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Abstract

Accurately computing optical flow in low-contrast and noisy
dark images is challenging, especially when contour infor-
mation is degraded or difficult to extract. This paper proposes
CEDFlow, a latent space contour enhancement for estimating
optical flow in dark environments. By leveraging spatial fre-
quency feature decomposition, CEDFlow effectively encodes
local and global motion features. Importantly, we introduce
the 2nd-order Gaussian difference operation to select salient
contour features in the latent space precisely. It is specifically
designed for large-scale contour components essential in dark
optical flow estimation. Experimental results on the FCDN
and VBOF datasets demonstrate that CEDFlow outperforms
state-of-the-art methods in terms of the EPE index and pro-
duces more accurate and robust flow estimation. Our code is
available at: https://github.com/xautstuzfy.

Introduction

Optical flow estimation is a crucial technique of numerous
computer vision applications, such as autonomous driving
(Takumi et al. 2017), object tracking (Peng et al. 2020),
video enhancement (She and Xu 2022), etc.. Under a global
scene smoothness assumption, researchers propose to esti-
mate the optical flow by solving a global energy minimiza-
tion problem (Horn and Schunck 1981). If assuming the key
points have brightness constancy, the flow estimation can
also be formulated as a local energy minimization (Lucas,
Kanade et al. 1981). However, in dark illumination scenar-
ios, these assumptions can be violated due to low contrast,
strong noise, and deterioration of brightness constancy. As
shown in Fig. 1, the contour information in low-contrast dark
images is degraded by intense noise, leading to ambiguous
contour matching. This presents a significant challenge in
achieving precise flow estimation in such conditions.
Pre-stage image feature enhancement has emerged as a
promising approach to address the challenge of Dark Optical
Flow Estimation (DOFE). While deep learning-based solu-
tions have made remarkable progress in enhancing low-light
or dark images (Li et al. 2021), existing methods primarily
focus on improving visual perceptual quality by adjusting
brightness and contrast. Nevertheless, these enhancements
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Figure 1: Flow estimation in a challenging low-light con-
dition. The proposed CEDFlow outperforms state-of-the-art
methods RAFT (Teed and Deng 2020), GMA (Jiang et al.
2021a) and AGFlow(Luo et al. 2022b).

often introduce inconsistencies and blurry boundaries, pro-
viding limited benefits to specific vision tasks. In contrast,
task-specific feature-level enhancement has shown effective-
ness in applications like face detection (Wang et al. 2022),
image deblurring (Zhou, Li, and Change Loy 2022), and im-
age or video super-resolution (Chan et al. 2021). This paper
proposes a novel feature enhancement framework explicitly
designed for DOFE, distinguishing it from existing low-light
image enhancements.

Large-scale background motion poses challenges for
DOFE, where both local and global features play crucial
roles. Global feature extraction usually requires a larger
receptive field size, which is computationally expensive.
Meanwhile, local feature extraction is scale-sensitive, espe-
cially in the presence of low-light noises. Therefore, choos-
ing an appropriate receptive field size that enables the si-
multaneous extraction of local and global motion features is
difficult. Furthermore, large-scale salient contour semantics
are very important for precise DOFE, but accurately pick-
ing the salient contour semantics from a low-light image is
also challenging. To address these issues, we propose CED-
Flow, an efficient latent contour encoding and enhancement
in DOFE. Our contributions can be summarized as follows.

* A spatial frequency decomposition for local and
global motion encoding. We propose encoding
frequency-based features through local and global
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motion encoders, which can be integrated after feature
attention has been computed by MLP.

* A latent space contour enhancement. We suggest com-
puting the 2nd-order Gaussian difference of the feature
map to select large-scale contour semantics. This process
enables the direct enhancement of contour features in the
latent space while accentuating local discrimination and
smoothness.

e The state-of-the-art performance on widely used
benchmarks. The proposed CEDFlow outperforms
state-of-the-art approaches regarding the End-Point Er-
ror index on the public FCDN and VBOF benchmarks.

