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Abstract

Training Deep Neural Networks (DNNs) can be expensive
when data is difficult to obtain or labeling them requires sig-
nificant domain expertise. Hence, it is crucial that the Intel-
lectual Property (IP) of DNNs trained on valuable data be
protected against IP infringement. DNN fingerprinting and
watermarking are two lines of work in DNN IP protection.
Recently proposed DNN fingerprinting techniques are able to
detect IP infringement while preserving model performance
by relying on the key assumption that the decision bound-
aries of independently trained models are intrinsically differ-
ent from one another. In contrast, DNN watermarking em-
beds a watermark in a model and verifies IP infringement if
an identical or similar watermark is extracted from a suspect
model. The techniques deployed in fingerprinting and water-
marking vary significantly because their underlying mecha-
nisms are different. From an adversary’s perspective, a suc-
cessful IP removal attack should defeat both fingerprinting
and watermarking. However, to the best of our knowledge,
there is no work on such attacks in the literature yet. In this
paper, we fill this gap by presenting an IP removal attack that
can defeat both fingerprinting and watermarking. We con-
sider the challenging data-free scenario whereby all data is
inverted from the victim model. Under this setting, a stolen
model only depends on the victim model. Experimental re-
sults demonstrate the success of our attack in defeating state-
of-the-art DNN fingerprinting and watermarking techniques.
This work reveals a novel attack surface that exploits gen-
erative model inversion attacks to bypass DNN IP defenses.
This threat must be addressed by future defenses for reliable
IP protection.

Introduction

Deep Neural Networks (DNN5s) have achieved great success
in many domains, such as computer vision (Carion et al.
2020; Krizhevsky, Sutskever, and Hinton 2017), Automatic
Speech Recognition (ASR) (Hannun et al. 2014; Amodei
et al. 2016), Natural Language Process (NLP) (Chowdhary
2020), and so on. Successful training of DNNs requires large
volumes of labeled data in the specific domain. Acquiring
such data can be costly when they are difficult to collect or
significant domain expertise is required for labeling them.
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Therefore, it is crucial for model owners to be able to pro-
tect the Intellectual Property (IP) of DNN models trained
using valuable data.

Researchers have recently proposed DNN IP protection
techniques that identify the unique characteristics, i.e., the
fingerprints, of a model (Lukas, Zhang, and Kerschbaum
2021; Peng et al. 2022; Chen et al. 2022). This direction
of work is attracting more and more attention in the research
community because fingerprinting techniques do not alter a
model’s weights, so the performance of the model is pre-
served. The key to fingerprinting is to find unique properties
that only exist in a victim model because if these properties
appear in another model, that model is determined to be a
stolen model. As an example, Adversarial Examples (AEs)
have been used for this purpose. AEs generated by a victim
model can be used to uniquely represent a model’s decision
boundaries (Chen et al. 2022). A stolen model will also be
fooled by the same AEs because its decision boundaries will
resemble the decision boundaries of the victim model.

However, the robustness of existing fingerprinting tech-
niques has only been evaluated using general attacks, such as
fine-tuning all layers of a DNN, adversarial training (Shafahi
et al. 2019), and model extraction attacks (Orekondy,
Schiele, and Fritz 2019). Although fingerprinting techniques
were shown to be robust against these attacks, such attacks
were not specifically designed to defeat fingerprint detec-
tion. In other words, the robustness of state-of-the-art fin-
gerprinting techniques has not been thoroughly verified.

In addition to DNN fingerprinting, researchers have also
explored the embedding of watermarks in DNNs for IP pro-
tection (Jia et al. 2021). Ownership can be claimed if a simi-
lar watermark can be extracted from a suspect model. For in-
stance, model owners can use a backdoor technique to make
their model output a predefined label whenever a special
trigger is stamped on its input (Adi et al. 2018).

Although researchers have systematically studied the vul-
nerabilities of existing watermarking schemes (Lukas et al.
2022), most of the watermark removal attacks, such as trans-
fer learning and adversarial training, have been shown to be
ineffective against fingerprinting (Chen et al. 2022). In prac-
tice, an effective attack must bypass both DNN fingerprint-
ing and watermarking without prior knowledge of their de-
fenses. This is challenging because DNN watermarking and
fingerprinting techniques vary significantly because they are
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based on different mechanisms. Such an attack will pose a
real-world threat to model owners because the IP of their
models cannot be protected reliably.

