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Abstract

As a fundamental and challenging task in the vision and lan-
guage domain, Referring Expression Comprehension (REC)
has shown impressive improvements recently. However, for a
complex task that couples the comprehension of abstract con-
cepts and the localization of concrete instances, one-stage ap-
proaches are bottlenecked by computing and data resources.
To obtain a low-cost solution, the prevailing two-stage ap-
proaches decouple REC into localization (region proposal)
and comprehension (region-expression matching) at region-
level, but the solution based on isolated regions cannot suffi-
ciently utilize the context and is usually limited by the qual-
ity of proposals. Therefore, it is necessary to rebuild an effi-
cient two-stage solution system. In this paper, we propose a
point-based two-stage framework for REC, in which the two
stages are redefined as point-based cross-modal comprehen-
sion and point-based instance localization. Specifically, we
reconstruct the raw bounding box and segmentation mask into
center and mass scores as soft ground-truth for measuring
point-level cross-modal correlations. With the soft ground-
truth, REC can be approximated as a binary classification
problem, which fundamentally avoids the impact of isolated
regions on the optimization process. Remarkably, the consis-
tent metrics between center and mass scores allow our sys-
tem to directly optimize grounding and segmentation by uti-
lizing the same architecture. Experiments on multiple bench-
marks show the feasibility and potential of our point-based
paradigm. Our code available at https://github.com/VILAN-
Lab/PBREC-MT.

Introduction
Referring Expression Comprehension (REC) aims to pre-
dict a referred target in an image according to a correspond-
ing expression, which can be regarded as a coupling of the
comprehension of visual and linguistic abstract concepts and
the localization of concrete visual instance. Depending on
the prediction paradigm, the comprehension of the referring
expression has two manifestations: 1) Referring Expression
Grounding (REG) (Yu et al. 2016; Mao et al. 2016), where
the referred instance is localized by a bounding box. 2) Re-
ferring Expression Segmentation (RES) (Hu, Rohrbach, and
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Darrell 2016; Liu et al. 2017) separates the foreground and
background of the image based on the referring expression.
As a fundamental cross-modal task, REC focuses on mining
fine-grained visual and linguistic information, which facil-
itates numerous downstream studies, such as autonomous
driving (Kim et al. 2019), image captioning (Chen et al.
2020), and visual question answering (Wang et al. 2020b).

Depending on the solution process, existing REC methods
can be broadly divided into one-stage and two-stage frame-
works as shown in Fig. 1. The one-stage approaches (Sun,
Xiao, and Lim 2021; Deng et al. 2021) treat the REC as an
object detection with online classification, i.e., using refer-
ring expressions to define categories instead of a predefined
set of categories. By extending object detectors, the con-
ventional one-stage approaches (Sun, Xiao, and Lim 2021;
Huang et al. 2021) utilize multi-head networks to model
the comprehension (cross-modal confidence) and localiza-
tion (instance detection) processes, cf., Fig. 1 (a). Inspired
by DETR (Carion et al. 2020), transformer-based approaches
(Deng et al. 2021) have recently received widespread at-
tention as a flexible and effective framework. Leveraging
the attention mechanism, these methods achieve deep cross-
modal alignment and query-based localization, cf., Fig. 1
(b). One-stage methods, regardless of grounding or segmen-
tation, are multi-objective implicitly coupled processes, i.e.,
the ability to comprehend abstract concepts is measured in-
directly by their performance in the physical visual space
(bounding box or segmentation mask). Although the one-
stage framework achieves significant improvement by suf-
ficiently exploiting the visual and linguistic context, these
methods are limited by computation and data resources due
to their complex optimization.

