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Abstract

BEV perception is of great importance in the field of au-
tonomous driving, serving as the cornerstone of planning,
controlling, and motion prediction. The quality of the BEV
feature highly affects the performance of BEV perception.
However, taking the noises in camera parameters and Li-
DAR scans into consideration, we usually obtain BEV rep-
resentation with harmful noises. Diffusion models naturally
have the ability to denoise noisy samples to the ideal data,
which motivates us to utilize the diffusion model to get a
better BEV representation. In this work, we propose an end-
to-end framework, named DiffBEV, to exploit the potential
of diffusion model to generate a more comprehensive BEV
representation. To the best of our knowledge, we are the
first to apply diffusion model to BEV perception. In prac-
tice, we design three types of conditions to guide the train-
ing of the diffusion model which denoises the coarse sam-
ples and refines the semantic feature in a progressive way.
What’s more, a cross-attention module is leveraged to fuse
the context of BEV feature and the semantic content of con-
ditional diffusion model. DiffBEV achieves a 25.9% mIoU
on the nuScenes dataset, which is 6.2% higher than the best-
performing existing approach. Quantitative and qualitative re-
sults on multiple benchmarks demonstrate the effectiveness
of DiffBEV in BEV semantic segmentation and 3D object
detection tasks.

Introduction
Bird’s Eye View (BEV) perception plays a crucial role in au-
tonomous driving tasks, which need a compact and accurate
representation of the real world. One of the most important
components of BEV perception is the quality of the BEV
feature. Taking the classical LSS (Philion and Fidler 2020)
as an illustration, it first extracts image features from the
backbone encoder and then transforms them into BEV space
along with depth estimation. However, the downstream per-
ception results are often distorted, since the flat-world as-
sumption is not always valid and the feature distribution
in BEV is usually sparse. As shown in Fig. 1, when LSS
(Philion and Fidler 2020) is utilized as the view transformer,
the final segmentation results have three deficiencies: (1)
The prediction of dynamic object boundaries is ambiguous,
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where pixels of different vehicles are connected; (2) The per-
ception of static areas such as the pedestrian crossing and
walkway is too rough. In particular, there are a lot of re-
dundant predictions on the nuScenes benchmark; (3) LSS
(Philion and Fidler 2020) has a poor discriminative ability
for background and foreground pixels. In the last two rows
of Fig. 1, the interested drivable area and vehicle objects are
misclassified into the background.

The above observations intuitively motivate us to ex-
plore more fine-grained and highly detailed BEV feature for
downstream perception tasks. Taking the noises in camera
parameters and LiDAR scans into consideration, we usually
obtain BEV representation with harmful noises. Diffusion
models naturally have the ability to denoise noisy samples
to the ideal data. Recently, the diffusion probability mod-
els (DPM) have illustrated their great power in generative
tasks (Meng et al. 2021; Kim, Kwon, and Ye 2022; Bond-
Taylor et al. 2022; Janner et al. 2022), but their potential
in BEV perception tasks has not been fully explored. In
this work, we propose DiffBEV, a novel framework that uti-
lizes conditional DPM to improve quality of the BEV feature
and push the boundary of BEV perception. In DiffBEV, the
depth distribution or the BEV feature obtained from the view
transformer is the input of conditional DPM. DiffBEV ex-
plores the potential of conditional diffusion model and pro-
gressively refines the noisy BEV feature. Then, the cross-
attention module is proposed to fuse the fine-grained output
of conditional diffusion model and the original BEV fea-
ture. This module adaptively builds the content relationship
between the generated feature and the source BEV content,
which helps to obtain a more precise and compact percep-
tion result.

DiffBEV is an end-to-end framework and can be eas-
ily extended by altering task-specific decoders. In this pa-
per, we evaluate the performance of BEV semantic seg-
mentation on standard benchmarks, i.e. nuScenes (Caesar
et al. 2020), KITTI Raw (Geiger, Lenz, and Urtasun 2012),
KITTI Odometry (Behley et al. 2019), and KITTI 3D Ob-
ject (Geiger, Lenz, and Urtasun 2012). DiffBEV achieves a
25.9% mIoU on the nuScenes benchmark, which is 6.2%
higher than previous best-performing approaches. DiffBEV
outperforms other methods in the segmentation of drivable
area, pedestrian crossing, walkway, and car by a substantial
margin (+5.0%, +10%, +6.7%, and +11.6% IoU scores).
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Figure 1: The poor segmentation results of LSS (Philion and
Fidler 2020) model on the nuScenes and KITTI datasets.