Previous Works on the DOFE

To address optical flow estimation with small moving ob-
jects and occlusions, convolutional neural networks (CNNs)
have been successfully applied in methods like FlowNet
(Dosovitskiy et al. 2015), Pyramid-networks (Sun et al.
2018), RAFT (Teed and Deng 2020), GMA (Jiang et al.
2021a), and GMFlow (Xu et al. 2022a). However, these
state-of-the-art methods heavily rely on high-contrast image
textures, which can be significantly degraded in DOFE.

A straightforward solution for DOFE is to enhance
low-light input images using computational enhancements,
which are dominated by learning-based solutions, like (Guo,
Li, and Ling 2016; Cai et al. 2017; Wei et al. 2018; Wang
et al. 2020). Recent solutions effectively improve the visual
perceptual quality of low-light images by using frequency
adaptive operations (Xu et al. 2020), (Xu et al. 2022b).
However, none of these works are specifically designed for
the DOFE problem. Aiming at solving the DOFE problem,
Zheng et al. propose a synthetic optical flow benchmark by
adding dark image noise to the FlyChairs dataset, called Fly-
ingChairs Dark&Noise (FCDN) dataset (Zheng, Zhang, and
Lu 2020). They also introduce the Various Brightness Opti-
cal Flow (VBOF) dataset, which includes multiple exposure
levels and optical flow pseudo labels (Zhang, Zheng, and Lu
2021).

Few works currently focus on designing specific DOFE-
oriented learning networks, which is more helpful than
applying general-purpose low-light enhancements. There-
fore, our proposed CEDFlow framework explores enhancing
salient contour semantics, which is essential for large-scale
motion understanding, specifically addressing the DOFE.

The Proposed CEDFlow Algorithm

Fig. 2 illustrates the decomposition of consecutive frames
into high- and low-frequency parts, then enabling the ex-
traction of fine-grained and large-scale motion information
through local and global encoders. Furthermore, we suggest
computing the 2nd-order Gaussian difference of the latent
feature map to select and to enhance the salient contour se-
mantics.

Motion Feature Encoding

Different from mainstream motion encoders (Teed and Deng
2020; Luo et al. 2022¢c; Xu et al. 2022a) as shown in
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Fig. 3(a), we suggest encoding high- and low-frequency
components with local and global encoders after spatial fre-
quency decomposition, i.e.Fig. 3(b). The challenge of long-
range pixel connections in DOFE arises from noise hinder-
ing pixel matching under low-light conditions. While in-
creasing the receptive field with larger convolution kernels
can be a solution, it may introduce pixel similarity uncer-
tainty and feature-matching ambiguity. Instead, we propose
a context-adaptive motion reasoning approach to construct
long-term and short-term pixel correlations. The motion en-
coder in our method consists of a spatial frequency decom-
position, a dual-branch motion encoder(DBME), and a Mul-
tilayer Perceptron (MLP)-based feature aggregation.

The Frequency-based Decomposition. To begin with, we
introduce a spatial frequency decomposition module that
first utilizes three downsampling blocks to extract a feature
map volume f(H/8xW /8xN) from the input frames, where
H and W represent the height and width of the frames,
respectively, and N denotes the number of channels. This
downsampling step helps reduce the computational cost and
compress the motion representation. To decompose the mo-
tion feature information, we use two groups of dilated con-
volutions (with kernel size/dilation rate of 1/1 and 3/2), de-
noted as d; and ds. By computing the convolutional differ-
ence between d; and ds, a contrast-aware attention map wy
can be defined as,

ws = sigmoid(dy(f) — d2(f)), (D

With the weight map wj, the extracted feature volume f can
be roughly divided as the high-frequency part f and the
low-frequency part f.

