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Abstract

Large-scale pre-trained Vision Language Models (VLMs)
have proven effective for zero-shot classification. Despite the
success, most traditional VLMs-based methods are restricted
by the assumption of partial source supervision or ideal tar-
get vocabularies, which rarely satisfy the open-world sce-
nario. In this paper, we aim at a more challenging setting,
Realistic Zero-Shot Classification, which assumes no anno-
tation but instead a broad vocabulary. To address the new
problem, we propose the Self Structural Semantic Align-
ment (SA) framework, which extracts the structural semantic
information from unlabeled data while simultaneously self-
learning. Our S3A framework adopts a unique Cluster-Vote-
Prompt-Realign (CVPR) algorithm, which iteratively groups
unlabeled data to derive structural semantics for pseudo-
supervision. Our CVPR algorithm includes iterative cluster-
ing on images, voting within each cluster to identify initial
class candidates from the vocabulary, generating discrimi-
native prompts with large language models to discern con-
fusing candidates, and realigning images and the vocabu-
lary as structural semantic alignment. Finally, we propose
to self-train the CLIP image encoder with both individual
and structural semantic alignment through a teacher-student
learning strategy. Our comprehensive experiments across var-
ious generic and fine-grained benchmarks demonstrate that
the S”A method substantially improves over existing VLMs-
based approaches, achieving a more than 15% accuracy im-
provement over CLIP on average. Our codes, models, and
prompts are publicly released at https://github.com/sheng-
eatamath/S3A.

Introduction

In recent years, large-scale pre-trained Vision Language
Models (VLMs) such as CLIP (Radford et al. 2021; Ren
et al. 2022), ALIGN (Li et al. 2021), and BLIP (Li et al.
2022, 2023) have garnered significant attention for their
remarkable zero-shot generalization ability on multifarious
downstream tasks, particularly in recognizing unseen cate-
gories (Zhang et al. 2023a). The common practice to lever-
age this ability is packing category names into a textual
prompt (e.g., “A photo of a [CLS]”) and aligning im-
age embeddings with text embeddings of filled prompts in
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VLM joint embedding space for classification. To adapt
pre-trained VLMs to downstream unseen data, existing pre-
vailing methods (Wu et al. 2023; Zang et al. 2022; Ghiasi
et al. 2021) usually assume the access to source labeled
data (Chen et al. 2022; Khattak et al. 2023; Zhou et al.
2022a) (e.g., in zero-shot learning (Zhou et al. 2022b; Gao
et al. 2021)), target label distribution (e.g., in unsupervised
prompt tuning (Kahana, Cohen, and Hoshen 2022)), or an
ideal vocabulary that exactly matches the ground-truth label
set or with very few open words (e.g., in open-vocabulary
learning (Wu et al. 2023; Zang et al. 2022; Ghiasi et al.
2021)). However, this ideal vocabulary is unattainable with-
out exhaustive annotation of all unseen data; whereas, hu-
man annotations are exorbitant and difficult to scale. There-
fore, both assumptions are restrictive and impractical in
open-world scenarios with diverse and dynamic nature.

In this paper, we embark on a journey towards Real-
istic Zero-Shot Classification (RZSC), a more challenging
yet practical problem compared with conventional zero-shot
learning due to its realistic conditions. Here, we term Real-
istic as the realistic nature of RZSC which aims to recognize
categories on unseen datasets without annotation and ideal
vocabulary, but with a vast, comprehensive vocabulary with
more than 20K category names encompassing all common
classes (Sariyildiz et al. 2021; Ridnik et al. 2021). However,
it is challenging since the vast vocabulary can lead to align-
ment confusion among fine-grained options; as we witness
the consistent and dramatic CLIP (Radford et al. 2021) per-
formance drops and reduced neighborhood ranges in Fig. 1.