Qualitative visualization results show that DiffBEV presents
more clear edges than existing approaches. Furthermore, we
compare the performance of 3D object detection on the pop-
ular nuScenes benchmark with other modern 3D detectors.
Without bells and whistles, DiffBEV offers benefits to 3D
object detection and provides approximately 1% NDS im-
provement on nuScenes. DiffBEV achieves leading perfor-
mance both in BEV semantic segmentation and 3D object
detection.

Our contributions can be summarized into three folds as
follows.

(1) To the best of our knowledge, DiffBEV is the first
work that utilizes conditional DPM to assist multiple au-
tonomous driving perception tasks in BEV. Furthermore,
DiffBEV needs no extra pre-training stage and is optimized
in an end-to-end manner along with downstream tasks.

(2) The conditional DPM and the attentive fusion mod-
ule are proposed to refine the original BEV feature in a pro-
gressive way, which can be seamlessly extended to different
perspective view transformers, e.g. VPN (Pan et al. 2020),
LSS (Philion and Fidler 2020), PON (Roddick and Cipolla
2020), and PYVA (Yang et al. 2021).

(3) Extensive experiments on multiple benchmarks
demonstrate that DiffBEV achieves state-of-the-art perfor-
mance and is effective in semantic segmentation and 3D
object detection. DiffBEV achieves a 25.9% mIoU on
the nuScenes dataset, which outperforms previous best-
performing approach (Philion and Fidler 2020) by a substan-
tial margin, i.e. 6.2% mIoU.

Related Works

Diffusion Model

Diffusion models are widely used in Artificial Intelligence
Generated Content (AIGC), which are of great importance
in generative models. Diffusion models have illustrated their
power in image generation (Rombach et al. 2022; Xiao,
Kreis, and Vahdat 2021; Graikos et al. 2022; Huang, Lim,
and Courville 2021), detection (Chen et al. 2022a), segmen-
tation (Chen et al. 2022b; Amit et al. 2021; Baranchuk et al.
2021), image-to-image translation (Kawa et al. 2022; Jooy-
oung et al. 2021), super resolution (Saharia et al. 2022),
image inpainting (Bond-Taylor et al. 2022), image editing
(Meng et al. 2021), text-to-image (Kim, Kwon, and Ye 2022;
Avrahami, Fried, and Lischinski 2022; Gu et al. 2022a),
video generation (Singer et al. 2022; Ho et al. 2022), point
cloud (Zeng et al. 2022; Zhou, Du, and Wu 2021; Luo and
Hu 2021), and human motion synthesis (Janner et al. 2022;
Shao et al. 2022).

DDPM-Segmentation (Baranchuk et al. 2021) is the first
work to apply the diffusion model to semantic segmentation,
which pre-trains a diffusion model and then trains classifiers
for each pixel. But the two-stage paradigm, i.e. pre-training
and fine-tuning, costs much training time, which is harm-
ful to model efficiency. DiffusionInst (Gu et al. 2022b) ap-
plies the diffusion model to instance segmentation. A gener-
alist framework (Chen et al. 2022b) leverages the diffusion
model to generate results of panoptic segmentation. To this
end, we are motivated to further explore the potential of em-
ploying the diffusion model to generate a high-quality repre-
sentation for BEV perception tasks. Compared with DDPM-
Segmentation (Baranchuk et al. 2021), DiffBEV is a gener-
alist end-to-end framework, which can be optimized along
with downstream tasks.