Two-stage approaches (Yu et al. 2018; Chen et al. 2021)
attempt to build a matching and ranking process, which is
a more natural scheme. As shown in Fig. 1 (c), conven-
tional two-stage approaches usually merge the results of a
pre-trained detector and cross-modal matching module at
region-level, and search for the most relevant region pro-
posal via a ranking process. Unfortunately, the conventional
framework suffers from two inherent defects: 1) Sparse re-
gion proposals destroy the complete spatial context. 2) The
ground-truth used during training and the proposals pre-
dicted by the detector form a gap, which leads to a sub-
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Figure 1: A comparison of (a) conventional one-stage framework, where Conf. means a confidence branch, (b) transformer-
based one-stage framework, (c) conventional two-stage framework, and (d) our proposed point-based two-stage framework.
Our method can leverage whole context information and merge comprehension and localization processes on the feature space.

optimal generalization of the model. In addition, the previ-
ous two-stage segmentation methods are a compromise im-
plementation. The indirect solution for segmentation via the
bounding box limits their performance.

In this paper, we propose a point-based two-stage frame-
work for REC to address the aforementioned problems. As
shown in Fig. 1 (d), instead of using the search space com-
posed of loose and unordered regions, we propose to ap-
ply a regular set of points to support the ranking process.
Specifically, relying on cross-modal fusion representations
and point-based detectors (Tian et al. 2019), we reformulate
the comprehension and localization processes of REC. To
measure the correlation between visual points and referring
expression, we construct soft ground-truth, e.g., center-ness
and mass-ness matrices, based on the bounding boxes and
segmentation masks. Then we establish a shape-independent
classification process as the comprehension stage, which
is an end-to-end trainable module optimized by the soft
ground-truth. To convert the points from the comprehen-
sion stage into bounding boxes or segmentation masks, we
introduce an IoU-based non-maximum suppression, which
enables concise and efficient post-processing of predictions
from the detector. Importantly, the shape-independent com-
prehension allows consistent modeling of grounding and
segmentation tasks, so our framework supports multi-task
learning without attaching any additional head network.

Our contributions can be summarized as: 1) We propose a
point-based two-stage framework for REC. By approximat-
ing REC as a binary classification task, our framework can
leverage the complete visual and linguistic context at a lower
training cost. 2) We introduce soft ground-truth as the opti-
mization objective of the cross-modal comprehension. Rely-
ing on the consistency of soft ground-truth in grounding and
segmentation, our framework can naturally support multi-
task learning, i.e., REG and RES. 3) Extensive experimental
results on widely used benchmarks demonstrate the feasibil-
ity of the point-based paradigm. Our framework has signifi-

cant improvements over conventional two-stage methods on
both referring expression grounding and segmentation.

Related Work
Referring expression comprehension (REC) is originally de-
scribed as retrieving a visual instance referred by a sentence
from a set of region annotations. Thereby, early works (Yu
et al. 2016) usually formulate the task as a ranking problem.

Two-stage inference frameworks replace the high-quality
ground-truth for ranking with the region proposals of pre-
trained object detectors, e.g., Faster-RCNN (Ren et al.
2015), to realize an automatic localization. However, most of
the two-stage methods are motivated to reconstruct the con-
text between regions because sparse proposals destroy the
visual information. Module-based methods (Yu et al. 2018;
Hu et al. 2017) decompose the alignment of multi-modal
representations into several components. Yu et al. implicitly
models the subject, relationship, and location by introduc-
ing different heuristic priors to different modules. Consider-
ing the multi-hop relationships between visual and linguis-
tic instances, graph-based methods (Wang et al. 2019; Yang,
Li, and Yu 2020; Sun et al. 2023) propose to construct re-
gions and expressions as a scene graph or tree, which allows
cross-modal representations to be aligned under the same
structure. Two-stage frameworks reduce the training cost of
REC by decoupling tasks. However, the incomplete visual
semantics, especially discarded spatial context, hinder the
alignment and fusion of multi-modal representations. Fur-
thermore, the prediction proposals have a region shift com-
pared to the high-quality annotations. This data discrepancy
makes the ranking model struggle to generalize.