To confront this challenge, we introduce the Self Struc-
tural Semantic Alignment (S*A) framework, which iter-
atively discovers structural semantic alignment from un-
labeled data for joint self-learning. This is orchestrated
through our unique Cluster-Vote-Prompt-Realign (CVPR)
algorithm, a principled process comprising four key steps:
(1) Clustering unearths inherent grouping structures of
image embeddings, producing meaningful image seman-
tics. (2) Voting associates each cluster with initial cat-
egory candidates, representing potential structural seman-
tic alignments. These two steps can be executed iteratively
to obtain more reliable candidates. (3) Prompting lever-
ages the power of large language models (LLMs) to discern
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Setting | Vocab. Anno. Train
Zero-Shot Transfer Vigt X Vigt
Zero-Shot Classification Vige v Vrase
Open-Vocabulary Learning | <2K v Voase
Unsupervised Fine-tuning Vigt X Vigt
RZSC | >20k X Vi

Table 1: Our realistic zero-shot classification and other re-
lated settings. Here, following (Wu et al. 2023), we denote
Vbase and Vi gy as sets of base training classes and target test-
ing classes, which satisfies Vpgse [ Vige = ¢. The learning
goal of all settings is to recognize )4 in test data.

nuanced candidates by augmenting prompts with discrim-
inative attributes. (4) Re-alignment represents calibrat-
ing the cluster-vocabulary alignment with LLM-augmented
prompts as pseudo structural semantic alignment labels. In-
corporating our CVPR algorithm, our S3A framework self-
trains a student model based on derived individual and struc-
tural semantic alignment labels from a stable teacher. Simul-
taneously, the teacher is updated by student weights to pro-
duce more reliable pseudo semantic alignments.

We extensively evaluate our S*A framework across multi-
ple setups, spanning various generic and fine-grained bench-
marks. The results show that S3A not only consistently out-
performs previous adapted State-of-The-Arts (SOTAs) un-
der the RZSC setting on all benchmarks, but excels in out-
of-vocabulary evaluation, where category names can fall
outside the S*A vocabulary. Comprehensive evaluations ev-
idence the effectiveness of our S*A framework in RZSC.
Our contributions include: (1) We propose a Self Struc-
tural Semantic Alignment (S3A) framework, to address
the challenging Realistic Zero-Shot Classification problem,
which jointly extracts and self-learns on the individual and
structural semantic alignment. (2) We propose a Cluster-
Vote-Prompt-Realign algorithm to reliably derive reliable
structural semantic alignments between images and the large
vocabulary. (3) S3A achieves SOTA performance on vari-
ous generic and fine-grained benchmarks, remarkably boost-
ing CLIP by over 15% accuracy, and even in the out-of-
vocabulary scenarios.

Related Work

Zero-Shot Learning/Open-Vocabulary Learning with
VLMs. Traditional (Generalized) Zero-Shot Classification
(ZSC) aims to categorize novel classes in unseen test data
with training on annotated base/seen classes with or with-
out unlabeled target novel classes (Wang et al. 2019; Pour-
panah et al. 2022). However, they usually assume auxil-
iary semantic information of both seen and unseen classes,
e.g., category attributes (Lampert, Nickisch, and Harmeling
2009), knowledge graph (Akata et al. 2015), textual key-
words (Lei Ba et al. 2015; Cappallo, Mensink, and Snoek
2016). Recently, large-scale pre-trained VLMs have been in-
troduced to alleviate these assumptions (Jia et al. 2021; Rad-
ford et al. 2021; Zhang et al. 2023a). Furthermore, Open-
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Figure 1: (a) Performance comparison between CLIP w/ an
ideal vocabulary (Green) and w/ a large vocabulary of 20K
categories (Pink). (b) Distribution plot of text-to-text aver-
age 3-Nearest Neighbors cosine similarity of each text em-
bedding for three types of vocabulary: with ImageNet-100,

ImageNet-1K, and 20K category names.

Vocabulary Learning (OVL) (Wu et al. 2023; Zhou et al.
2023; Zhou, Loy, and Dai 2022; Karazija et al. 2023) aims to
train the models with some annotated data, i.e., base classes,
or large-scale image-text pairs, and to test them on target
novel classes (Xu et al. 2023; Shin, Albanie, and Xie 2023).
Our RZSC setting differs from conventional ZSC and OVL
in not requiring any labeled training data, and not assuming
an ideal vocabulary with a ground-truth target label set or
one with few open words (Wu et al. 2023; Xu et al. 2023;
Karazija et al. 2023).