BEV Semantic Segmentation

BEV semantic segmentation is a fundamental and crucial
vision task in BEV scene understanding and serves as the
cornerstone of path planning and controlling. VPN (Pan
et al. 2020) and PYVA (Yang et al. 2021) present the lay-
out of static or dynamic objects through learnable fully con-
nected layers and attention mechanisms, respectively. LSS
(Philion and Fidler 2020) takes advantage of camera pa-
rameters to lift image-view features to BEV and is widely
applied in modern 3D detectors. HFT (Zou et al. 2022)
presents an approach to leverage the strengths of both cam-
era parameter-free methods and camera parameter-based
methods. CVT (Zhou and Krähenbühl 2022) extracts the
content from surrounding-view images and achieves a sim-
ple yet effective design. GitNet (Gong et al. 2022) follows
a two-stage paradigm, improving the segmentation perfor-
mance by geometry-guided pre-alignment module and ray-
based transformer. However, these works suffer from defec-
tive factors, such as distortion caused by inaccurate camera
parameters. In DiffBEV, we propose a conditional diffusion
model to refine the distorted features and improve the perfor-
mance of previous methods for BEV semantic segmentation.
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3D Object Detection
3D object detection (Duan et al. 2019; Wang et al. 2022b) is
a prevailing research topic in autonomous driving. FCOS3D
(Wang et al. 2021) proposes 3D centerness and learns the 3D
attributes. PGD (Wang et al. 2022a) explores the geometric
relationship of different objects and improves depth estima-
tion. PETR (Liu et al. 2022) projects the camera parame-
ters of multi-view images into 3D positional embeddings.
BEVDet (Huang et al. 2021) shows the positive effects of
data augmentation in image view and BEV. BEVDet4D
(Huang and Huang 2022) explores both the spatial and tem-
poral content to improve the performance. BEVDepth (Li
et al. 2022) exploits the explicit depth supervision of multi-
view images and further pushes the boundary of 3D object
detection. BEVerse (Zhang et al. 2022) proposes a unified
framework that jointly handles the tasks of 3D object detec-
tion, map construction, and motion prediction. In our work,
we further exploit the ability of the conditional diffusion
model to handle the task of 3D object detection.

Approach
Framework Overview
Fig. 2 shows the overall architecture of DiffBEV, which
comprises of image view backbone, view transformer, con-
ditional diffusion model, cross-attention module, and task-
specific decoder. DiffBEV doesn’t require an independent
stage of pre-training and is trained in an end-to-end manner.

The image view backbone extracts the image features and
the view transformer lifts the image-view features to BEV.
Conditional diffusion model refines noisy samples and gen-
erates high-quality semantic feature. Cross-attention module
is in charge of merging BEV feature and the output of con-
ditional diffusion model. Finally, a task-specific decoder is
applied for some downstream BEV perception tasks, such
as segmentation and 3D object detection. In practice, LSS
(Philion and Fidler 2020) is adopted as the default view
transformer in our implementation.

Conditional Diffusion Probability Model
Diffusion Probability Model. We formulate the conditional
diffusion probability model in this section. The feature gen-
erated by the view transformer is treated as the condition
of diffusion model. Noise xT obeys standard normal distri-
bution N (0, I). Diffusion model transforms the noise xT to
the original sample x0 in a progressive way. We denote the
variance at step t(0 ⩽ t ⩽ T ) as βt.

The forward process of the conditional diffusion model is
presented as follows.

q(xt|xt−1) ∼ N (xt;
√
1− βtxt−1, βtI) (1)

For convenience, we denote a series of constant.

αt = 1− βt, ᾱt =
t∏

s=1

αs (2)

The noisy sample at step t is transformed from the input
data x0 by Eq. 3.

q(xt|x0) ∼ N (xt;
√
ᾱtxt−1, (1− α)I) (3)

xt ∼
√
ᾱtx0 +

√
1− ᾱtϵ,where ϵ ∼ N (0, I) (4)

Σθ(xt, t) is the covariance predictor and ϵθ(xt, t) is the de-
noising model. In our experiments, a typical variance of
UNet (Wu et al. 2022) is used as the denoising network. In
the denoising process, the diffusion model progressively re-
fines the noisy sample xt. The reverse diffusion process is
written as Eq. 5.

pθ(xt−1|xt) ∼ N (xt−1;µθ(xt, t),Σθ(xt, t)) (5)

The Design of Condition. In practice, there are three
types of conditions xcond to choose: (1) The original BEV
feature from the view transformer (FO−BEV ∈ RC×H×W );
(2) The semantic feature learned from the depth distribu-
tion (FS−BEV ∈ RC×H×W ); (3) The element-wise sum of
FO−BEV and FS−BEV .