One-stage methods (Sadhu, Chen, and Nevatia 2019; Hu,
Rohrbach, and Darrell 2016) recommend using an end-to-
end process to solve REC, i.e., directly predicts the referred
instance from the entire image and expression, which can
eliminate the noise caused by the region proposals to the rea-
soning system. The conventional one-stage methods (Liao
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Figure 2: The overall framework of our model. It consists of two stages in inference: (1) a trainable cross-modal comprehension
stage which is optimized by center-ness or mass-ness score, and (2) a frozen vision localization stage.

et al. 2020; Jing et al. 2021) generally implement grounding
or segmentation by extending the natural language compo-
nent to YOLOv3(Redmon and Farhadi 2018) or FCN (Long,
Shelhamer, and Darrell 2015), respectively. For these cross-
domain extended inference systems, effective fine-grained
modeling is the key to localization. Yang et al. establish
an iterative reasoning process for complex long expressions
via sub-query. With the efficient cross-modal representations
ability of the attention mechanism, Deng et al. proposed a
transformer-based solution. Most recent works (Yang et al.
2022; Du et al. 2022; Zhu et al. 2022; Ye et al. 2022) have
followed this new paradigm. Despite the significant perfor-
mance improvement, these methods suffer from a long op-
timization process, usually requiring around 100 epochs.
Therefore, the cost of data and computation is one of the
most obvious limitations of transformer-based methods.

Approach
We present a point-based two-stage method for REC, a uni-
fied framework for the grounding and segmentation tasks
based on the cross-modal comprehension and vision detec-
tion. As shown in Fig. 2, given an image I ∈ RH×W×3 and
a referring expression Q ∈ RL, the task of REG is to predict
the bounding box b̂ ∈ R4 of the referred instance, and the
task of RES is to predict the segmentation mask ŝ ∈ RH×W .

Problem Reformulation
The central idea of our point-based two-stage framework is
to reformulate REC as an approximate binary classification
problem. In conventional two-stage methods, anchor-based
detectors, e.g., Faster R-CNN (Ren et al. 2015), cause a se-
ries of critical defects. The survey by Chen et al. (2021)
shows that the recall of the region proposals obtained by the
prevailing methods in inference is only 80.77%. In addition,

previous methods usually crudely combine localization and
comprehension at region-level. This makes it difficult for
the comprehension module to generalize via the sub-optimal
predictions. Inspired by FCOS (Tian et al. 2019), an object
detector that projects points to bounding boxes in a one-to-
one manner, we propose direct metrics of referring expres-
sion comprehension at point-level as soft ground-truth, e.g.,
expression-aware center-ness and mass-ness scores.

Expression-aware center-ness matrix is constructed by
the ground-truth bounding box b = (xl, yt, xr, yb), where
(xl, yt) and (xr, yb) are the coordinates of the left-top
and right-bottom corners. Concretely, we denote the feature
maps extracted from the input image by visual backbone as
Fv ∈ R

H
g ×W

g ×C , where g is the width of a visual grid. The
kth feature point in Fv represent the visual information col-
lected from the grid (i, j), where k = j · W

g + i. Similar to
semantic segmentation, we assign categories to each point to
indicate whether it is related to the referred instance. Since
the bounding box belongs to low-precision localization, we
define the points falling in the central area of the target box
as positive samples to prevent noise from the irrelevant pe-
riphery. The central area is defined as a square box centered
at (xl+xr

2 , yt+yb

2 ) and the width is 3g. According to the co-
ordinates (xk, yk) of the kth point projected on the raw im-
age, the relative positional relationship between the positive
point and the target bounding box can be defined as:

l = xk − xl, r = xr − xk,
t = yk − yt, b = yb − yk,

(1)

where (l, r, t, b) is the left, right, top, and bottom distances
from the point to the ground-truth bounding box. We com-
pute the center-ness score by:

ck =

√
min(l, r)

max(l, r)
· min(t, b)

max(t, b)
. (2)
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The center-ness score measures the degree how much the
point deviates from the center of the target box, which allows
the model to focus more on the grids near the center.