<fh M >=<(l-w) fiws- f > )
where “-” denotes an element-wise dot-product. An exam-
ple feature map visualization can be found in Fig. 4. Af-
ter the feature decomposition, the f represents the spatial
low-frequency properties, and the f concerns the high-
frequency feature of the given dark scene.
The Dual-branch Motion Feature Encoder. Instead of ex-
tracting multiple-scale features, we introduce a dual-branch
structure to encode motion features. Our feature extraction
consists of two key components: the global and local en-
coders. The decomposed high-frequency part f# contains
high-contrast shape and regional motion, as shown in Fig.4,
but often mixed with strong dark noise. To effectively cap-
ture local and structural motion while mitigating additional
noise interference, the local encoder is equipped with three
2D convolutional blocks (with a small receptive field). For
the low-frequency part f~, we perform large-kernel 1-D
convolutional blocks (with a large receptive field) to learn
X-direction and Y-direction motions, followed by layer nor-
malization to ensure robust propagation of motion informa-
tion. The architecture of the local encoder is depicted in
Fig. 2. The learned feature contains local and structural mo-
tion features, which are utilized to make more accurate pre-
dictions for the DOFE problem. Inspired by constructing the
channel attention (Hu, Shen, and Sun 2018), we suggest an
MLP-based aggregation module to bridge the gap between
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Figure 2: The proposed latent contour enhancement architecture. It mainly consists of a feature decomposition-based motion
encoder and a latent contour enhancement module. The core of our contour enhancement adopts the D?0G operation that
directly selects the large-scale contours in the latent space. “D” is a subtraction operation; “T” denotes the sigmoid function;
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Figure 3: Highlight the feature extractions of the proposed
CEDFlow. Most methods extract motion features using a
single feature encoder. In contrast, CEDFlow utilizes dis-
tinctively structured encoders to separately encode local and
global motion, which are aggregated using an MLP.

local and global motion representation, which can be formu-
lated as:

F =MLP(G(f"),L(f™)), )

where M LP(-) denotes the aggregation module, F is the ag-
gregated feature map, the G(-) and £(+) indicate the global
encoder and the local encoder. In general, G(f%) and £(fH)
are used to extract the long-range and short-range con-
nections from low- and high-frequency parts, respectively.
Then, an M LP(-) is applied for the feature aggregation.
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represents the dot product; “F” means a motion-encoded feature map; “F”” is a contour-enhanced feature map.

Hist. f7

Hist. f*

Figure 4: A feature map visualization of frequency-based
components. Histograms show different feature distributions
between f© and f¥. The high-intensity pixels in f# con-
centrate on areas with structural significance, i.e., shape and
region with motion.

Latent Contour Enhanced Flow Estimation

To improve the motion reasoning of the DOFE, we propose
a novel approach for latent contour selection and enhance-
ment. Unlike traditional methods operating in the spatial or
frequency domain, our approach focuses on contour selec-
tion and strengthening in the latent space directly. Rather
than trivial contours, we specifically target large-scale con-
tours, which are more critical to estimation reliability.

Large-scale Latent Contour Selection. In the DOFE com-
putation, large-scale contour plays an important role in con-
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Figure 5: Two sets of input frame pairs and their correspond-
ing feature maps are depicted in (a) and (b) respectively. The
enhanced feature map F’ exhibits improved preservation of
object contours compared to RAFT’s(Teed and Deng 2020)
corresponding layered feature map. Moreover, the saliency
of large-scale contours is enhanced in F’, obtained from the
feature map F using the D?0G contour selection method.

straining the motion correlation to consecutive image ar-
eas with the same motion. We propose using pre-defined
Gaussian kernels to compute the difference between the ex-
tracted feature vector and its neighborhood and to select
these salient contour semantics. While Gaussian-like differ-
ence computation is commonly considered practical in the
image spatial domain, we explore using this computation di-
rectly on the feature embedding maps, where the network
can learn the latent features. Specifically, we apply Gaussian
blurring to the feature map I’ with different standard devia-
tions o,, and radius 7 to obtain the Gaussian-blurred feature
maps F,,  as follows:

F, =FxGy(r,o), n=123. 4

Instead of using the 1st-order Gaussian difference, we pro-
pose to use the 2nd-order Gaussian difference of the feature
map as a weighting function,

wa:Fal_2Fo’2+F0'37 (5)

the w, represents the saliency of feature vectors in F', where
a large w, value indicates that the corresponding feature
refers to a more salient large-scale contour semantics. By
setting different o,, and r, we can determine the scale and
saliency of contour selection. Empirically, a large  and sig-
nificant difference between o,, values can filter out more
trivial contours, leaving only large-scale and high-contrast
contours. The suggested parameter settings for the FCDN
and VBOF datasets are r = 3.0, resulting in a Gaussian ker-
nel size of 7 X 7, and 01 = 3,02 = 9, 03 = 27 respectively.
A detailed comparison of different parameter settings can
also be found in the experiments section. In summary, by
using Gaussian blurring with different standard deviations
and radii, we compute the 2nd-order Gaussian difference of
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Figure 6: The proposed double-pass filtering contour en-
hancement in the latent space.