In this paper, we propose an IP removal attack, called
IPRemover, that can evade detection by both state-of-the-
art DNN fingerprinting and watermarking techniques. We
focus on the challenging data-free scenario where an adver-
sary has no access to any existing data. We assume that a
victim model can be accessed in a white-box manner, which
is straightforward when an adversary has a local copy of the
victim model.

A vital component of our method is a model inversion at-
tack that inverts training data from a victim model. Nonethe-
less, our goal is to remove IP protection while preserving
satisfactory model performance. This goal is different from
typical model inversion attacks that aim to compromise pri-
vacy by reconstructing representative training data (Nguyen
et al. 2023). Moreover, state-of-the-art model inversion at-
tacks assume access to a large volume of data with structural
similarity to the original training data (Zhang et al. 2020;
Wang et al. 2021; Chen et al. 2021). In contrast, in the con-
text of DNN IP protection removal, an adversary has limited
access to useful data. Otherwise, there is no motivation for
the adversary to steal the model because the adversary can
train a satisfactory model independently via supervised or
semi-supervised learning (Zheng et al. 2022).

Our work is related to recent emerging research on data-
free Knowledge Distillation (KD) (Yin et al. 2020; Fang
et al. 2021; Yu et al. 2023). Data-free KD generates training
data from a teacher model, then applies KD to train a student
model. The generated data may differ significantly from the
original training data because it only needs to be effective
for KD. While DNN fingerprinting techniques can detect
attacks using KD, to date, there is no method that can de-
tect IP infringement from generated data. Hence, if a stolen
model can be trained from scratch on generated data with-
out KD, model owners cannot claim IP infringement on the
stolen model because it was trained independently on “legal”
data. In comparison with the state-of-the-art in data-free KD,
Contrastive Model Inversion (CMI) (Fang et al. 2021), the
data generated using our method results in over 10% higher
accuracy if models are trained without KD.

Our contributions are summarized as follows:

e To the best of our knowledge, we are the first in the lit-
erature to propose a data-free attack, called IPRemover,
that can evade detection by both DNN fingerprinting and
watermarking techniques.

e We empirically demonstrate that IPRemover can uni-
versally defeat a diverse range of recent state-of-the-
art DNN fingerprinting and watermarking techniques,
namely, MetaFinger (Yang, Wang, and Wang 2022), IP-
Guard (Cao, Jia, and Gong 2021), DeepJudge (Chen
et al. 2022), Jia (Jia et al. 2021), CosWM (Charette et al.
2022), and Adversarial Frontier Stitching (FS) (Le Mer-
rer, Perez, and Trédan 2020).

e Our work reveals a novel attack surface based on gener-
ative model inversion attacks. Future defenses must ad-
dress this line of attack for reliable DNN IP protection.
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Related Work
DNN Fingerprinting

Most existing DNN fingerprinting techniques are based on
AEs (Cao, Jia, and Gong 2021; Chen et al. 2022; Peng et al.
2022). The underlying assumption of AE-based fingerprint-
ing is that the decision boundaries of independently trained
models differ significantly from one another, such that AEs
can be used to uniquely identify their decision boundaries.
If the decision boundaries of a suspect model resemble the
decision boundaries of a victim model, this indicates that the
suspect model is a copy of the victim model.

Other than AEs, researchers recently discovered that
meta-learning can be exploited for DNN fingerprinting
(Yang, Wang, and Wang 2022). Instead of generating ad-
versarial perturbations to fool DNNs, meta-learning aims to
produce noisy input that can only be correctly classified by
the model in question.

The robustness of state-of-the-art fingerprinting tech-
niques has not been thoroughly verified because they were
only evaluated against attacks that were not specifically de-
signed for defeating fingerprint detection. A recent study by
(Wang et al. 2023) proposed to apply preprocessing to miti-
gate DNN fingerprinting. However, their attack can be easily
identified and made ineffective by removing the preprocess-
ing module.

DNN Watermarking

A watermark is a unique signature that can be extracted from
a suspect model for verification. A model owner can claim
ownership if the watermark extracted from a suspect model
resembles the watermark in the owner’s model. Jia et al. (Jia
et al. 2021) recently proposed to entangle representations of
watermarks and benign input to defend against extraction
attacks. The assumption is that representations in a stolen
model will also contain watermark information, which can
be used for IP infringement detection.

