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Abstract

With the flourishing of the Internet, sharing one’s photos or
automated processing of faces using computer vision technol-
ogy has become an everyday occurrence. While enjoying the
convenience, the concern for identity privacy is also emerg-
ing. Therefore, some efforts introduced the concept of “pass-
word” from traditional cryptography such as RSA into the
face anonymization and deanonymization task to protect the
facial identity without compromising the usability of the face
image. However, these methods either suffer from the poor
visual quality of the synthesis results or do not possess the
full cryptographic properties, resulting in compromised se-
curity. In this paper, we present the first facial identity cryp-
tography framework with full properties analogous to RSA.
Our framework leverages the powerful generative capabili-
ties of StyleGAN to achieve megapixel-level facial identity
anonymization and deanonymization. Thanks to the great se-
mantic decoupling of StyleGAN’s latent space, the identity
encryption and decryption process are performed in latent
space by a well-designed password mapper in the manner of
editing latent code. Meanwhile, the password-related infor-
mation is imperceptibly hidden in the edited latent code ow-
ing to the redundant nature of the latent space. To make our
cryptographic framework possesses all the properties analo-
gous to RSA, we propose three types of loss functions: single
anonymization loss, sequential anonymization loss, and as-
sociated anonymization loss. Extensive experiments and ab-
lation analyses demonstrate the superiority of our method in
terms of the quality of synthesis results, identity-irrelevant
attributes preservation, deanonymization accuracy, and com-
pleteness of properties analogous to RSA.

Introduction
In today’s world, privacy has become a crucial concern, es-
pecially with regard to facial identity information. However,
many computer vision tasks require uploading photos or
videos, which may compromise user privacy. For instance,
family cameras are used to monitor the behavior of infants
and young children, but an attacker shouldn’t gain access to
facial identity information. At the same time, trusted users,
such as family members, may require access to the original
images. This presents a challenge since we need to design
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a special cryptographic system without affecting the use of
facial images for other computer vision tasks.

Some traditional anonymization methods simply use
pixel-level operations, such as downsampling, blurring, and
masking. These methods will greatly impair the quality
and usability of the image or could be easily reverted with
advances in deep learning techniques. Recently, some ap-
proaches (Maximov, Elezi, and Leal-Taixé 2020; Hukkelås,
Mester, and Lindseth 2019) have utilized generative net-
works to produce photo-realistic anonymized images, but
these methods pay no attention to recovering the original
images. Inspired by RSA (Rivest, Shamir, and Adleman
1978), a popular public-private key encryption method that
offers provable security and computational privacy protec-
tion through mathematical complexity, Gu et al. (Gu et al.
2020) introduced the concept of password and reverse pass-
word into face anonymization and deanonymization. How-
ever, their approach has several limitations such as low-
quality synthesis results and incomplete RSA properties.
RiDDLE (Li et al. 2023) also proposes a face anonymiza-
tion framework. However, their framework relies on the
same password for both anonymization and deanonymiza-
tion thus posing a risk of password leakage. Additionally,
their method struggles to preserve identity-irrelevant infor-
mation in the original image.

To address the aforementioned limitations, we introduce
a novel method, FaceRSA, which is the first facial identity
cryptography framework with full properties analogous to
RSA. It is important to note that our framework only pro-
vides RSA-aware properties in the domain of human faces
and does not offer any security guarantees based on math-
ematical complexity like traditional cryptographic systems.
The security of our system is based on ambiguity, i.e., an at-
tacker could not tell whether an image has been anonymized,
rather than the security based on computational complex-
ity like traditional cryptography. We also need to clarify
that the passwords we use for face anonymization and de-
anonymization are not RSA keys.

Different from directly using conditional GAN (Chen
et al. 2016) for anonymization at image level, we use the
powerful representation ability of the pre-trained Style-
GAN (Karras, Laine, and Aila 2019) by inverting the real
image into the StyleGAN latent space through GAN in-
version methods to realize face anonymization and de-
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anonymization. This design is based on the powerful rep-
resentational ability of StyleGAN and the redundant nature
of its latent space. We further refine the scheme of using a
password to control the anonymization and deanonymiza-
tion process to meet the properties of RSA, specifically: 1)
Locating the Identity-relevant Layers. The different latent
space layers of StyleGAN correspond to different levels of
semantics from coarse to fine. We locate the latent layers that
are most relevant to identity by examining the correspond-
ing semantics of different layers, thus ensuring preserv-
ing identity-irrelevant attributes through anonymization and
deanonymization. 2) Password Converter. To better control
the anonymization process, we use a password converter to
convert the discrete password into a 512-dimensional pass-
word vector to align the dimensions of the StyleGAN latent
space. 3) Modulation Model. We use a modulation model so
that the converted password vector can be used to explicitly
control the change of the latent code, which enhances the
controllability of our framework.