Zero-Shot Transfer/Unsupervised Fine-tuning of
VLMs. Both Zero-Shot Transfer (ZST) and Unsuper-
vised Fine-tuning (UF) assume no annotations of target
datasets, which are essentially visual concept discovery
problems (Vaze et al. 2022; Wen, Zhao, and Qi 2023; Zhang
et al. 2023b) with vocabulary prior. ZST (Radford et al.
2021; Ren et al. 2022) directly uses the pre-trained VLMs
for zero-shot prediction without fine-tuning. UF further
transductively adapts pre-trained models with task-specific
training, e.g., with self-training or prompt tuning (Li,
Savarese, and Hoi 2022; Kahana, Cohen, and Hoshen 2022;
Shin, Albanie, and Xie 2023). However, both ZST&UF
assume known ground-truth target label sets or distribu-
tion (Kahana, Cohen, and Hoshen 2022; Li, Savarese, and
Hoi 2022). In this paper, we aim to alleviate the reliance
on these assumptions and propose a new setting, RZSC.
Besides, an extended ZST work, SCD (Han et al. 2023),
iteratively refines CLIP zero-shot inference predictions
on a WordNet vocabulary (Miller 1995) with a heuristic
clustering algorithm. However, they have limited adaptabil-
ity (Li, Savarese, and Hoi 2022), a mismatched linguistic
vocabulary still based on the closed-world assumption.

Discussion on Zero-Shot Settings. Here, we summarize
the main differences between our RZSC setting and others in
Table 1. Previous related settings adopt restrictive assump-
tions including an ideal vocabulary, the target label distribu-
tion, and labeled base classes. By contrast, our RZSC aims to
learn to categorize an unlabeled dataset with a huge vocabu-
lary based on a large visual taxonomy with over 20K classes.
An expanded vocabulary presents significant challenges for
RZSC problem, as evidenced by the consistent and substan-
tial CLIP performance drop (Fig. 1a) on all datasets when
the vocabulary scales up. The primary challenge arises from
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Figure 2: Illustration of our Self Structural Semantic Align-
ment (SA) framework, which fine-tunes pre-trained CLIP
encoder with a teacher-student architecture. The teacher is
updated by the student in an exponentially moving aver-
age manner. The student is guided by on-the-fly one-hot
instance alignment predicted by the teacher, and self-trains
with structural semantic alignment labels derived by our per-
epoch CVPR algorithm on all teacher image embeddings.
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increased confusing open words, complicating fine-grained
category discrimination for pre-trained VLMs. As displayed
in Fig. 1b, the averaged cosine similarity between a query
text embedding and its 3-nearest text neighbors grows with
the vocabulary size.

Methodology
Problem: Realistic Zero-Shot Classification

Existing methods that adapt pre-trained VLMs to unseen
data usually rely on specific knowledge of target datasets,
such as prior distributions or an ideal vocabulary. These con-
ditions are often challenging to fulfill in real-world environ-
ments. In this paper, we explore a more practical task, Real-
istic Zero-Shot Classification, abbreviated as RZSC.

RZSC is formally defined as follows: Consider an unla-
beled dataset D, = {(x;, %)}, C X x Y with N im-
ages, where ) is the underlying category set, and a pre-
trained VLM such as CLIP, equipped with image and text
encoders f; and fr, respectively. Then, we assume no in-
formation of ) and instead with a comprehensive vocabu-
lary that contains more than 20,000 distinct category names,
ie., |Y| < |W|. We build our vocabulary from all visual
categories from ImageNetlK (Deng et al. 2009) and Ima-
geNet21K (Ridnik et al. 2021) datasets since they are anno-
tated with expert taxonomic knowledge (Miller 1995) and
encompasses most commonly-seen visual categories in the
real world (Sariyildiz et al. 2021). The goal of the RZSC
task is to adapt the pre-trained VLM, i.e., f7, fr to predict
the correct category of an unseen dataset:

ey

where z; = f7(x;) denotes the image embedding while text
embedding h; = fr(w;) are obtained with a text prompt,
e.g., “a photo of a {category}”, and the category name w;.
Here, we denote - as cosine similarity.

j; = arg max z; - h;
y’L gijW ! 7

Overview: Self Structural Semantic Alignment

RZSC presents a more formidable challenge than previous
tasks, primarily owing to the absence of label information
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and an increased vocabulary size. As illustrated in part (a)
of Fig. 1, the performance of CLIP declines sharply as the
vocabulary size increases. This decline can be attributed to
the inclusion of confusing open words as hard negative sam-
ples, which introduces noise to pre-trained CLIP, hindering
its ability to accurately identify image-category alignments.