the feature map to enhance the saliency of large-scale con-
tours, called D?0G contour selection, which offers a robust
and accurate optional process for incorporating flow estima-
tion. Fig. 5 displays the encoded and aggregated motion fea-
ture map F'. By observing this figure, it can be seen that the
motion features have almost the same intensity. This implies
that the weight or saliency of these features cannot be distin-
guished when computing the optical flow using the feature
map F'. However, after contour enhancement with suitable
computation using F' and w, in latent space, the large-scale
contours become more visible than other features in the F”.
Latent Enhancement and Flow Estimation. After the
large-scale latent contour selection, we present a latent
space enhancement that enables a more precise DOFE.
The double-pass filtering is applied on the salient contour
weighting w, to highlight the large-scale contours and al-
leviate the trivial high-contrast feature. Instead of directly
multiplying w, to F, the double-pass filtering is performed
in the latent space with sigmoid normalization. This process
is shown in Fig. 6, where the enhanced large-scale contours
are more visible while the trivial high-contrast contours are
reduced. Eq. 4 demonstrates how this filtering is applied to
the latent feature map F'.

F' =T(T(w,)-F)-F, (6)

where T'(-) stands for the sigmoid normalization. Fig. 5 vi-
sually illustrates the proposed large-scale contour enhance-
ment. We suggest using double-pass filtering to enhance
large-scale contours (pointing by the red arrows) and sup-
press trivial contours (pointing by the black arrows). Since
the proposed T'(-) transformation-based contour enhance-
ment directly operates the aggregated feature map F' in the
latent space, our computational cost is significantly lower
than other spatial or frequency image processing opera-
tions. The proposed latent space operations enable end-to-
end learning-based DOFE training and prediction.

To establish feature correspondences, we adopt the ap-
proach from previous successful work (Teed and Deng
2020) and compute the 4D correlation volume (4D-C'V),
representing the pixel-wise correspondence between two
feature maps of the input paired frames. The following equa-
tion constructs visual similarity between all pairs of feature
vectors in the two contour-enhanced features F7 and F7,

CV = correlation(Fy, F). (7

By pooling the last two dimensions of the original corre-
lation volume, both large and small displacements of pixel
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correlation can be better encoded and searched using a pyra-
mid structural multiple-layered 4D-C'V.

The flow estimation module in CEDFlow is based on the
flow update module of RAFT (Teed and Deng 2020). A
GRU-based update operator is employed to iteratively up-
date the flow estimation result by looking up values from
the 4D-C'V. We initialize the flow field pO to zero, and in
the k-th iteration, it produces an update flow p’g, which is
added to the current estimate: p* = p’g + p*~1. To compute
the update flow pX, we utilize the current flow estimate p*
to retrieve correlation features from the correlation pyramid
4D-CV,

pA = GRU(p" ' F,)
(1—p)-p" T +p- 01 Fo).

In equation (8), ¢(-) is a T'anh()-based activation of the
current flow update increment, which jointly considers the
context feature F, as shown in Fig. 2 and the last flow esti-
mation p*~1. The parameter p is an automatically computed
weighting factor that balances the update state and the reset
state of the GRU flow estimation. Here, p is calculated by
sequentially applying concatenation, convolution, and sig-
moid activation on the p’“‘1 and F,,

®)

€))

A more detailed explanation of the GRU computation can
be found in (Teed and Deng 2020) or in our code.

To train the proposed model in a supervised manner, we
employ a simple £ — 1 loss to constraint the differences
between the predicted optical flow p* and corresponding
ground truth pg;:

p = Sigmoid o Conv o C’oncat(pk_l7 F.).

