-6): 636—652.

Enderton, H. B. 1972. A mathematical introduction to logic.
Academic Press. ISBN 978-0-12-238450-9.

Feinerer, 1.; Salzer, G.; and Sisel, T. 2011. Reducing Mul-
tiplicities in Class Diagrams. In et al., J. W., ed., MODELS
2011., volume 6981 of Lecture Notes in Computer Science,
379-393. Springer.

Felfernig, A.; Hotz, L.; Bagley, C.; and Tiihonen, J. 2014.
Knowledge-based configuration: From research to business
cases. Newnes.

Friedrich, G.; Ryabokon, A.; Falkner, A. A.; Haselbock, A.;
Schenner, G.; and Schreiner, H. 2011. (Re)configuration us-
ing Answer Set Programming. In et al., K. M. S., ed., Pro-
ceedings of the IJCAI 2011 Workshop on Configuration, vol-
ume 755 of CEUR Workshop Proceedings. CEUR-WS.org.

Gent, 1. P; Petrie, K. E.; and Puget, J.-F. 2006. Symmetry
in constraint programming. Foundations of Artificial Intelli-
gence, 2: 329-376.

7968

Guns, T. 2019. Increasing modeling language convenience
with a universal n-dimensional array, CPpy as python-
embedded example. In Proceedings of the 18th workshop
on Constraint Modelling and Reformulation at CP (Modref
2019), volume 19.

Kuncak, V.; and Rinard, M. C. 2007. Towards Efficient Sat-
isfiability Checking for Boolean Algebra with Presburger
Arithmetic. In Pfenning, F., ed., CADE-21, 2007, vol-
ume 4603 of Lecture Notes in Computer Science, 215-230.
Springer.

Lynce, I.; and Marques-Silva, J. 2004. On Computing Min-
imum Unsatisfiable Cores. In SAT 2004 - The Seventh In-
ternational Conference on Theory and Applications of Sat-
isfiability Testing, 10-13 May 2004, Vancouver, BC, Canada,
Online Proceedings.

Meng, B.; Reynolds, A.; Tinelli, C.; and Barrett, C. W. 2017.
Relational Constraint Solving in SMT. In de Moura, L., ed.,
CADE 26, 2017, volume 10395 of Lecture Notes in Com-
puter Science, 148—165. Springer.

Reger, G.; Suda, M.; and Voronkov, A. 2016. Finding Finite
Models in Multi-sorted First-Order Logic. In et al., N. C.,
ed., Theory and Applications of Satisfiability Testing - SAT
2016, volume 9710 of Lecture Notes in Computer Science,
323-341. Springer.

Schenner, G.; and Taupe, R. 2017. Techniques for solving
large-scale product configuration problems with ASP. In
Proceedings of the 19th International Configuration Work-
shop, 12—19.

Suter, P.; Steiger, R.; and Kuncak, V. 2011. Sets with Car-
dinality Constraints in Satisfiability Modulo Theories. In
etal.,,R.J.,ed., VMCAI 2011, volume 6538 of Lecture Notes
in Computer Science, 403—418. Springer.