Expression-aware mass-ness matrix is roughly the same
as center-ness, converted by the ground-truth segmentation
mask s ∈ RH×W , which is a boolean matrix used to seg-
ment the referred instance. Similarly, we define a score for
each point on the feature map to measure its importance for
prediction. As the segmentation mask is the best approxima-
tion to the instance shape at pixel-level, we assign positive
samples to wider regions. Concretely, we first compute the
centroid (xm, ym) of the target by the mask:

xm = 1
N

∑N
i=1 xi, ym = 1

N

∑N
i=1 yi, (3)

where N is the total number of foreground pixels in the seg-
mentation mask, and (xi, yi) is the pixel coordinate belong-
ing to the foreground. Taking the centroid of the foreground
as the center, all points falling in the area with a radius of 2g
are considered as positive samples. Since the segmentation
mask defines a binary class label for each pixel, we calculate
the mass-ness as follows:

mk =
1

g2

g∑
x=1

g∑
y=1

sk(x, y), (4)

where sk is the kth grid of the segmentation mask. We use
mk to quantify the foreground enrichment of each grid.

Both the center-ness and mass-ness of all negative points
are set to 0. Using the above formulations, grounding and
segmentation are approximated as a binary classification
problem at the same scale, which makes the learning pro-
cess of the model simpler and enables the same framework
to solve multiple tasks.

Network Architecture
An overview of our model is shown in Fig. 2. The core de-
sign for the point-based two-stage framework is that two par-
allel reasoning stages are implemented by constructing soft
ground-truth, i.e., point-based cross-modal comprehension
and point-based localization.

For the feature encoding, given an image and a referring
expression, we first extract the visual features Fv by a convo-
lutional network (e.g., ResNet-101) and extract a sequence
of textual tokens Fq ∈ RL×C by BERT (Devlin et al. 2019).
Then we utilize the point-based cross-modal comprehen-
sion module to align and fuse the multi-modal representa-
tions. As the key component in our model, the architecture
of the comprehension stage is concise and elegant. For the
uni-modal representations of Fv and Fq , which are usually
inconsistent in the channel dimension, we apply two linear
layers to project them into the same embedding space. We
denote the initial embedding as F 0

v and F 0
q . Then we flatten

and concatenate them as F 0
vq = {F 0

v ;F
0
q }. To perform effi-

cient intra- and inter-modal context interactions, we propose
a visual-language transformer encoder that stacks a set of
multi-head self-attention layers and feed-forward networks.
The procedure in the encoder is formulated as:

F ′
v = Ftrans(F

0
vq, ev)|0:g2 , (5)

IoU-based
NMS

conf: 0.8

conf: 0.5
conf: 0.7

conf: 0.6

conf: 0.9

Figure 3: Our proposed IoU-based Non-Maximum Suppres-
sion (NMS), which can selects the final prediction by com-
puting the IoU between a set of proposals.

where ev ∈ R
HW
g2

×C is a flattened 2D-aware position em-
bedding to compensate the absolute position information
of the visual representation which is corrupted by convo-
lutional translation invariance. We exploit the deep interac-
tive visual state F ′

v for classification prediction. Two shared
MLP heads are utilized to obtain the center-ness prediction
ĉ and mass-ness prediction m̂. Finally, the output of the pre-
diction head is normalized by Sigmoid.

Consistent with conventional methods, our localization
stage includes a generic object detection or segmentation
model. However, the anchor-based methods, do not have a
one-to-one mapping between predictions and feature points,
which does not match our central idea. Therefore, we replace
the box head and mask head with point-based models, e.g.,
FCOS (Tian et al. 2019) and SOLO (Wang et al. 2020a). We
compare the ceiling of performance provided by different
proposed methods in experiments.

Optimization and Inference
For the backward, we use expression-aware center-ness and
mass-ness scores as the objectives to optimize our compre-
hension stage. As a multi-label binary classification task, our
loss function is as follows:

L(ĉ, m̂) =
1

n2

n∑
i=1

(λcLBCE(ci, ĉi)

+λmLBCE(mi, m̂i)),

(6)

where n = HW
g2 , which is the number of grids, LBCE is

binary cross entropy loss function, λc and λm are boolean
values used to adjust the task type.