K
L= 7 " = pgel], - (10)

k=1

In our experiments, we set v = 0.9 cooperating with many
flow prediction iterations (K 12), enabling a better
coarse-to-fine flow updating.

Experiments
Analysis on Different Parameters Settings

Since latent D?0G operation is sensitive to the settings of
the Gaussian kernel parameters, we first studied the differ-
ent setting combinations of the parameters o,, and radius
r. As shown in Tab. 1, on the FCDN and VBOF (Fuji2)
datasets, we first analyzed the performance of the CEDFlow
by switching r when using a fixed o,, = {3,9, 27}. The best
choice of the radius is » = 3.0, i.e., using a 7 x 7 kernel
size, our CEDFlow achieves the mean values of EPE metric
are 1.08 and 13.94 on the FCDN and VBOF datasets respec-
tively. Further, in the o, analysis, we found that more exten-
sive settings of o,, accompanied by a larger receptive field
lead to better performance in constructing long-range pixel
correlation. However, increasing the perceptive field is com-
putationally expensive, e.g. , when using a Gaussian kernel
with » = 3.0, the network in CEDFlow consists of approx-
imately 7.7 million parameters. However, if we increase the
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Parameter EPE(Trained FCDN)

Settings FCDN VBOF(Fuji2)

1 1.27 14.22

r 2 1.17 13.99

3 1.08 13.94

4 1.21 14.15

1,3,9) 1.17 14.14

on (2,6,18) 1.18 14.33

(3,9,27) 1.08 13.94

Table 1: EPE comparison of different parameters setting.

kernel size to » = 4.0, corresponding to a 9 x 9 kernel, the
parameter count rises to 8.7 million, nearly 1. million the
number of parameters compared to » = 3.0. Additionally,
when setting » = 4.0, each training iteration takes approxi-
mately 7.4% more time than r = 3.0.

Comparison with State-of-the-Arts

We evaluated the CEDFlow against eight state-of-the-art
methods that have achieved top-performing results on the
Sintel (Butler et al. 2012) and KITTI (Menze, Heipke, and
Geiger 2015) leaderboards. These methods include RAFT
(Teed and Deng 2020), GMFlow (Xu et al. 2022a), GM-
FlowNet (Zhao et al. 2022), GMA (Jiang et al. 2021a),
AGFlow (Luo et al. 2022¢), KPAFlow (Luo et al. 2022a),
SCV (Jiang et al. 2021b), and Flow1D (Xu et al. 2021). All
models are fairly trained on the FCDN and Mix (FCDN +
VBOF) datasets. Please see details of the experiment imple-
mentation in the supplementary.

Training on the FCDN Dataset. Tab. 2 presents the evalua-
tion results of nine models on FCDN and VBOF (Fuji2 part
only). Our CEDFlow achieved the best average end-point er-
ror (EPE) of 1.08 on the FCDN (the 2nd column). The CED-
Flow outperforms the second-ranked AGFlow (Luo et al.
2022¢) about 7% in EPE (1.15 — 1.08), and outperforms
GMFlowNet (Zhao et al. 2022) near to 30.7% in EPE (1.56
— 1.08). These results indicate that CEDFlow outperforms
other models in solving the DOFE problem, thanks to the
support of feature decomposition-based motion learning and
latent space contour enhancement.

In Tab. 2 (3rd and 4th columns), our proposed CED-
Flow achieved the best performance on VBOF (Fuji2)
and VBOF (All) datasets, outperforming eight state-of-the-
art approaches. It improved by 3.2%, 4.3%, and 5.2%
over GMA, GMFlow, and KPAFlow on Fuji2, respectively.
AGFlow obtained the second-best scores, and RAFT and
GMA ranked third. CEDFlow demonstrated excellent cross-
data capabilities and superior performance.