In order to ensure that our framework can possess all the
properties analogous to RSA, we designed three types of
loss functions: 1) Single anonymization loss is used to con-
trol the anonymization process under a single pair of encryp-
tion and decryption passwords. 2) Sequential anonymization
loss is used to implement some extensive anonymization and
deanonymization requirements when multiple pairs of en-
cryption and decryption passwords are utilized. 3) Associ-
ated anonymization loss is used to ensure the existence of
the equivalent password for both encryption and decryption
processes.

Our framework has been evaluated through qualitative
and quantitative experiments, demonstrating its superiority
in terms of the quality of the synthesis images, preserva-
tion of identity-irrelevant information, deanonymization ac-
curacy and properties analogous to RSA. We also conduct
some extensive ablation experiments in the supplementary
material to verify the effectiveness of our framework and
loss function design.

Overall, the contributions of our method consist of the fol-
lowing:

• Our proposed framework is the first facial identity cryp-
tography framework with full properties analogous to
RSA, which supports megapixel-level facial identity
anonymization and deanonymization.

• We choose to build such a facial identity cryptography
system with the help of StyleGAN’s latent space by
proposing a mechanism to locate identity-related layers,
designing the password mapper, and customizing three
types of training losses.

• Extensive experiments and ablation studies are con-
ducted to show the superiority of our method and the ne-
cessity of each new design.

Related Works
Face Anonymization
Simple human face anonymization methods using blurring,
noise, masking, etc. on the face region may greatly destroy

the usability of the image, so some work is devoted to the
anonymization of a face image without compromising im-
age quality. DeepPrivacy (Hukkelås, Mester, and Lindseth
2019) proposed an inpainting-based method to realize face
de-identification, Li et al. (Li et al. 2021) found identity-
aware face regions to remove original identity while keep-
ing other attributes, IdentityDP (Wen et al. 2022) introduced
the concept of differential privacy into de-identification to
achieve measurable anonymization. However, these studies
only focused on removing the identity of the original image
and did not take into account for the possibility of recovering
the original image.

Recent work has taken this deficiency into account
and proposed methods that can recover the original im-
age. For instance, FIT (Gu et al. 2020) introduced a dis-
crete password-based method that controls the generated
anonymized image and ensured that an attacker using a
wrong password can only obtain a wrong but photo-realistic
image. Cao et al. (Cao et al. 2021) separated identity
and attribute information, and realize anonymization and
deanonymization through controllable rotation of identity
vector. Concurrent with our work, RiDDLE (Li et al. 2023)
used a transformer structure to anonymize the image by a
randomly sampled latent code.

Although these works consider recovering the original
image, they may fail in complex anonymization scenarios
e.g. deanonymizing the image that has been anonymized
multiple times, which could impact their practical applica-
tion as well as make the anonymized image distinguishable
thus compromising its security. In contrast, our proposed
FaceRSA builds a cryptosystem with full properties anal-
ogous to RSA, thereby overcoming these limitations. For a
comparison of our work and some prior work, see Table 1.

Image Manipulation Based on StyleGAN
StyleGAN (Karras, Laine, and Aila 2019; Karras et al. 2020)
is a powerful generative network that can generate high-
resolution images on various data domains. Surprisingly,
its latent space exhibits promising disentanglement proper-
ties (Collins et al. 2020; Jahanian, Chai, and Isola 2019; Ab-
dal et al. 2021). As a result, many works (Patashnik et al.
2021; Wei et al. 2022a; Jiang et al. 2021; Sun et al. 2022;
Wei et al. 2023) have utilized StyleGAN for various image
manipulation tasks. StyleCLIP (Patashnik et al. 2021) real-
ized text-guided image manipulation with the help of CLIP’s
powerful image-text representation capability (Radford et al.
2021). HairCLIP (Wei et al. 2022a) introduced a modulation
module to achieve direct control of the hair condition input
over the latent code. In this paper, we implement password-
based identity manipulation with the powerful generative
ability of StyleGAN and the great semantic decoupling of
its latent space, which shares the same philosophy as the
previously mentioned methods.