The view transformer lifts the image-view feature to BEV
space, obtaining the original BEV feature FO−BEV . For
each point, the view transformer estimates the distribution
on different predefined depth ranges and generates the cor-
responding depth distribution F d ∈ Rc×h×w. We employ
a 1 × 1 convolutional layer to convert the channel and in-
terpolate F d into FS−BEV , which has the same size as
FO−BEV .

The above three conditions are features in BEV space,
where we add gaussian noise. By denoising samples pro-
gressively, we hope the conditional diffusion model helps to
learn the fine-granularity content of objects, such as precise
boundary and highly detailed shape. We strictly follow the
standard DPM model to add BEV noise, while the difference
is that we employ condition-modulated denoising, which is
shown in Fig. 2.

Given noisy BEV feature xt and condition xcond at time
step t, xt is further encoded and interacts with xcond through
element-wise multiplication. To alleviate the computational
burden, we set a flexible choice for the encoding mechanism
of noisy BEV feature xt, i.e. the self-attention mechanism
or a simple convolutional layer, which will be discussed in
Section . A UNet-style structure, whose components include
an encoder and a decoder, serves as the denoising network
ϵθ(xt, t).

Cross-Attention Module
After obtaining the output of conditional diffusion model,
we design a cross-attention module (CA) to refine the orig-
inal BEV feature, which is shown in Fig. 3.

Specifically, the output of the conditional diffusion model
is treated as the source of K and V , while the original BEV
feature from the perspective view transformer is projected
into Q. The cross-attention process of the two-stream fea-
tures is formulated as:

CA(Q,K, V ) = Attn(QWQ
i ,KWK

i , V WV
i )WOut,

Attn (Q,K, V ) = softmax
(
QKT

√
dk

)
V.

(6)
Q, K, and V are linearly mapped to calculate the attention
matrix Attn, where WQ

i , WK
i , WV

i are the projection lay-
ers with the shape of Rdmodel×dq , Rdmodel×dk , Rdmodel×dv .
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Figure 2: Overall architecture of DiffBEV. DiffBEV is comprised of the image backbone, view transformer, conditional diffu-
sion model, cross-attention module, and task-specific decoder. By flexibly changing the task-specific decoder, DiffBEV can be
easily extended to different downstream tasks, such as segmentation and 3D object detection.
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Figure 3: Overall structure of the cross-attention module.

Then, the refined BEV feature is obtained from the out-
put layer WOut ∈ Rdv×dmodel , which aims to facilitate the
downstream tasks to learn better.

Training Loss
Depth Loss. Given the intrinsic parameter matrix Ki ∈
R3×3, rotation matrix Ri ∈ R3×3, and translation matrix
ti ∈ R3, we introduce a depth loss Ldepth to assist model
training. The depth loss is defined as the binary cross en-
tropy (BCE) between the predicted depth map Di and D∗

i .
The specific process is expressed as:

Pi = Ki (RiP + ti) , D
∗
i = one hot(Pi),

Ldepth = BCE(D∗
i , Di)

(7)

Diffusion Loss. We denote the gaussian noise at time step
t as z̄t. Please refer to Section for the meaning of the rest
symbols. The diffusion loss Ldiff is defined as:

Ldiff = E[||z̄t − Σθ(
√
ᾱtx0 +

√
1− ᾱtz̄t, t)||2] (8)

Task-specific Training Loss. The training loss for seg-
mentation and detection can be written as Eq. 9. In practice,
we empirically set the loss weights λ1 = 10 and λ2 = 1.
We introduce the details of segmentation loss Lwce and de-
tection loss Ldetect in the supplementary material.

Lseg = Lwce + λ1Ldepth + λ2Ldiff

Ldet = Ldetect + λ1Ldepth + λ2Ldiff (9)

Task-specific Decoder
As a general framework for BEV perception, DiffBEV can
reason about different downstream tasks by altering the task-
specific decoder. We adopt a residual-style decoding head
for the semantic segmentation task, which consists of 8 con-
volutional blocks and a fully connected (FC) layer. Each
convolutional block has a convolution layer, followed by
batch normalization (BN) and a rectified linear unit (ReLU)
layer. As for the 3D object detection task, the classification
and regression heads are composed of several convolution
layers respectively. Please refer to CenterPoint (Yin, Zhou,
and Krahenbuhl 2021) for more structure details.