Relying on sparse proposals, conventional methods can
take the top-1 region as the final prediction. However, our
search space composed of points is a dense proposal set with
a large amount of overlap. To take advantage of overlapping
characteristics, we propose an IoU-based non-maximum
suppression (NMS) as the post-process. As shown in Fig. 3,
although expression-related regions tend to score higher, it is
still possible that some high-confidence proposals are incor-
rect predictions. Therefore we recommend finding the max-
imum overlapping proposal as a reliable prediction. Specif-
ically, for a set of proposals P̂ = {p̂1, p̂2, . . . , p̂k}, which
is the top-k bounding box or segmentation mask ranked by
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Detectors RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test

Faster R-CNN 98.25 99.40 98.45 98.38 99.41 98.77 97.39 97.22
Mask R-CNN 97.60 97.81 96.58 97.79 97.78 96.99 97.18 96.91
FCOS-P5 97.90 98.90 97.43 98.04 98.85 97.59 96.47 96.75
Mask R-CNN † 88.86 93.94 80.77 89.33 93.96 81.45 85.97 86.10

Table 1: Comparison of the recall (%) of different object detectors on RefCOCO, RefCOCO+, and RefCOCOg, †denotes the
real case used in the state-of-the-art two-stage REC methods.

Models Venue Backbone Epochs RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test

One-stage:
FAOA ICCV’2019 DarkNet-53 - 72.54 74.35 68.50 56.81 60.23 49.60 61.33 60.36
MCN CVPR’2020 DarkNet-53 45 80.08 82.29 74.98 67.16 72.86 57.31 66.46 66.01
ReSC-Large ECCV’2020 DarkNet-53 100 77.63 80.45 72.30 63.59 68.36 56.81 67.30 67.20
TransVG ICCV’2021 ResNet-101 180 81.02 82.72 78.35 64.82 70.70 56.94 68.67 67.73
RefTR NeurIPS’2021 ResNet-101 - 82.23 85.59 76.57 71.58 75.96 62.16 69.41 69.40
RED AAAI’2022 DarkNet-53 100 80.97 83.20 77.66 69.48 73.80 62.20 71.11 70.67
Word2Pix TNNLS’2022 ResNet-101 180 81.20 84.39 78.12 69.74 76.11 61.24 70.81 71.34

Two-stage:
MAttNet CVPR’2018 ResNet-101 5 76.65 81.14 69.99 65.33 71.62 56.02 66.58 67.27
CM-Att CVPR’2019b ResNet-101 5 78.35 83.14 71.32 68.09 73.65 58.03 67.99 68.67
Ref-NMS AAAI’2021 ResNet-101 5 80.70 84.00 76.04 68.25 73.68 59.42 70.55 70.62
RvG-Tree TPAMI’2022 ResNet-101 - 75.06 78.61 69.85 63.51 67.45 56.66 66.95 66.51
A-ATT TPAMI’2022 VGG16 60 - 80.87 71.55 - 65.13 55.01 63.84 -
PBREC ours ResNet-101 15 82.20 85.26 79.21 72.63 78.96 64.74 73.92 73.18
PBREC-MT ours ResNet-101 15 82.94 86.31 80.81 74.85 79.53 65.60 73.86 74.13

Table 2: Comparison with the state-of-the-art REG approaches on RefCOCO, RefCOCO+, and RefCOCOg in terms of top-1
accuracy (%). The best and second best performances are in bold and underline, respectively.

center-ness or mass-ness, we compute the overlap score as:

ri =

k∑
j=1

IoU(p̂i, p̂j). (7)

Finally, we take the proposal with the highest overlap score
as the final output. The detailed settings of IoU-based NMS
are in the ablation experiments.