We are motivated to propose our Self Structural Seman-
tic Alignment (S*A) framework, which discovers the struc-
tural semantics through iterative self-alignment between vi-
sual images and textual vocabulary. As shown in Fig. 2, our
S3A incorporates a Cluster-Vote-Prompt-Realign (CVPR)
algorithm to derive structural semantics as alignment labels,
and both models and pseudo alignments are iteratively re-
fined during self-training. Our CVPR algorithm and S3A
self-training procedure can achieve a synergistic effect: as
training progresses in adapting representations, the teacher
model can provide increasingly reliable pseudo alignments
in subsequent iterations. Concurrently, the CVPR algorithm
contributes structural semantics as a refined supervisory sig-
nal for subsequent self-training. We elaborate on all compo-
nents in the sections that follow.

Cluster-Vote-Prompt-Realign (CVPR)

Our Cluster-Vote-Prompt-Realign algorithm lies at the heart
of the S3A framework, representing an innovative approach
to uncovering structural semantics in data. As illustrated in
Fig. 3, our CVPR algorithm consists of four key stages, each
contributing to the alignment and identification of struc-
tural relationships between visual images and textual vocab-
ulary, including discovering semantic clusters, voting cat-
egory names on large vocabulary, prompting LLM to dis-
criminate the nuanced candidates, and refine the cluster-
vocabulary alignment. Each step is explained in detail in the
subsequent paragraphs. Below we delineate these stages and
their functions within the algorithm.

Clustering. Based on existing evidence (Radford et al.
2021) and our observation, the pre-trained CLIP excels at
grouping instances with the same or similar semantic labels
in the image embedding space. We thus produce the pseudo
supervision by semantic clustering and aligning the clusters
with vocabulary. Specifically, given image embeddings z; in
D, we apply KMeans (Arthur and Vassilvitskii 2007) to
obtain the K clusters, I' = {Fk}le, where I'}, denotes the
k-th set of image embeddings.

Voting. Given the semantic cluster results I', we com-
pute a vocabulary voting distribution matrix M € RE*IWI,
where M;, ; represents the normalized frequency of the pro-
totype of category w; being the nearest neighbor to all in-
stances in the k-th cluster. Specifically, it is computed as

1
My, = ——— I(w; = argmaxz-h 2)
k,j K|Fk|z;k ( J g P )

where I is an indicator function, and |T'x| denotes the size
of the k-th cluster. M is cluster-wise and vocabulary-wise
normalized, with ||M]|; = 1. Rather than naively assigning
each cluster to the argmax prototype in the vocabulary, we
keep the top-m frequent words for each cluster as potential
candidates which are treated equally. For each row M =

(Mk])‘;/:vl‘, we set all entries but the highest m ones as 0.
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Figure 3: An illustrative toy example for our CVPR algorithm, comprising four steps: (1) We cluster all image embeddings.
(2) We conduct 1-nearest neighbor voting on all text prototypes of the large vocabulary for each cluster. Since the results of
the naive assignment in this step are susceptible to the noise of text embeddings, we generate cluster-wise candidate categories
instead. (3) We augment CLIP text prompts with visual discriminative descriptions from the large language model to discern
nuanced candidates. (4) With augmented prompts, the cluster-vocabulary alignment is calibrated and refined.

Nonetheless, the initial clustering and voting may intro-
duce noise, leading to low-quality pseudo-labels. To mit-
igate this issue, we iteratively refine the previous clusters
based on the current voting outcomes. In particular, we uti-
lize the Hungarian matching (Kuhn 1955) for textual embed-
dings and clusters to align each cluster with a single proto-
type. Subsequently, we reassign the image embeddings, us-
ing these prototypes as the updated cluster centers (Han et al.
2023). We iterate this process three times.