Experiment
Datasets
We compare the performance of DiffBEV with the existing
methods on four different benchmarks, i.e. nuScenes (Caesar
et al. 2020), KITTI Raw (Geiger, Lenz, and Urtasun 2012),
KITTI Odometry (Behley et al. 2019), and KITTI 3D Ob-
ject (Geiger, Lenz, and Urtasun 2012). As a popular bench-
mark in autonomous driving, nuScenes (Caesar et al. 2020)
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dataset is collected by six surrounding cameras and one Li-
DAR, which includes multi-view images and point cloud of
1,000 scenes. KITTI Raw (Geiger, Lenz, and Urtasun 2012)
and KITTI Odometry (Behley et al. 2019) provide the im-
ages and BEV ground truth of the static road layout, while
KITTI 3D Object (Geiger, Lenz, and Urtasun 2012) provides
the images and labels for dynamic vehicles.

By flexibly leveraging different task-specific decoders,
DiffBEV can be extended to various downstream tasks. In
this work, extensive experiments are conducted on the BEV
semantic segmentation and 3D object detection tasks.

Implementation Details
We train all semantic segmentation models using the
AdamW optimizer (Ilya and Frank 2017) with learning rate
and weight decay as 2e-4 and 0.01. Two NVIDIA GeForce
RTX 3090 are utilized and the mini-batch per GPU is set to 4
images. The input resolution is 800 × 600 for nuScenes and
1024 × 1024 for KITTI datasets. The total training schedule
includes 20,000 iterations (200, 000 iterations for nuScenes)
and the warm-up strategy (Goyal et al. 2017) gradually in-
creases the learning rate for the first 1,500 iterations. Then, a
cyclic policy (Yan, Mao, and Li 2018) linearly decreases the
learning rate from 2e-4 to 0 during the remainder training
process. For 3D object detection, we follow the implemen-
tation details of BEVDet (Huang et al. 2021).

For the image backbone, the SwinTransformer (Liu et al.
2021) is initialized with the weights pre-trained on the Im-
ageNet (Russakovsky et al. 2015) dataset. The model struc-
tures of VPN (Pan et al. 2020), PON (Roddick and Cipolla
2020), LSS (Philion and Fidler 2020), and PYVA (Yang
et al. 2021) are the same as the original paper. In addition,
we mainly follow the methods of the BEVDet (Huang et al.
2021) family to achieve 3D object detection. The training
and testing details are consistent with (Huang et al. 2021)
and (Huang and Huang 2022). Last but not least, there is no
extra pre-training stage for the conditional diffusion proba-
bility model, which can be optimized in an end-to-end man-
ner along with the downstream tasks.

BEV Semantic Segmentation
Evaluation on the nuScenes benchmark. In this part,
we compare the effectiveness of DiffBEV with other ap-
proaches on the pixel-wise segmentation task. Both the lay-
out of static objects and dynamic objects are estimated on
the nuScenes benchmark.

As illustrated in Tab. 1, we report the segmentation perfor-
mance of DiffBEV and some advanced methods described
in Section . It can be seen that the previous state-of-the-
art method LSS (Philion and Fidler 2020) is good at pre-
dicting static objects with wide coverage, such as the driv-
able area, walkway, and pedestrian crossing, compared to
the car, pedestrian, bicycle, etc. This is because dynamic ob-
jects usually occupy fewer pixels and appear less frequently
in BEV. A similar performance can also be observed from
PYVA (Yang et al. 2021) and PON (Roddick and Cipolla
2020), which achieve a comparable accuracy in the drivable
area class but perform worse in the rare class, such as truck,
bus, and trailer.