Experiments
Datasets and Evaluation Metrics
Follow Chen et al. (2021), we verify the effectiveness of our
method on RefCOCO (Yu et al. 2016), RefCOCO+ (Yu
et al. 2016), and RefCOCOg (Mao et al. 2016). The im-
ages of these datasets are collected from MSCOCO (Lin
et al. 2014). The three datasets have different challenges.
The average sentence lengths of RefCOCO and RefCOCO+
are 3.50, 3.53, but RefCOCO+ prohibits the description of
absolute positional relationships. RefCOCOg provides more
realistic and complex expressions, and the average sentence
length reaches 8.46. RefCOCOg has two types of splits, we
use umd split which contains val and test set.

Following Deng et al. (2021), we evaluate REG by accu-
racy. When the IoU between the predicted bounding box and
the ground truth is greater than 0.5, the prediction is deemed

accurate. For the RES, we choose overall IoU as the metric
which is obtained by computing the average IOU between
the predicted mask and the ground-truth for all cases.

Implementation Details

We resize and pad all the images to 640 × 640, and follow
Deng et al. (2021) to augment the raw data. We use ResNet-
101 (He et al. 2016) as the vision backbone, and use the
output of C5 block as the visual feature map, i.e., g = 32.
For the tokenization, we set the max token length to 30 (Re-
fCOCO, RefCOCO+, ReferItGame) and 40 (RefCOCOg).
For the comprehension stage, we use a 6-layer transformer
encoder as our neck network. During training, we set batch
size to 64, set the initial learning rate to 1 × 10−4 for com-
prehension module, set a lower initial learning rate 1×10−6

for ResNet and BERT. The model is dynamically optimized
for 15 epochs by AdamW (Loshchilov and Hutter 2019) and
CosineAnnealing (Loshchilov and Hutter 2017). During in-
ference, we take the P5 block of FCOS (Tian et al. 2019)
and P4 block of SOLO (Wang et al. 2020a) as the ground-
ing and segmentation proposal source, and set k to 12 in
the IoU-based NMS. We provide two versions of the model,
i.e., PBREC optimized for single task and PBREC-MT op-
timized for multi-task.
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Models Venue Backbone RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test

One-stage:
LTS CVPR’2021 DarkNet-53 65.43 67.76 63.08 54.21 58.32 48.02 54.40 54.25
VLT ICCV’2021 DarkNet-53 65.65 68.29 62.73 55.50 59.20 49.36 52.99 56.65
RefTR NeurIPS’2021 ResNet-101 70.56 73.49 66.57 61.08 64.69 52.73 58.73 58.51
ResTR CVPR’2022 ViT-16 67.22 69.30 64.45 55.78 60.44 48.27 54.48 -
CRIS CVPR’2022 ResNet-101 70.47 73.18 66.10 62.27 68.08 53.68 59.87 60.36
SeqTR ECCV’2022 DarkNet-53 67.26 69.79 64.12 54.14 58.93 48.19 55.67 55.64

Two-stage:
MAttNet CVPR’2018 ResNet-101 56.51 62.37 51.70 46.67 52.39 40.08 47.64 48.61
NMTree ICCV’2019a ResNet-101 56.59 63.02 52.06 47.40 53.01 41.56 46.59 47.88
CM-Att CVPR’2019b ResNet-101 58.23 64.60 53.14 49.65 53.90 41.77 49.10 50.72
Ref-NMS AAAI’2021 ResNet-101 61.46 65.55 57.41 49.76 53.84 42.66 51.21 51.90
PBREC ours ResNet-101 71.11 72.89 70.12 62.99 66.67 56.64 62.14 61.56
PBREC-MT ours ResNet-101 71.44 73.21 70.11 63.76 67.10 56.63 62.93 62.61

Table 3: Comparison with the state-of-the-art RES approaches on RefCOCO, RefCOCO+, and RefCOCOg in terms of overall
IoU (%). The best and second best performance are in bold and underline, respectively.