Charette et al. (Charette et al. 2022) proposed a water-
marking technique, called CosWM, that is robust to model
extraction attacks. Their defense was specifically designed
for detecting whether an adversary applied KD (Hinton,
Vinyals, and Dean 2015) to steal knowledge from a vic-
tim model. CosWM empirically showed that an embedded
cosine signal can be extracted from the output of a stolen
model. Lukas et al. (Lukas et al. 2022) conducted a system-
atic study on the robustness of existing watermarking tech-
niques using watermark removal attacks. However, most of
the studied watermark removal attacks have been shown to
be ineffective against fingerprinting (Chen et al. 2022). A
practical attack must bypass both DNN fingerprinting and
watermarking without prior knowledge of the defense.

The Proposed Method
Threat Model

In this study, we develop a data-free IP removal attack that
is able to defeat state-of-the-art DNN IP protection mecha-
nisms. We consider the following threat model:
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Figure 1: The three directions of watermarking and finger-
printing techniques.

2. On Task Manifold

e The adversary’s goal is to obtain a stolen model, with
decent performance, from a victim model. The adver-
sary has white-box access to the victim model, which is
straightforward if the adversary has a local copy of the
model.

e The adversary does not require additional data because
training data can be inverted from the victim model.
This makes the stolen model depend solely on the vic-
tim model.

e The adversary has no knowledge of the DNN fingerprint-
ing or watermarking techniques used to protect the victim
model. As such, the stolen model needs to universally de-
feat DNN watermarking and fingerprinting techniques so
that IP infringement cannot be proven.

A Unifying View of DNN Fingerprinting and
Watermarking

Before detailing [IPRemover, we present a unifying view of
fingerprinting and watermarking techniques. This is impor-
tant for proposing an attack that can defeat both watermark-
ing and fingerprinting. Otherwise, different attack strategies
will likely be required to defeat different defenses.

While the underlying techniques behind watermarking
and fingerprinting vary significantly on the surface, they
all exploit the unique characteristics of a model’s decision
space. Specifically, a model’s decision space can be divided
into space that is on the task manifold and space that is off
the task manifold. As depicted in Fig. 1, existing fingerprint-
ing and watermarking techniques are based on one of three
directions.

The first direction focuses on unique transitions from
space on the task manifold to space off the task mani-
fold. These unique transitions only exist in the model un-
der protection and cannot be found in other independently
trained models. Most existing DNN IP protection techniques
are based on this. For instance, AEs can be seen as data
points that are off the task manifold (Gilmer et al. 2018;
Khoury and Hadfield-Menell 2018). This means that AE
based fingerprinting techniques use adversarial perturba-
tions as unique transitions that move data points off the task
manifold (Chen et al. 2022; Cao, Jia, and Gong 2021). The
assumption is that a stolen model will inherit the unique
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transitions from the victim model. Hence, when these unique
transitions are applied to specific data points, a stolen model
will behave the same way as the victim model.

The second direction focuses on unique characteristics of
space on the task manifold. As an example, LeMerrer et al.
(Le Merrer, Perez, and Trédan 2020) proposed adversarial
frontier stitching, which basically extends the task mani-
fold by fine-tuning a model on AEs. In other work, DAWN
(Szyller et al. 2021) deliberately introduces incorrect predic-
tions for specific input so that given the same input a stolen
model will also make the same errors. Such incorrectly clas-
sified input resides in space on the task manifold, where they
uniquely characterize the behavior of the model under pro-
tection.

The third direction focuses on the unique characteristics
of space off the task manifold. A recently proposed method
known as MetaFinger (Yang, Wang, and Wang 2022), uti-
lized meta-learning to generate fingerprints that are off the
task manifold.

Fingerprinting and watermarking both exploit the unique
characteristics of a model’s decision space based on one of
three directions. Fingerprinting finds unique characteristics
that already exist, whereas watermarking actively introduces
unique characteristics by modifying the model. Hence, to
universally defeat both watermarking and fingerprinting, a
successful attack must significantly change the model’s de-
cision space while maintaining satisfactory model perfor-
mance.

IPRemover

Overview To universally evade IP infringement detection,
an adversary must significantly change the decision space.
However, as fingerprints and watermarks are secret infor-
mation, an adversary will not know which part of the de-
cision space to modify. Therefore, while a straightforward
approach is to alter the entire decision space, doing this will
significantly deteriorate the stolen model’s performance.