In contrast, DiffBEV has a remarkable improvement in
the Intersection over Union (IoU) score of both static and
dynamic objects. As listed in Tab. 1, we design three vari-
eties according to the condition. The condition of DiffBEV-
B, DiffBEV-D, and DiffBEV-DB comes from the original
BEV feature (FO−BEV ), conditional features learned from
the depth distribution (FS−BEV ), and the element-wise sum
of FO−BEV and FS−BEV , respectively. DiffBEV-D leads
the performance in most classes and achieves a 25.9% mIoU
score, which is 6.2% higher than previous best-performing
approach (Philion and Fidler 2020). In particular, DiffBEV
improves the segmentation accuracy of the drivable area,
pedestrian crossing, walkway, and car by a substantial mar-
gin (+5.0%, +10.0%, +6.7%, and +11.6% IoU scores),
which are crucial classes for the safety of autonomous driv-
ing systems. We attribute this improvement to that the con-
ditional DPM reduces noises and complements more spatial
information about objects of interest. DiffBEV significantly
improves the pixel-wise perception accuracy of the model in
both high-frequency classes and sparsely distributed classes.
Please refer to visualization results for a more intuitive anal-
ysis and explanation.

Evaluation on KITTI Raw, KITTI Odometry, and
KITTI 3D Object benchmark. Tab. 2 reports the quantita-
tive results of static scene layout estimation on KITTI Raw
and KITTI Odometry datasets. The performance compari-
son on KITTI 3D Object dataset shows the segmentation re-
sults for dynamic vehicles. Three varieties of DiffBEV ob-
tain higher mIoU and mAP scores than existing methods.
For example, DiffBEV-Dep surpasses the second-best model
PYVA (Yang et al. 2021) by 0.71%, 1.51%, and 7.97% mIoU
on KITTI Raw, KITTI Odometry, and KITTI 3D Object
dataset, which achieves state-of-the-art perception accuracy
consistently on all evaluation benchmarks.

3D Object Detection

We conduct 3D object detection experiments on the
nuScenes benchmark and Tab. 3 reports the official eval-
uation metrics: mean Average Precision (mAP), Average
Translation Error (ATE), Average Scale Error (ASE), Aver-
age Orientation Error (AOE), Average Velocity Error (AVE),
Average Attribute Error (AAE), and NuScenes Detection
Score (NDS). Note that we select LSS (Philion and Fidler
2020) as the default view transformer, and use the seman-
tic feature learned from the depth distribution (FS−BEV )
as the condition of DiffBEV. The data augmentations in im-
age view and BEV are strictly consistent with that of the
BEVDet (Huang et al. 2021) and BEVDet4D (Huang and
Huang 2022).

After applying the conditional diffusion model, it can be
observed that all evaluation metrics for 3D object detection
are improved. This is because DiffBEV progressively re-
fines the original BEV feature and interactively exchanges
the semantic context through the cross-attention mechanism.
Without bells and whistles, BEVDet (Huang et al. 2021)
with DiffBEV raises the NDS score from 38.7% to 39.8%,
while BEVDet4D (Huang and Huang 2022) with DiffBEV
raises the NDS score from 47.6% to 48.6%.
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IPM 40.1 - 14.0 - 4.9 - 3.0 - - 0.6 0.8 0.2 - - -
Unproj. 27.1 - 14.1 - 11.3 - 6.7 - - 2.2 2.8 1.3 - - -

VED 54.7 12.0 20.7 13.5 8.8 0.2 0.0 7.4 0.0 0.0 0.0 0.0 0.0 4.0 8.7
PYVA 56.2 26.4 32.2 21.3 19.3 13.2 21.4 12.5 7.4 4.2 3.5 4.3 2.0 6.3 16.4
VPN 58.0 27.3 29.4 12.9 25.5 17.3 20.0 16.6 4.9 7.1 5.6 4.4 4.6 10.8 17.5
PON 60.4 28.0 31.0 18.4 24.7 16.8 20.8 16.6 12.3 8.2 7.0 9.4 5.7 8.1 19.1
LSS 55.9 31.3 34.4 23.7 27.3 16.8 27.3 17.0 9.2 6.8 6.6 6.3 4.2 9.6 19.7

DiffBEV-BEV 65.3 40.2 41.0 27.2 37.9 21.3 32.9 20.5 7.6 9.2 13.7 13.1 7.2 16.0 25.2
DiffBEV-DepBEV 64.9 39.7 40.7 27.7 37.7 22.3 32.5 21.4 12.7 9.2 13.3 12.8 6.6 15.9 25.5

DiffBEV-Dep 65.4 41.3 41.1 28.4 38.9 23.1 33.7 21.1 8.4 9.6 14.4 13.2 7.5 16.7 25.9

Table 1: Intersection over Union scores (%) of hybrid scene layout estimation on the nuScenes val dataset.