Prompting. Through our empirical studies, we observed
that CLIP representation struggles to differentiate nuanced
candidates effectively. This observation spurred our efforts
to refine the embeddings of textual candidates. We spec-
ulate that the challenge in distinguishing fine-grained op-
tions arises from the presence of noisy or ambiguous image-
caption alignments during CLIP pre-training.

To address this challenge, our approach is to enhance the
conventional CLIP prompts by accentuating the subtle se-
mantic differences. We achieve this by integrating auxiliary
textual knowledge drawn from LLMs, which are effective in
knowledge retrieval (Dale 2021; Yang et al. 2021). Specifi-
cally, we feed m candidate category words of the k-th cluster
into a single LLM prompt template, each accompanied by
their specific definition. Then, we add an instruction to the
prompt to extract nuanced visual attributes of each category
from the LLM. Our prompt template is structured as:

Prompt: Given visual concepts: [CLS-1]: [DEF-1], ...,

[CLS-m]: [DEF-m].

Instruction: To discriminate these visual concepts in a

photo. Please list all possible visual descriptive phrases

for each visual concept.

In this template, [CLS] represents the category name,
and [DEF] stands for its definition from WordNet (Miller
1995). The LLM then generates a list of distinctive at-
tributes for each category, such as ‘red-and-black tail’. To
avoid linguistic ambiguity arising from the polysemy phe-
nomenon, we utilize all possible synset-definition pairs in
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WordNet (Miller 1995) for a single category as the input vi-
sual concepts for the LLM prompt. Finally, each (category,
attribute) pair is filled into a CLIP prompt for augmentation,
e.g., “A photo of a {category} with {attribute}.”. An ensem-
ble of augmented text embeddings for each category name
is constituted.

Re-alignment. During the re-alignment phase, our goal is
to enhance the structural semantic alignments in Eq. 2. The
refined re-alignment matrix, M e REXIWI s derived by
casting votes on all augmented text embeddmgs generated in
the previous prompting stage. Specifically, the re-alignment
probability between the k-th cluster and word w; is deter-
mined by the frequencies of augmented embeddings of the
word w; in A, being the top-3 nearest neighbors of z € T'y,.
We denote A;, as the set of augmented embeddings of all
candidate category words of I';. It can be formulated as:

D 1

zel

My ; =

3K\I‘k\ (wj € arg toUE)3(z, .Ak)> 3)

where arg extracts the category name linked with the aug-
mented text embedding in Aj. To avoid the imbalance is-
sue raised by varied numbers of augmented embeddings
of different category names, we consider the weight factor
Qyy; = \Alej)l’ which uniformly distributes total mass 1 to

all augmented embeddings of w;. Therefore, each row of M

sums to be 7+, and ||M||; = 1. We again employ the maxi-
mum Hungarian matching (Kuhn 1955) on a bipartite graph
between clusters and category words, with the cost matrix
M. Consequently, the structural alignment is obtained from
the solution, which enforces a one-to-one mapping between
clusters and category names.

Self-training with Semantic Alignment

In this section, we present our S3A self-training framework,
as depicted in Fig. 2. The self-training process leverages
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both instance-wise and structural alignment pseudo labels
which are derived by our CVPR algorithm with an exponen-
tially moving averaged (EMA) teacher model (Grill et al.
2020). Throughout this process, we adapt CLIP image en-
coder to enhance its representation and fix its text encoder.

Structural Semantic Alignment. To incorporate the
structural semantic alignments into online learning, one
challenge needs to be addressed. Obtaining high-quality
structural alignment pseudo-labels requires consistent
model embeddings from the entire dataset, which is com-
putationally costly; while determining the optimal execution
interval of CVPR across datasets is challenging. To mitigate
these issues, we introduce a slowly updated EMA teacher
model. It provides stably refined embeddings and executes
the CVPR algorithm once per epoch to yield stable and re-
liable structural pseudo alignments, which then guides the
self-training of the student model.

We define the structural semantic alignment loss as the
cross-entropy between the predictions of the student model
and the pseudo structural alignments generated by the
teacher model. Formally, this loss for the i-th instance can
be expressed as:

“

In this equation, pr () represents the one-hot pseudo struc-
tural alignment for the i-th instance, which is inferred from
the teacher CVPR results during the last epoch. On the
other hand, ps denotes the softmax prediction of the student
model over the entire vocabulary, computed for the input x;.
As a result, the sharpened pseudo labels can cluster images
with the same semantics as well as align clusters.