Preliminaries
RSA is a widely used encryption and decryption algorithm
and has many excellent properties. As our approach is an
RSA-aware system, the following properties should be sat-
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Method DeepPrivacy IdentityDP Li et al. FIT Cao et al. RiDDLE Ours

Face Anonymization " " " " " " "

Face Deanonymization % % % " " " "

Sequential Anonymization and Deanonymization % % % % % % "

Password Interchangeability % % % % % % "

Password Associativity % % % % % % "

Table 1: Comparisons between our approach and mainstream face anonymization methods in terms of functionality. Only our
method supports all kind of scenarios.

isfied. Here I∗ denotes using cryptography algorithm on im-
age I , when multiple passwords exist in ∗, it means use
cryptography algorithm with them in order, i.e Ie,d means
first use anonymization algorithm with password e on I and
then use de-anonymization algorithm with password d on Ie.
(ei, di) represents the i-th pair of encryption and decryption
passwords.

(a)Photo-realism. We hope that the cryptography algo-
rithm will still generate a real-looking face, so an attacker
cannot distinguish whether the face is anonymized or not,
and it will not affect the usage of this image for computer
vision tasks. Let Φ be the manifold of human faces, this
property could be formed as:

∀I ∈ Φ, ∀e, s.t. Ie ∈ Φ

(b)Anonymized with password. Let f represents the
function that maps the facial image to the identity, the
anonymization progress via encryption password e could be
formalized as:

f(Ie) ̸= f(I)

(c)Deanonymized with correct password. The original
identity of I could be recovered with the correct decryption
password d.

f(Ie,d) = f(I)

(d)Wrong deanonymized with wrong password. When
a wrong password d′ is given to deanonymize the image,
the system will generate a new identity that is different from
both the original image and the anonymized image.

f(Ie,d′) ̸= f(Ie)

f(Ie,d′) ̸= f(I) where d′ ̸= d and Ie,d′ ∈ Φ

(e)Diversity. Different identities should be generated
when using different encryption passwords on a single im-
age.

f(Ie1) ̸= f(Ie2) where e1 ̸= e2
(f)Cycle anonymized and deanonymized with paired

passwords. When the anonymization operation is applied
to the same image multiple times, the identity of the orig-
inal image will be obtained by deanonymizing in the order
of anonymization. At the same time, the identities of each
pair of intermediate images should also remain the same.
For properties (f), (g), and (h), we use two pairs of encryp-
tion and decryption passwords to illustrate the correspond-
ing effect.

f(Ie1,e2,d2) = f(Ie1)

f(Ie1,e2,d2,d1
) = f(I)

(g)Passwords interchangeability when deanonymiza-
tion. When deanonymizing an image that has been
anonymized multiple times, the identity of the original im-
age will be recovered regardless of the deanonymization or-
der. Meanwhile, paired anonymization and deanonymization
operations are eliminated as if they were never performed.

f(Ie1,e2,d1) = f(Ie2)

f(Ie1,e2,d1,d2
) = f(I)

(h)Passwords associativity. In multi-step anonymization
and deanonymization operations, multi-step operations per-
formed by multiple passwords can be equivalent to one oper-
ation performed by an associated password. Here ‘+’ means
the summation of different passwords.

f(Ie1,e2) = f(Ie1+e2)

Method
Overview
Our purpose is to design an RSA-aware cryptography sys-
tem based on passwords without compromising image qual-
ity. As mentioned in E2Style (Wei et al. 2022b), the neg-
ligible effect of rounding the floating-point latent code sug-
gested that the StyleGAN latent space contains a high degree
of redundancy. Based on this property, instead of using con-
ditional GAN at image level, we proposed using the Style-
GAN latent space to embed password information, realizing
image anonymization and deanonymization through latent
code manipulation.