KITTI Raw Odometry 3D Object
Method mIoU mAP mIoU mAP mIoU mAP

OFT - - - - 25.34 34.69
MonoOcc 58.41 66.01 65.74 67.84 20.45 22.29
Mono3D 59.58 79.07 66.81 81.79 17.11 26.62

VPN 64.65 78.20 78.16 84.73 26.52 35.54
PYVA 65.70 81.62 78.19 85.55 29.11 36.86
PON 60.47 77.45 70.92 76.27 26.78 44.50

DiffBEV-B 66.19 81.08 79.48 88.30 36.76 52.81
DiffBEV-DB 66.40 81.89 79.58 88.44 37.08 53.96
DiffBEV-D 66.41 81.91 79.70 89.68 36.99 53.61

Table 2: Segmentation performance of static scene layout es-
timation on KITTI Raw and KITTI Odometry, and dynamic
scene layout estimation on KITTI 3D Object.

Ablation Study
Condition Design. In order to exploit the advantages of
the conditional diffusion model, we conduct ablation ex-
periments for different DPM conditions on the KITTI Raw
dataset to estimate the layout of static roads. Specifically,
there are three DPM conditions to choose, i.e. the original
BEV feature (FO−BEV ), the semantic feature learned from
the depth distribution (FS−BEV ), and the element-wise sum
of FO−BEV and FS−BEV (both).

As shown in Tab. 4, no matter which condition is used,
three conditions can guide the DPM to learn discriminative
BEV feature. FS−BEV and FS−BEV & FO−BEV achieve
better modulation effects than the FO−BEV , while the best
segmentation result comes from FS−BEV . This observation
demonstrates the effectiveness of semantic feature learned
from the depth distribution.

Feature Interaction Mechanism. Another ablation study
is to explore the most effective way for feature interaction.

As shown in each row of Tab. 4, regardless of which fea-
ture interaction mechanism is employed, DiffBEV achieves
better segmentation results than the baseline model with
63.38% mIoU. It can be seen that cross-attention can learn
better BEV feature than the other two simple feature in-
teractions, which is beneficial for the downstream percep-
tion tasks. In summary, the combination of FS−BEV and
the cross-attention feature interaction mechanism achieves

the best segmentation results, which improves 2.48% mIoU
based on LSS (Philion and Fidler 2020) model. If not spec-
ified, the DiffBEV model corresponds to the setting of
FS−BEV with the cross-attention mechanism.

Encoding Mechanism for Noisy BEV Samples. For the
noisy BEV sample xt, we calculate the self-attention seman-
tic map or obtain the refined affinity map through a sim-
ple convolutional layer. Tab. 5 shows the comparison be-
tween the computational burden and segmentation perfor-
mance. The DiffBEV model using self-attention mechanism
achieves a higher 65.86% mIoU and an 80.62% mAP. By
simplifying self-attention to a simple convolutional layer,
the DiffBEV model achieves a 64.23% mIoU and a 78.34%
mAP while decreases the GFLOPs from 446.81 to 433.72.

More View Transformers with DiffBEV

In the main experiments, we adopt LSS (Philion and Fi-
dler 2020) as the view transformer. To investigate the gen-
erality of DiffBEV, we conduct experiments on more view
transformers. As shown in Tab. 6, the model equipped with
DiffBEV outperforms the version without DPM on both
mIoU and mAP metrics by a significant margin. Bene-
fited from DiffBEV, the models of VPN (Pan et al. 2020),
PYVA (Yang et al. 2021), and PON (Roddick and Cipolla
2020) raise their performances on mIoU scores (+1.19%,
+1.61%, +0.59%, respectively) and mAP scores (+10.14%,
+7.01%, +10.11%, respectively). This observation illus-
trates that DiffBEV is not only effective for a specific view
transformer.