Training on the Mixed Datasets. In Tab. 2 (5th, 6th and
7th columns), we trained all models using Mixed (FCDN
+ VBOF) datasets, then the flow estimation evaluations are
presented on the FCDN, Fuji2 and VBOF datasets respec-
tively. The proposed CEDFlow achieved an EPE index of
1.23 on the FCDN, 4.69 on the Fuji2 and 6.52 on the
VBOF, outperforming the other eight models. On the FCDN
dataset, GMA (Jiang et al. 2021a) won second place with an
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Frame T Frame T + 1 GMA RAFT KPAFlow Ours Ground Truth

Figure 7: Visual comparison of different flow estimations. In strong noise conditions, our CEDFlow outperforms state-of-the-
art methods in terms of precision (1st row). Furthermore, the 2nd and 3rd rows demonstrate CEDFlow’s distinct and accurate
contour structures, closely resembling the ground truth (highlighted in boxes).

EPE Trained on FCDN Trained on Mixed

FCDN VBOF(Fuji2) VBOF(AIl) FCDN VBOF(Fuji2) VBOF(AI)
RAFT(Teed and Deng 2020) 1.23 14.20 21.84 1.38 7.34 8.89
GMFlowNet(Zhao et al. 2022) 1.56 14.51 22.87 1.70 7.71 8.66
GMFlow(Xu et al. 2022a) 1.18 14.56 22.72 1.31 5.76 7.23
AGFlow(Luo et al. 2022c¢) 1.15 14.16 21.05 1.27 4.97 6.75
GMA (Jiang et al. 2021a) 1.18 14.40 21.77 1.26 4.90 6.81
KPAFlow(Luo et al. 2022a) 1.24 14.71 23.10 1.39 6.11 7.47
SCV (Jiang et al. 2021b) 1.29 14.96 24.13 1.27 6.48 7.76
Flow1D (Xu et al. 2021) 1.22 14.25 21.79 1.30 5.13 6.93
CEDFlow(Ours) 1.08 13.94 20.89 1.23 4.69 6.52

Table 2: EPE comparison of different flow evaluations on FCDN and VBOF datasets. Underlining denotes second rank.

EPE index of 1.26, 2.4% higher than our CEDFlow’s 1.23
score. CEDFlow outperforms the GMFlowNet by nearly
28% in EPE, which indicates the effectiveness of CEDFlow
in addressing the DOFE problem. On the Fuji2, GMA also
achieved the second-best performance with an EPE index
of 4.90, close to CEDFlow. Due to the more complex com-
position of the Mix dataset, models trained on Mix gener-
ally had higher EPE indexes compared to models trained on
FCDN only. In the 6th column of Tab. 2, we present a com-
parison of the entire VBOF dataset, which includes a wide

range of scenarios with illumination changes. The CEDFlow Frame T Frame T+1 RAFT Ours
model remains the best-performing one with an EPE index Figure 8: Visualization results on FLIR ADAS dataset.
of 6.52. The AGFlow approach follows closely behind with CEDFlow demonstrates superior performance in handling
a score of 6.75. However, RAFT and GMFlowNet models complex motion.

achieved the lowest scores, indicating that most state-of-the-
art flow estimations are less effective for significant illumi-

nation variations. . . .
forms other algorithms in generating accurate contours as

Visual Comparison. Fig. 7 visually compares our flow esti- in Fig. 7 first row, it can be observed that the results ob-
mation method, CEDFlow, with RAFT, GMA and KPAFlow tained from GMA and RAFT are not as accurate as the pro-
algorithms on the VBOF dataset (Trained on FCDN). In posed CEDFlow method, especially in terms of the gener-
low-light conditions, the results of three representative sce- ated contours. For instance, the chair’s cushion in the mid-
narios demonstrate that the proposed CEDFlow provides ac- dle of the image appears jagged and blurry in the results
curate and robust DOFE. The proposed CEDFlow outper- obtained from GMA and RAFT, whereas CEDFlow gener-
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Framework EPE(Trained on FCDN)
FCDN  VBOF(Fuji2)
RAFT 1.23 14.20
RAFT+DBME 1.14 14.13
RAFT+LCE 1.12 14.03
CEDFlow+RAFT Encoder  1.17 14.38
CEDFlow 1.08 13.94

Table 3: EPE comparisons by switch encoders between
RAFT and CEDFlow frameworks.

ates a more precise contour closer to the ground truth. We
compared DOFE visual results on the FLIR ADAS dataset
(available at github), which includes many real-world driv-
ing scenes in the dark. Although the FLIR ADAS has no op-
tical flow ground truth, we can see that CEDFlow performs
better in this challenging scenario, which is with moving ob-
jects and dynamic lighting conditions, as shown in Fig. 8.
In general, the proposed CEDFlow outperforms SOTAs in
terms of precision under low-light conditions.