Next, we design some modules and mechanisms to better
control the editing of latent code. We first locate the identity-
relevant layers in StyleGAN to minimize the impact on non-
identity attributes. Then we use a password converter to con-
vert password into a vector, which will be used in a modula-
tion model to modulate the latent code. To enhance the secu-
rity of the anonymized image and align with the full proper-
ties of RSA, it is essential to impose constraints not only on
the single pair but also on scenarios involving multiple pairs
of encryption and decryption passwords, so we introduce
three types of loss functions: single anonymization loss, se-
quential anonymization loss and associated anonymization
loss.

Before introducing the specific framework and loss func-
tions, we briefly introduce the latent space of StyleGAN.
The image synthesis process of StyleGAN involves its mul-
tiple latent spaces. It first randomly samples a vector z ∈
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(a) Structure of FaceRSA
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Figure 1: (a)The overall pipeline of our method, models with gray color are frozen. (b)Properties demonstration of our frame-
work in the case of two pairs of encryption and decryption passwords. Property (a)-(c) can be directly observed from the figure,
and we distinguish properties (d)-(h) with different colored lines and boxes. Our model satisfies the RSA properties mentioned
in Preliminaries Section. For the sake of brevity, we only show the complete input and output with our FaceRSA framework
twice, and the rest of the FaceRSA framework is omitted.

R512 and transforms it to a style code w ∈ R512 after 8
fully connected layers. This space is called W space, and
many studies have shown that it is rich in semantic informa-
tion. Some studies (Collins et al. 2020; Goetschalckx et al.
2019; Jahanian, Chai, and Isola 2019) have extended the W
space to W+ space, which consists of different w vectors
corresponding to different layers of the StyleGAN structure.
These different layers of W+ Space controls various seman-
tic information from coarse to fine. In the case of the 18-
layer StyleGAN network, the vector in the W+ space can
be expressed as: w = [w1,w2, · · · ,w18].

FaceRSA
Thanks to the powerful synthesis and semantic decoupling
capabilities of StyleGAN, we choose to accomplish the iden-
tity transformations in the StyleGAN latent space. Specif-
ically, to anonymize a real image, we first obtain its latent
code w in the W+ space using e4e (Tov et al. 2021), which
is an encoder-based GAN inversion method with better edit-
ing capability. Then, we utilize the well-designed mapping
network to predict the bias ∆w in latent space based on the
user-given password, a N -bit binary code. The modified la-
tent code, w′ = w +∆w, is subsequently fed back into the
pre-trained StyleGAN to obtain the output result. The over-
all pipeline is illustrated in Figure 1.

Locating the Identity-relevant Layers. As observed by
many researches (Xia et al. 2021; Yang, Shen, and Zhou
2021; Patashnik et al. 2021), various layers in the latent
space of StyleGAN correspond to different semantic fea-
tures. In order to preserve identity-irrelevant attributes of
an image, such as pose and expression, we localized the
identity-relevant layers by modifying the original latent code

step by step. Finally, we opted to change only specific layers
- detailly, layers 6-9 in the W+ latent space - while keeping
all other layers unchanged. Specific implementation details
and ablation experiments for this setting are provided in the
supplementary material. By adopting this approach, we can
change identity information while minimizing the effect on
other image attributes.

Password Converter. To better utilize the password for
controlling the mapping of latent codes, we convert the N -
bit discrete password into a 512-dimensional real password
vector using a password converter, a simple 2-layer MLP.
This is done to align the dimensions of the StyleGAN la-
tent space and facilitate the use of the modulation module in
subsequent steps.

Modulation Model. To implement identity transforma-
tions that are controlled through passwords, we propose the
usage of a modulation module. This module enables the
password vectors to explicitly control the changes of latent
code. We borrow the structure of modulation model used in
HairCLIP (Wei et al. 2022a), which has the following form:

x′ = γp

(
x− µx

σx

)
+ βp

where µx and σx denote the mean and standard deviation of
x. γp and βp are calculated from the password vector p with
simple fully connected networks.

Loss Functions
Our objective is to enable adaptation to changes in image
identity information across various scenarios while preserv-
ing other identity-irrelevant information. Here all the orig-
inal images mentioned below refer to the inverted images.
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Our total loss function for different cryptography scenarios
comprises three parts: single anonymization loss, sequential
anonymization loss, and associated anonymization loss.