Visualization Analysis

As indicated in Fig. 4, previous state-of-the-art methods tend
to output relatively rough predictions. For instance, cars that
should be independent individuals are connected into a strip
region and the drivable area is misclassified as background.

Despite the complex and challenging street layouts on the
nuScenes dataset, DiffBEV produces more accurate seman-
tic maps and is able to resolve fine-grained details such as
the spatial separation between neighboring vehicles, espe-
cially in the crowded autonomous driving scenarios.
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Methods Image Size mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ NDS↑
CenterNet - 0.306 0.716 0.264 0.609 1.426 0.658 0.328
FCOS3D 1600×900 0.295 0.806 0.268 0.511 1.315 0.170 0.372
DETR3D 1600×900 0.303 0.860 0.278 0.437 0.967 0.235 0.374
PGD 1600×900 0.335 0.732 0.263 0.423 1.285 0.172 0.409
PETR-R50 1056×384 0.313 0.768 0.278 0.564 0.923 0.225 0.381
PETR-R101 1408×512 0.357 0.710 0.270 0.490 0.885 0.224 0.421
PETR-Tiny 1408×512 0.361 0.732 0.273 0.497 0.808 0.185 0.431
BEVDet-Tiny 704×256 0.310 0.681 0.273 0.570 0.933 0.223 0.387
BEVDet-Tiny+DiffBEV 704×256 0.315 0.660 0.265 0.567 0.878 0.219 0.398
BEVDet4D-Tiny 704×256 0.338 0.672 0.274 0.460 0.337 0.185 0.476
BEVDet4D-Tiny+DiffBEV 704×256 0.344 0.652 0.262 0.453 0.312 0.176 0.486

Table 3: 3D object detection performance of different paradigms on the nuScenes val set. Tiny means tiny Swin Transformer.

Image VPN PYVA PON LSS DiffBEV Ground Truth

Figure 4: Qualitative segmentation results on the nuScenes benchmark. We visualize the class with the largest index c which
has occupancy probability pi > 0.5. Black regions (outside field of view or no LiDAR returns) are ignored during evaluation.

Interaction Mechanism FS−BEV FO−BEV both
Concat 65.03 64.81 64.95

Add 64.85 64.11 64.50
Cross-Attention 65.86 64.33 65.16

Table 4: Ablation study on condition design and feature fu-
sion mechanism.

Encoding #param. GFLOPs mIoU mAP
Conv 78.16M 433.72 64.23 78.34

Self-Attention 78.80M 446.81 65.86 80.62

Table 5: Ablation study on encoding mechanism in condi-
tional diffusion model. The mIoU and mAP (%) of the basic
LSS (Philion and Fidler 2020) on the KITTI Raw dataset are
63.38% and 77.52%, respectively.

Conclusion
In this work, we propose a novel framework, namely Diff-
BEV, which first applies the conditional diffusion model to
BEV perception tasks. DiffBEV utilizes BEV feature and
semantic feature learned from the depth distribution as the
condition of diffusion model, which progressively refines

Model mIoU mAP
DiffBEV % ✓ % ✓

VPN 27.02 28.21 (+1.19) 35.63 45.77 (+10.14)
PYVA 29.22 30.83 (+1.61) 36.97 43.98 (+7.01)
PON 36.49 37.08 (+ 0.59) 45.51 55.62 (+10.11)

Table 6: Extension experiments of more view transformers
with DiffBEV on the KITTI 3D Object dataset. The metric
(%) in the middle and right columns represent the perfor-
mance without and with DiffBEV, respectively.

the noisy samples to generate highly detailed information.
Then, a cross-attention module is proposed to attentively
learn the interactive relationship between the output of con-
ditional DPM and the BEV feature. Extensive experiments
on multiple benchmarks illustrate that DiffBEV achieves
favorable performance in both semantic segmentation and
3D object detection. DiffBEV obtains a 25.9% mIoU on
the nuScenes, outperforming the previous state-of-the-art
method by a substantial margin. The extension studies on
different view transformers confirm the generality of Diff-
BEV. We hope to further explore the potential of DiffBEV
and broaden its application ranges to more perception tasks.
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