Grounding Segmentation
hard soft hard soft

Single
task

71.93 - 61.20 -
- 72.63 - 62.99

Multi
task

72.17 - 62.25 -
71.96 - - 62.45

- 72.75 62.04 -
- 74.85 - 63.76

Table 4: Ablation study of center-ness and mass-ness.

Comparison with State-of-the-art Models
Compared with prevailing two-stage methods, one notable
difference is that we use a different pre-trained detector. To
make a more convincing performance comparison, we fol-
low the statistics of Chen et al. (2021), to compare the ceil-
ing of performance that different detectors can provide. As
shown in Table 1, we compute the recall of region propos-
als in several different scenarios, i.e., the proportion that the
proposals contain correct prediction. We have the follow-
ing observations: 1) When using the top-100 GreedyNMS
(cf. Row 1 and Row 2), which is a usual practice for most
downstream tasks, the recall of anchor-based detectors can
reach about 97%. 2) The predictions at P5 level using FCOS
improve the performance ceiling by less than 1%. This is
reasonable, since we provide more proposals (typically 400
boxes). 3) To reduce the gap between training and inference,
prevailing two-stage methods usually use sparse proposals
(e.g., less than 10) in the real case. This is an obvious per-
formance bottleneck, e.g., it is impossible for these methods
on RefCOCO testB to exceed 80.77%.

To evaluate our method, we compare it with other state-of-
the-art methods on grounding and segmentation tasks. The
REG performance is shown in Table 2. Compared with the
emerging conventional one-stage method RED (Huang et al.
2022), our model obtains absolute improvements by 1.97%-

Top-k REG RES

center center+conf mass

1 73.55 73.24 63.34
4 74.14 74.13 64.07
8 74.33 74.46 64.08

12 74.51 74.85 63.76
16 74.25 74.64 62.23

Table 5: Ablation study of IoU-based NMS.

3.15%, 3.40%-5.73%, and 2.81%-3.46% on RefCOCO, Re-
fCOCO+, and RefCOCOg, respectively. When comparing
to TransVG (Deng et al. 2021), a transformer-based method
most similar to our neck architecture, our method requires
shorter training epochs (15 vs 180) to achieve better perfor-
mance, with 3.59%/ 10.03%/ 6.40% on RefCOCO (testA),
RefCOCO+ (val), and RefCOCOg (test), respectively. That
means our approximate classification greatly reduces the
learning difficulty of the task and achieves significant per-
formance improvement by relying on task decoupling. Our
model also achieves obvious improvements compared with
all two-stage methods. Specifically, our model outperforms
the recent state-of-the-art method Ref-NMS (Chen et al.
2021) by 4.77%, 6.60%, and 3.51% on the three datasets.
Notably, on the RefCOCO(testB), the limit performance of
the conventional method is 80.77% (cf. Row 4 of Table 1),
while our method can reach 80.81%.

For the RES task, we summarize the performance com-
parison in Table 3. Compared with two-stage methods,
our model has an absolute advantage with 9.98%/ 7.66%/
12.70%, 14.00%/ 13.26%/ 13.98%, and 11.72%/ 10.71% on
RefCOCO, RefCOCO+, and RefCOCOg, respectively. The
significant performance gap shows that previous segmenta-
tion methods are limited by the bounding box, while our
mass-ness metric is a reasonable solution. Our method is
also competitive with one-stage methods. Compared with
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Q: Blue jeans in 
background

Q: Half of sandwich nearest you
(a) Visualization of the solution process

(b) The case of IoU-based NMS (c) Comparison with 
regional proposals

center-ness:attention map: outputs:

mass-ness:

Q: The chair under 
a dog

Q: Young girl in 
white

Q: Giraffe behind 
tree

Q: Meter in back

Figure 4: Visualization of cases,the red box is the top-k pro-
posals, the blue box is the top-1 prediction, and the green
box is the correct prediction by our model.

CRIS (Wang et al. 2022), which is a CLIP-based knowledge
transfer model, our performance improves at most 4.02%.