Single Anonymization Loss Lsingle. The main purpose
of this part of the loss function is to constrain the function
of the cryptography system in the case of only single en-
cryption and decryption operation is used. We consider the
simplest case of this scenario: two different encryption pass-
words e1 and e2, one correct decryption password d1 and
one wrong decryption password d′1.

According to the RSA properties (a)-(e) men-
tioned in Preliminaries Section, to realize the
anonymization and deanonymization function, we in-
troduce facial identity difference loss on image pairs
(I, Ie1),(I, Ie2),(I, Ie1,d′

1
),(Ie1 , Ie2) with the formulation

Lchange = cos(F(I1),F(I2)) where cos(·) denotes the
cosine similarity and F is a pre-trained Arcface (Deng et al.
2019) network to extract facial identity embeddings. I1 and
I2 represent the different images in the image pairs.

Also, to ensure the original image is recovered correctly,
pixel L2 loss Lpix = ∥I − Ie1,d1

∥2 and cosine identity sim-
ilarity loss Lrecon = 1 − cos(F(I),F(Ie1,d1

)) are used on
image pair (I, Ie1,d1

).
During the training process, the generated latent codes

must be constrained to remain on the well-defined mani-
fold of the StyleGAN to prevent artifacts. Therefore, for
each generated latent code w∗, we introduce a regulariza-
tion loss Lreg = ∥w∗ − w∥2 where w denotes the inverted
latent code of the original image I .

Additionally, to minimize the impact on downstream tasks
and prevent changes in attributes such as expressions while
changing the identity, we also use face parsing loss Lparsing

as mentioned in E2Style (Wei et al. 2022b) and facial
landmark loss Llmk for all generated images I∗. LPIPS
loss (Zhang et al. 2018) is also applied to all generated im-
ages I∗ to preserve image quality and improve similarity in
feature level.

Sequential Anonymization Loss Lseq . When facing the
situation of sequential anonymization and deanonymization,
we define an image sequence as

{
Ik

}2m

k=0
with m-pairs

of encryption and decryption passwords. Here image I0

denotes the original image and each image In in the se-
quence is generated by applying cryptography algorithm
on image In−1 with a single password from the sequence
e1, · · · , em, dm, · · · , d1 in order. It is crucial to ensure that
the identity information is maintained between the corre-
sponding intermediate image pairs

{
(Ik, I2m−k)

}m−1

k=0
. We

also add loss functions to ensure the image quality and the
identity diversity of each anonymized image

{
Ik

}m

k=1
.

Associated Anonymization Loss Lasso. In this con-
text, we require that multiple anonymization operations can
be regarded as obtaining an equivalent password through
one anonymization operation. We randomly selected images
Ii−1 and Ij in the sequence

{
Ik

}m

k=0
where j > i, and the

equivalent password is expressed as the sum of intermediate
consecutive encryption passwords, that is ẽ =

∑j
k=i ek. As-

sociated identity loss Lasso−id and pixel L2 loss Lasso−pix

I Ie1 Ie2 Ie1,d1
Ie1,d′1

Figure 2: Qualitative result for single encryption and decryp-
tion password pair of our framework. I refers to the original
image, (e1, d1) is a pair of encryption and decryption pass-
word and d′1 ̸= d1, e1 ̸= e2, each column shares the same
password. Our framework satisfies the basic anonymization
and deanonymization requirements.

Original CIAGAN DeepPrivacy FIT RiDDLE Ours

Figure 3: Qualitative comparison of anonymization ability.
Our method shows the best quality and preserves the most
identity-irrelevant attributes, which is fully compliant with
the requirements of anonymization.

are computed between the image (Ii−1)ẽ and Ij to satisfy
the associated anonymization property. Note that although
this loss is only imposed on anonymization process, it will
be shown in the experiment section that our framework can
generalize associated password to de-anonymization pro-
cess.

The detailed designs and the hyperparameter settings of
Lsingle, Lseq and Lasso are presented in the supplementary
material.

Finally, the total loss of our training process is

Ltotal = Lsingle +Lseq +Lasso

Experiment
Implementation details of our approach are provided in the
supplementary material. For all compared methods, we use
the official pre-trained models.