Ablation Studies

Comparison when using Different Encoders. To validate
the effectiveness of our proposed Dual-Branch Motion En-
coder (DBME), we conducted an ablation experiment by
switching encoders in both CEDFlow and RAFT frame-
works. All tested models were trained on the FCDN dataset.
As shown in Tab. 3, we replaced the original encoder of the
RAFT with the proposed DBME (2nd row). Furthermore,
we added our Latent Contour Enhancement (LCE) module
in the RAFT framework (3rd row). We have selected the pa-
rameter 7 to achieve optimal performance. For the 4th row,
we replaced the DBME in CEDFlow with the RAFT en-
coder. Tab. 3 demonstrates that the proposed DBME and
LCE perform best in CEDFlow and are also effective in
other flow estimations, e.g. , the RAFT.

Ablation With CEDFlow Components. A qualitative com-
parison is provided in Tab. 4, presenting the analysis results
of the DBME and LCE components. When removing the
feature decomposition module (1st row of Tab. 4), we ob-
serve that the EPE index of CEDFlow increases by 9.6%,
indicating a significant performance degradation. A larger
increase in EPE signifies a more significant impact of the re-
moved module or component on performance improvement.
By removing the global or local encoder separately (2nd
and 3rd rows), we demonstrate that the global encoder con-
tributes more precision than the local encoder. The results
in Tab. 4 (5th row) highlight the substantial contribution of
our LCE module compared to other modules. This further
emphasizes the effectiveness of the proposed latent contour
enhancement in improving flow estimation performance.

Computation Analysis

Parameters. In the 2nd column of Tab. 5, we compare the
parameter capacity of different SOTAs. Our CEDFlow has
7.7 million parameters, the second largest model. It is be-
cause CEDFlow employs the DBME that encodes local and
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Module EPE (Trained on FCDN)
FCDN VBOF(Fuji2) VBOF(AIl)

w/o Decom. 1.19 14.70 23.13
w/o Glo. Enc. 1.17 14.54 22.64
w/o Loc. Enc. 1.15 14.23 21.88
w/o MLP 1.22 15.01 24.02
w/o LCE 1.26 14.79 23.44
Whole 1.08 13.94 20.89

Table 4: Ablation analysis for different parts of the DBME
and the LCE in CEDFlow framework.

Models Param(M) Time(ms) Memory(GB)
RAFT 5.3 42 1.7
GMFlowNet 9.3 112 34
GMFlow 4.7 67 1.8
AGFlow 5.6 46 1.9
GMA 5.9 63 1.8
KPAFlow 5.8 89 2.6
SCv 5.3 40 1.6
Flow1D 5.7 45 1.7
Ours 7.7 76 2.1

Table 5: Comparisons of the EPE and computational costs
with the state-of-the-art methods.

global motion features separately, and the additional param-
eters of DBME have proved valuable for performance.

Runtime & Memory. We also show the runtime and mem-
ory requirements of different models in Tab. 5. As inputting
images at 736 x 480 resolution, our CEDFlow requires 76ms
in runtime and 2.1GB in memory. Considering the signifi-
cant improvement the precision, its computational costs are
acceptable for dealing with the challenging DOFE problem.

Conclusion

This paper proposes a novel CEDFlow framework for dense
optical flow estimation that addresses the challenges in low-
light conditions. CEDFlow incorporates the Dual-Branch
Motion Encoder (DBME) and Latent Contour Enhancement
(LCE) modules to improve accuracy and robustness. The
DBME captures finer details by utilizing its distinctively
structured local and global motion feature encoders, while
the LCE module enhances large-scale contours in the latent
feature space. Experimental results on FCDN and VBOF
datasets demonstrate that CEDFlow outperforms state-of-
the-art methods regarding end-point error. Future research
directions include exploring the application of CEDFlow to
other vision tasks and investigating optimizations for further
enhancing efficiency and accuracy.
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