Ablation Study
We use PBREC-MT to conduct ablation studies, and all per-
formance changes are verified on RefCOCO+ (val).

Soft ground-truth: To verify the rationality of our de-
signed center-ness and mass-ness scores, we try a number
of different combinations of metrics. Table 4 shows the per-
formance changes of the model in a single task training or
multi-task joint training, where hard means that the classifi-
cation task is directly modeled with 0-1, and soft means that
the category is represented by our designed scores. Com-
pared with hard classification, our metrics improve ground-
ing and segmentation performance by +0.70%/ +1.79%
and +2.68%/ +1.51% in single-task and multi-task, respec-
tively. Furthermore, we observe a noteworthy phenomenon
in multi-task optimization. Concretely, for the baseline per-
formance 72.17%/ 62.25%, using only center-ness brings a
change of +0.58%/ -0.21%, and mass-ness brings a change
of -0.21%/ +0.20%. In this case, soft ground-truth not only
fails to bring significant improvement, but also leads to an-
other task performance penalty. This means the right combi-
nation is even more important for multi-task learning.

IoU-based NMS: To find an appropriate post-processing
setting, we compare the performance of several different
schemes. As shown in Table 5, for the REG task, since
FCOS also uses the degree of center deviation to measure

the prediction confidence, we try two ranking schemes, i.e.,
using center-ness alone and using the product of center-ness
and FCOS confidence. The SOLO model uses the quality of
the prediction mask as confidence, which does not fit our
motivation, so we only use mass-ness as the ranking ba-
sis. Similar to conventional methods, direct top-1 ranking
can provide considerable performance. There is a further in-
crease in performance when performing IoU-based NMS on
the top-k predictions. Taking REG as an example, the im-
provement reaches maximum at top-12 (+1.61%), but fur-
ther expansion of the group will lead to performance degra-
dation. This improvement is not obvious on RES because the
overall IoU is a pixel-level metric and is not easily affected
by noise. Finally, without loss of generality, we use top-12
post-processing as the unified setting.

Qualitative Results
We illustrate the qualitative results with case visualizations.
As shown in Fig. 4 (a), we visualize the inference process.
The attention map is taken from the scores of the textual
[CLS] token and all visual grids in the last layer of the com-
prehension stage. It can be observed that our model compre-
hends the abstract concept of sandwich, and more focus on
the nearest sandwich in the image. Both the center-ness and
mass-ness score predictions are successfully focused on the
referred instance. The visualization in Fig. 4 (b) shows the
effect of our IoU-based NMS from four cases: 1) The left
top one shows that the noise generated by occlusion causes
the top-1 prediction area to become larger, while our NMS
can refine the predictions; 2) the left bottom one shows an-
other refinement process, i.e., the prediction box is extended
outward; 3) the right top one shows that a few parts of the
box only perceives ‘white’ but not the ‘girl’, which leads
to an incomplete cross-modal comprehension, however, our
NMS is a majority filter, which can correct this error; 4)
the right bottom one demonstrates the ability of our NMS
to mine samples that are difficult to locate. The case in Fig.
4 (c) verifies a key conclusion. Specifically, this case is to
localize a ‘meter’ which is behind the other. For conven-
tional methods (top), the first stage can only provide three
expression-independent boxes as proposals when using 0.65
as the confidence threshold. In fact, the target is included in
proposals with even lower confidence thresholds. According
to the idea of doing comprehension first and then localizing,
our method (bottom) uses the expression-aware metrics as
the basis for ranking, leading to more accurate localization.

Conclusions
In this paper, we propose a novel two-stage REC paradigm,
which achieves a point-based modulate localization by ap-
proximating grounding or segmentation as a classification
problem. With the parallel inference framework and point-
level metrics, e.g., center-ness and mass-ness, we over-
come the inherent defects of prevailing two-stage methods,
thereby breaking through performance bottlenecks. Exten-
sive experiments demonstrate the feasibility of our method.
In the future, we plan to develop our point-based two-stage
paradigm in the open domain, zero-shot, etc.
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