We first show in Figure 2 the effect of our entire system
while only a pair of encryption and decryption password is
used. As we can see, using different encryption passwords
for a single image result in different anonymized images,
whereas using the same encryption password for different
images also generates different anonymization images. Ad-
ditionally, the original image can be correctly recovered with
the correct decryption password, while using an incorrect
decryption password will produce a new anonymized image
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ID↓ Detect↑ Lmk↓ Pose↑ Exp↑
CIAGAN 0.150 0.950 1.208 0.930 0.283

DeepPrivacy 0.118 0.998 0.023 0.966 0.289
FIT 0.296 0.992 0.011 0.971 0.341

RiDDLE 0.115 0.999 0.013 0.956 0.314
Ours 0.247 1.000 0.009 0.996 0.546

Table 2: Quantitative comparison of face anonymization
ability. Our method outperforms others in most metrics ex-
cept identity similarity since our method preserves more
identity-irrelevant attributes, which will undesirably in-
crease the identity similarity measured by Arcface.

Original FIT RiDDLE Ours

Figure 4: Qualitative comparison of recovery ability. Our
method shows the best recovery quality compared with the
existing methods, thus having better application potential.

that differs from the original identity. Figure 2 shows that
our framework satisfies the properties (a)-(e) mentioned in
Preliminaries Section which related to the scenario of single
pair of encryption and decryption password.

We compare our method with two password-aware
anonymization methods, FIT (Gu et al. 2020) and RiD-
DLE (Li et al. 2023), one identity vector controlled condi-
tional GAN based method CIAGAN (Maximov, Elezi, and
Leal-Taixé 2020), and one inpainting-based method Deep-
Privacy (Hukkelås, Mester, and Lindseth 2019). For the spe-
cific implementation details, RiDDLE and our method are
based on GAN inversion while others are based on condi-
tional GAN. In our experiment, we ignore the minor distor-
tion caused by GAN inversion, and the test images are af-
ter inversion. We separately compare anonymization ability
with each method and deanonymization ability with FIT and
RiDDLE, since only FIT and RiDDLE enable the recovery
of the original image. Here we use ei to represent the i-th
encryption password and di to represent the i-th decryption
password, but the relationships between the encryption and
decryption passwords used by each methods are actually dif-
ferent.

Anonymization Ability. Qualitative result of anonymiza-
tion could be seen in Figure 3. We observe that CIAGAN
suffers from severe image distortion, which affects the us-
ability of the image. FIT always generates an anonymized
image with some white dots and changes the lighting of the
overall image. DeepPrivacy successfully generates photo-
realistic images, but sometimes modify the expression of the

LPIPS↓ MSE↓ PSNR↑ SSIM↑ ID↑
FIT 0.1780 0.0064 61.21 0.9928 0.6767

RiDDLE 0.0324 0.0124 67.61 0.9987 0.8315
Ours 0.0099 0.0019 75.51 0.9996 0.9206

Table 3: Face recovery ability. Our method outperforms on
all metrics, demonstrating the best original image recovery
ability.

original image. RiDDLE also utilizes StyleGAN2 as a gen-
erator, but remains less identity-irrelevant information, such
as pose and hairstyle since they use all of the latent code
to transform identity. Our method, on the contrary, remains
more identity-irrelevant information thanks to changing only
some specific layers related to identity.

Quantitative evaluation is conducted on several aspects
with anonymized images: 1) identity similarity with the
original image using pre-trained Arcface (Deng et al. 2019)
network, 2) face detection rate using dlib (Kazemi and Sulli-
van 2014) to ensure that the results are still faces, and 3) per-
formance on different computer vision tasks, such as land-
mark and pose detection. We evaluate normalized L2 land-
mark distance using face alignment (Bulat and Tzimiropou-
los 2017), cosine pose similarity using 6DRepNet (Hempel,
Abdelrahman, and Al-Hamadi 2022), and cosine expression
similarity using DECA (Feng et al. 2021). Quantitative re-
sults are shown in Table 2, our method perform the best
in most of the metrics except identity similarity. Although
our method does not reach the lowest identity similarity,
we could observe from Figure 3 that the anonymization ef-
fect is obvious enough. Meanwhile, our method retains more
identity-irrelevant attributes in the original image while Arc-
face uses some identity-irrelevant information for its identity
embedding, which will undesirably increase the measured
identity similarity.