We adopt an approach that looks at the problem from a
different perspective. An overview of our method is depicted
in Fig. 2. IPRemover consists of 3 stages. In the first, training
data is inverted from a victim model. In the second, a stolen
model is trained from scratch on the generated data. Finally,
a specially designed variant of KD, called Virtual Ensemble
Knowledge Distillation (VEKD), is applied to distill knowl-
edge from the victim model while evading IP infringement
detection. Algorithm 1 provides the workflow of our attack.
Details of generating training data and VEKD are presented
in the following subsections.

Model Inversion Our model inversion technique trains a
generative model from scratch when recovering a batch of
training data from a victim model. This strategy was inspired
by the state-of-the-art data-free KD, CMI, proposed by Fang
et al. (Fang et al. 2021).

The architecture of the generative model simply stacks
convolutional layers and upsampling layers. The method for
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Figure 2: An overview of the IPRemover stages.

Algorithm 1 IPRemover.

Input: a victim model v; the size of generated data C'
Output: a stolen model s

generated set: D « ()
while |D| < C do
z+ N(0,1)
initialize ¢,
randomly sample labels y
solve Equation 1
D + D U generated data
end while

create and initialize s

train s on D

apply VEKD to transfer knowledge from v to s using D
return s

training the generative model is as follows:

L

min (v e g(z:6,).y) + El: ol (vog(z:6)) (1)

where 0, represents parameters of the generative model
to optimize. v represents the victim model.  denotes the
cross-entropy loss. z is sampled from standard distribution
N(0,1) and y are randomly selected labels. It should be
noted that z is not optimized in our method while CMI op-
timizes z and 6, together. We observed that optimizing z
makes the generated data for the same label look almost the
same, which destroys diversity in the generated data and is
thus detrimental to our purpose. L, denotes the number of
batch normalization layers in the victim model. ¢, is the
widely used batch normalization regularization originally
proposed in (Yin et al. 2020). ¢, aims to constrain the fea-
tures of each batch normalization layer to be consistent with
the running-mean and running-variance values so that gen-
erated data will visually resemble the original training data.
Efm denotes the loss calculated for the [** layer with a; for
weighting. Each «; is independently initialized from a uni-
form distribution, which differs from common practice that
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uses a constant for weighting all Efm. The benefit of random
sampling is that it improves diversity in the generated data
because different batch normalization layers correspond to
different weights.

Random initialization of 6, and o; will result in diver-
sity in the generated data. A small batch size is used so that
a large number of generative models will be trained from
scratch. After completing the training, only correctly classi-
fied data is kept. In practice, to be efficient, multiple batches
of data can be generated in parallel.

Virtual Ensemble Knowledge Distillation (VEKD) Af-
ter a stolen model is trained on the generated data from
scratch, VEKD is applied to transfer knowledge from the
victim model to the stolen model while evading IP infringe-
ment detection. Unlike naive KD, which only uses the victim
model as a single teacher, VEKD includes the stolen model
itself as an additional teacher to create an ensemble. When
the stolen model serves as a teacher, we changed its out-
put probabilities into a form where the predicted label corre-
sponds to a high probability while the remaining probability
mass is evenly distributed among the other labels. This ap-
proach is similar to the teacher-free KD proposed by Yuan
et al. (Yuan et al. 2020). The purpose of including the stolen
model itself as an additional “virtual” teacher is to reduce the
resemblance between the stolen model and the victim model
during knowledge transfer, which is beneficial for bypassing
IP defenses.
The loss function for VEKD is defined as follows:

¢ ="H(p,y) + BKD:(p,ev + (1 = €)q) 2

where p and y are probabilities output by the stolen model
and the label of generated data, respectively. v denotes prob-
abilities output by the victim model. K D is the KD loss de-
fined in (Hinton, Vinyals, and Dean 2015) with temperature
T. q is the output probability when the stolen model serves
as an additional teacher:

._{Q,
4 =

(1-Q)/(K-1),

where () is a predefined value representing high probability
and K is the number of classes. Finally, 3 balances different
loss values and e balances output probabilities. If ¢ = 1,

if i = arg max(p) 3)

otherwise
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Category Method
Jia (Jia et al. 2021)
Transition DeepJudge (Chen et al. 2022)
IPGuard (Cao, Jia, and Gong 2021)
. CosWM (Charette et al. 2022)
On Manifold FS (Le Merrer, Perez, and Trédan 2020)
Off Manifold | MetaFinger (Yang, Wang, and Wang 2022)

Table 1: The different DNN watermarking and fingerprinting
techniques used to evaluate [PRemover.