Recovery Ability. Qualitative results for face recovery
are shown in Figure 4, our method realizes the most faith-
ful recovery of the original image while FIT appears arti-
facts and RiDDLE comes up with inconsistent expressions.
Moreover, we use the following metrics to measure the per-
formance of image recovery : LPIPS, MSE, PSNR, SSIM
and ID similarity, quantitative results are listed in Table 3.
Our method shows the best performance on all metrics, hold-
ing the best recovery ability of the original image.

To the best of our knowledge, our work is the first to con-
sider an anonymization algorithm with multiple passwords
involved. We separately demonstrate the performance of our
framework in multiple scenarios below.

Sequential Anonymization and Deanonymization. Fig-
ure 5 demonstrate the result of sequential anonymization and
deanonymization compared with recovery-aware method
FIT and RiDDLE. Although these methods take into ac-
count the recovery of images, when multiple anonymization
algorithms are applied, these methods cannot sequentially
recover the corresponding images in the anonymization pro-
cess. This brings a security risk that an attacker could easily
tell whether an image has been anonymized through apply-
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Figure 5: Sequential anonymization and deanonymization
comparison. Our method could correctly recover the corre-
sponding images while other either fails or appears artifacts.

ing anonymization and deanonymization method on it, and
further takes DoS(Deny of Service) attack on an anonymized
image. FIT fails to accurately recover the corresponding
encrypted image and the original image, while RiDDLE
demonstrates some recovery capability but shows inconsis-
tencies in some facial details, such as the opening and clos-
ing of lips. Our approach, however, can precisely recover the
original image and the encrypted image, which satisfies the
property (f) as mentioned in Preliminaries Section.

Password Interchangeability. We then investigate the
scenario where the decryption passwords are not used in
the same order as the encryption passwords during the
deanonymization process. In the case of RSA, when encryp-
tion and decryption passwords are used in pairs, the encryp-
tion effect will be eliminated. We present the results of using
two pairs of encryption and decryption passwords in Fig-
ure 6, we could observe from the left two columns that only
our method could recover the original image even if the de-
cryption passwords are not used in the correct order. Also,
the right two columns show that although (e1, d1) are not
used continuously, it comes out that the effect of anonymiza-
tion is eliminated, which satisfies the property (g).

Password Associativity. We show qualitative results for
associated passwords in Figure 7. The left two columns
demonstrate that only our method achieves almost the same
result via an equivalent password as the anonymization al-
gorithm sequentially used on an image with two encryption
passwords. Although the case is not covered during the train-
ing phase, the right two columns show that an equivalent
password also exists during the decryption process, which
satisfies the properties (h).

In addition, we also performed detailed ablation experi-
ments in the supplemental material to verify the effective-
ness of our framework and loss function design.

Conclusion
Our paper introduces FaceRSA, an RSA-aware facial iden-
tity cryptography framework. The framework is built upon
the latent space of StyleGAN, thanks to its good editabil-
ity and redundancy nature which fits well for our task. With

I Ie1,e2,d1,d2
Ie1,e2,d1

Ie2

FIT

RiDDLE

Ours

Figure 6: Commutative decryption result. The left two
columns show the effect of deanonymization in another or-
der, the right two columns show the elimination effect of
pairwise used encryption and decryption password.

I Ie1,e2,d1+d2
Ie1,e2

Ie1+e2

FIT

RiDDLE

Ours

Figure 7: Result of encryption and decryption with asso-
ciated password. The left two columns show the effect of
equivalent password during anonymization and the right two
columns show the effect during deanonymization.

our well-designed password mapper, the generation process
of facial identity is controlled by the user-given discrete
passwords, which makes our framework a cryptosystem for
anonymization and deanonymization. The mechanism to lo-
cate identity-related layers helps us to minimize the im-
pact on other unrelated attributes while completing the edit-
ing of the identity. In addition, the customized three types
of losses enable our cryptography framework to possess
all the properties analogous to RSA. Extensive qualitative
and quantitative comparisons demonstrate that our frame-
work outperforms existing methods in terms of the quality
of the synthesis images, preservation of identity-irrelevant
information, deanonymization accuracy and properties anal-
ogous to RSA. In the future, we consider introducing some
other cryptographic concepts into image anonymization and
deanonymization.
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