VEKD is the same as the naive KD. Whereas if ¢ = 0,
VEKD is the same as the teacher-free KD.

Experimental Results
Setup

All experiments were conducted on an Ubuntu 22.04 server
with 64G RAM and a Nvidia A100 GPU. We report average
values and the standard deviation of results in the form a +b,
where appropriate’.

We evaluated our method against the different state-of-
the-art IP protection techniques shown in Table 1. These
techniques cover all three directions previously discussed.
Specifically, for watermarking, we considered Jia (Jia et al.
2021), FS (Le Merrer, Perez, and Trédan 2020) and CosWM
(Charette et al. 2022). We focused on watermarking tech-
niques that aimed to be robust against model extraction at-
tacks because IPRemover is essentially a model extraction
attack. Lukas et al. (Lukas et al. 2022) demonstrated that Jia
(Jia et al. 2021) and FS (Le Merrer, Perez, and Trédan 2020)
were robust against model extraction attacks. On the other
hand, watermarking techniques that are not robust against
extraction attacks, such as DeepMarks (Lukas et al. 2022),
were not considered as these techniques are already sus-
ceptible to such attacks. In addition, the recently proposed
CosWM (Charette et al. 2022) was specifically designed for
combating ensemble KD. It should be noted that we did not
evaluate our method against DAWN (Szyller et al. 2021),
even though it is supposed to be robust against model extrac-
tion. The reason is that DAWN is an additional component
added to a victim model. So under a white-box assumption,
an adversary can easily remove such a component.

For fingerprinting, we evaluated our method against IP-
Guard (Cao, Jia, and Gong 2021), DeepJudge (Chen et al.
2022) and MetaFinger (Yang, Wang, and Wang 2022). These
are recently proposed techniques that present practical solu-
tions and demonstrated state-of-the-art results. The details of
each defense method are discussed in Technical Appendix.

The datasets used were those widely adopted in deep
learning security research, i.e., CIFAR10 (Krizhevsky, Hin-
ton et al. 2009) and the German Traffic Sign Recognition
Benchmark (GTSRB) (Stallkamp et al. 2011). CIFARI10
consists of 32 x 32 color images in 10 classes. There are
50,000 training images and 10,000 test images. We trained
wide ResNet (Zagoruyko and Komodakis 2016) on CI-
FAR10. GTSRB consists of 26,640 images for training and

'Our code is on https://github.com/WeiZong01/IPRemover
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Scenario Accuracy (%) Query (%) Detected”
GTSRB 85.32+0.11 85.33+£0.94 3/3
CIFARIOO0 | 89.37 £0.13  98.67 £ 1.25 3/3
Data-free 82.98 £0.18  44.33 £3.77 0/3
1% data 84.59+0.29  39.67 +2.49 0/3
5% data 87.40+0.19  33.00 £4.32 0/3

*: TP infringement is detected if the accuracy on the query set ex-
ceeds a threshold of 62%. The victim model achieved 90.92% ac-
curacy on the test set and 100% accuracy on the query set.

Table 2: Experimental results for the MetaFinger case study.

12,630 images for testing in 43 classes. We resize images
in GTSRB to 48 x 48 and trained VGG11 (Sengupta et al.
2019) on it. More details of the datasets and trained models
are provided in Technical Appendix.

For each dataset, we independently trained 3 models from
scratch. When calculating detection thresholds for finger-
printing, we considered one model as a victim model while
the other independently trained models were treated as be-
nign models. For each victim model, we ran IPRemover 3
times. To ensure fairness in our evaluation, whenever the
authors of a particular defense published their pre-trained
models, we used the pre-trained models rather than training
our own.

A Case Study on MetaFinger

We present a detailed case study to evaluate our method
against a recently proposed DNN fingerprinting technique
called MetaFinger (Yang, Wang, and Wang 2022). MetaFin-
ger is effective in detecting IP infringement based on KD
because its fingerprints are generated based on the Kull-
back—Leibler (KL) divergence, which is also the key com-
ponent in KD. The purpose of this case study is to demon-
strate the effectiveness of our method through comparative
experiments. As the authors of MetaFinger published their
trained models?, our experiments used their wide ResNet
pre-trained on CIFAR10. Using the open-source code, we
generated a query set of 100 samples in which the victim
model achieved 100% accuracy on this query set.

We considered several model stealing scenarios described
below:

1. Scenario “GTSRB”: KD is applied using GTSRB as out-
of-distribution (OOD) data to transfer knowledge from
the victim model to a stolen model.

. Scenario “CIFAR100”: KD is applied using CIFAR100
(Krizhevsky, Hinton et al. 2009) as OOD data to transfer
knowledge from the victim model to a stolen model.

3. Scenario “Data-free”: Using VEKD with only gener-
ated data.

. Scenario “1% data”: Using VEKD with a mixture of
generated data and 1% labeled training data.

5. Scenario “5% data”: Using VEKD with a mixture of
generated data and 5% labeled training data.

*https://github.com/kangyangWHU/MetaFinger/
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Defense Victim Acc (%) Stolen Acc (%) | Threshold? Detectt  Stolen Metric
IPGuard 93.25 83.71+0.10 0.0 T 0.0£0.0
DeepJudge” 93.25 83.71 +0.10 1?%%‘?6%31276 ! 8:‘2%3 - 8:882
Jia 92.16 83.65 +0.26 10% (99%) T 5.22 +1.10%
FS 93.30 85.24 +0.23 87% (100%) T 84.00 + 0.82%
CosWM 82.40 75.234+0.34 8.0 (39.83) T 1.85+1.36

*: DeepJudge proposed two metrics: “RobD” and “JSD”.

*:1 () means IP infringement is detected if the measured metric is higher (lower) compared to the metric of benign models.
t: for fingerprinting, the detection threshold was set to the worst value calculated based on benign models; for watermarking,
the watermark accuracy of the victim model or a provided detectable stolen model is shown in parentheses.

Table 3: Experimental results on CIFAR10.

Defense Victim Acc (%) Stolen Acc (%) Threshold? Detect™  Stolen Metric
IPGuard 97.24 91.66 +0.29 0.03 T 0.060 +- 0.008

N RobD:0.133 0.271 +- 0.077
DeepJudge 97.24 91.66 + 0.29 1SD:0.079 { 0156 +- 0.048
Jia 96.67 90.77 +0.21 2.33% (81.33%) T 0.89 £+ 0.83%
FS 96.95 90.48 £ 0.44 T7% (96%) T 68.33 £ 0.47%

*: DeepJudge proposed two metrics: “RobD” and “JSD”.

*:1 () means IP infringement is detected if the measured metric is higher (lower) compared to the metric of benign models.
: for fingerprinting, the detection threshold was set to the worst value calculated based on benign models; for watermarking,
the watermark accuracy of the victim model or a provided detectable stolen model is shown in parentheses.

Table 4: Experimental results on GTSRB.

It should be noted that while we focused on the data-free
attack, the purpose of including Scenarios 4 and 5, which
used a small amount of training data, in the case study was
to demonstrate the potential benefits of an adversary having
access to extra data. For each class, we generated 5000 im-
ages to make the size of our generated data match the size
of the original training data. In Scenarios 4 and 5 with “1%
data” and “5% data”, respectively, labeled training data was
upsampled by 100 times and 20 times in order for their size
to be equal to the size of generated data.

As MetaFinger did not define a method for calculating de-
tection thresholds, we used the maximum accuracy on the
query set achieved by fine-tuning a ResNet as the detec-
tion threshold. The ResNet was pre-trained on ImageNet and
fine-tuning it on CIFAR10 did not infringe on the IP of the
victim model. We ran the experiments 3 times and achieved
a threshold of 62%.

The experimental results are shown in Table 2. As ex-
pected, IP infringement can be easily detected when using
KD, even when data for a different task, i.e., GTSRB, was
used. In contrast, our IPRemover managed to evade detec-
tion. For the data-free case, the stolen model achieved an
82.98% accuracy, which was 7.94% lower than the 90.92%
accuracy achieved by the victim model. If our generated data
was mixed with 5% labeled training data, the accuracy of the
stolen model increased to 87.40%, which was only 3.52%
lower than the accuracy of the victim model.

An interesting observation was that if more labeled train-
ing data were accessible, the accuracy on the query set de-
creased. Specifically, the accuracy on the query set was
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44.33% for the “Data-free” scenario and this value de-
creased to 33.00% when 5% labeled training data were in-
cluded. This implies that stolen models would less resemble
the victim model when more labeled training data were ac-
cessible.

Defeating Other Defenses

The data-free IPRemover was evaluated against other de-
fenses. For CIFAR10, we generated 5000 images for each
class. For GTSRB, we generated at most 600 images for
each class. We observed that the success rate for generating
some classes of GTSRB was low. This may be due to the
uneven distribution of the original training set. We stopped
generating images for GTSRB when most classes consisted
of 600 images and the success rate of generating the remain-
ing images was low. Details can be found in Technical Ap-
pendix.

The experimental results on CIFAR10 and GTSRB are
shown in Tables 3 and 4, respectively. We used the same
set of hyperparameters and generator architecture for all
the defenses on both datasets. This means the accuracy of
our stolen models in the experiments represents the lower
bound. If an adversary has knowledge about the defense,
the hyperparameters can be adaptively adjusted to improve
the accuracy of the stolen models. In addition, if additional
training data were used, the performance gap between stolen
models and victim models would decrease further.

There was only one exception for IPGuard on GTSRB
where the metrics of our stolen models slightly exceeded
the worst metric of benign models. Nonetheless, the met-
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Figure 3: Mean accuracy and standard deviation obtained by
running VEKD with different e.

rics of our stolen models were still close to 0, which will
force model owners to use a low threshold for IPGuard, e.g.,
0.04. Such a low threshold will render IPGuard to be unre-
liable in practice. Moreover, we only used 2 benign models
in the experiments. The threshold for IPGuard is expected
to increase if more benign models are involved. Hence, we
conclude that our IPRemover bypassed all the defenses on
CIFAR10 and GTSRB.

For DeepJudge, an interesting observation was that untar-
geted AEs were highly transferable to other independently
trained models. For example, running two iterations of PGD
with a perturbation bound of 0.1 and 0.001 made the RobD
and JSD of independently trained models less than 0.1 on
CIFAR10. These low values made DeepJudge unreliable
since the thresholds would be close to 0. Empirically, this
high transferability of untargeted AEs is strongly related to
the number of iterations of PGD. It can be seen in Tech-
nical Appendix that using different values for the perturba-
tion bounds slightly affects the overall metrics. In contrast,
running 3 or more iterations significantly lowers the metrics
making them close to 0. A potential reason for this is that
we applied standard normalization to the input. This differs
from the open-source implementation of DeepJudge. How-
ever, standard normalization is common practice for many
machine learning tasks to make input features on a similar
scale as it stabilizes the training process and improves the
performance of trained models. Our experimental results im-
ply that standard normalization may also facilitate the trans-
ferability of untargeted AEs between independently trained
models.

Comparison with CMI

To date, there is no method that can detect IP infringement in
generated data. Hence, it is advantageous for a stolen model
to be trained from scratch without KD. In this case, model
owners cannot claim IP on the stolen model because it was
trained independently on “legal” data.

We compared our method with CMI by varying the de-
pendence on KD. The authors of CMI published their in-
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(a) CMI

(b) Our method

Figure 4: Visual comparison of the generated images.

verted data for a “wrn-40-2” model trained on CIFARI10 3.
Hence, we also applied our method to this model to generate
training data. We used the same set of hyperparameters and
generator architecture for generating data as in the previous
experiments on CIFAR10, although this victim model was
much smaller.

Fig. 3 shows the results of running VEKD 3 times with
different €. Recall that a smaller ¢ corresponds to less de-
pendence on KD. The results show that for both CMI and
our method, the accuracy of the models decreased with less
dependence on KD. However, models trained on our gener-
ated data achieved higher accuracy when € < 0.1. When no
KD was applied, ¢ = 0, models trained on our generated
data achieved 10% higher accuracy. Fig. 4 shows randomly
selected images for a visual comparison. Compared to CMI,
the colors of our generated data are visually clearer and more
natural.

Conclusion and Future Work

In this work, we proposed a generative model inversion at-
tack that can defeat both DNN fingerprinting and water-
marking techniques. We considered the challenging data-
free scenario where data is inverted from a victim model.
After a stolen model is trained on generated data, VEKD is
applied to transfer knowledge from the victim model to the
stolen model while evading IP infringement detection. Our
work reveals a novel attack surface that exploits model in-
version attacks to bypass DNN IP protection.

In future work, we will explore methods of detecting IP
infringement from generated data, which is an untouched
research direction. Another interesting direction is to extend
our work to defeat IP protection in areas other than image
recognition.

*https://github.com/zju-vipa/CMI
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