Individual Semantic Alignment. In addition to the struc-
tural semantic alignment loss, we also guide our model with
instance-wise pseudo alignments, which are generated on-
the-fly by the EMA teacher model. Without this guidance,
our model would likely converge to suboptimal solutions
rapidly. We formulate the individual semantic alignment loss
for the i-th instance as follows:

Lst'r'(xi) = —f)%(l) log pS(Xi)'

®

In this equation, pr represents the one-hot sharpened
pseudo label produced by the teacher model at each itera-
tion. The symbol 7 denotes a confidence threshold, which
ensures that the loss is computed only for samples for which
the teacher model has a high level of confidence.

To strike a balance between the structural and instance
alignment losses, we introduce a weighted combination of
both. In this way, individual alignment retains original in-
stance alignment information, while structural alignment
groups and aligns similar semantics. Consequently, our to-
tal loss function for the ¢-th instance is formulated as:

L(x;) = Lgtr (%) + vLin(x:). (6)

Here, ~ represents a balancing factor that weights the contri-
bution of the instance alignment loss relative to the structural
alignment loss. This total loss is computed at each iteration,
based on our CVPR algorithm which is executed once per
epoch on the teacher model.

Lin(x;) = =1(Pr(x:) > 7)pr(xi) log ps(x).
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Experiments
Evaluation

Datasets. We evaluate S’A on two generic and five
fine-grained benchmarks, i.e., the generic benchmarks
of sampled ImageNet-100 (IN100) and ImageNet-1K
(IN1K) (Deng et al. 2009), and fine-grained benchmarks of
StanfordDogs-120 (SDogs) (Khosla et al. 2011), Living17-
68 (LV17), Nonliving26-104 (NL26), Entity13-260 (ET13),
and Entity30-240 (ET30) in BREEDS (Santurkar, Tsipras,
and Madry 2020)). Furthermore, we evaluate our S?A on
three benchmarks for the out-of-vocabulary evaluation (con-
taining categories out of our vocabulary), i.e., Oxford-IIIT
Pet (Pet) (Parkhi et al. 2012), CIFAR100 (Krizhevsky, Hin-
ton et al. 2009), and Caltech101(Clatech) (Fei-Fei, Fergus,
and Perona 2004).

Metrics. We adopt the top-1 classification accuracy and
clustering accuracy (following SCD (Han et al. 2023) and
defined below) for the evaluation.

N
1 R
ACCa = 5 > maxI(y; = p(yi:)), (7)
=0

where p is a permutation assignment of cluster indices. y;
and g; are ground-truth predicted categories. Meanwhile,
we adopt Intersection-over-Union (IoU) score as an auxil-
iary metric in ablations to inspect the overlap between our
predictions YVpreq and the ground-truth label set Vg, i.e.,
|yp7‘6‘.d U y_qtl : .
class names cannot be found in the vocabulary. Thus, we

instead apply a soft accuracy score, defined as the simi-
larity between the predicted word (in vocabulary) and the
ground truth label. Inspired by BertScore (Zhang et al.
2019), we adopt a language model, Sentence-Bert (Reimers
and Gurevych 2019), to calculate the similarity.

In the out-of-vocabulary experiments, some

Baselines. RZSC is a new setting in which few baselines
are ready-to-use. Thus, we evaluate the baseline methods
by reproducing them with officially released codes in our
setting. Specifically, we consider CLIP as the naive base-
line, and two state-of-the-art methods in ZST and UF, i.e.,
SCD (Han et al. 2023) and MUST (Li, Savarese, and Hoi
2022). In summary, the following baselines are included for
performance comparisons:

¢ DINO+KMeans (Caron et al. 2021): DINO is an con-
trastive self-supervised learning method. We include it
here for clustering quality comparisons. We only report
its clustering accuracy as it cannot classify.

* CLIP (Radford et al. 2021): a large-scale VLM pre-
trained with massive image-caption pairs conducts zero-
shot prediction given our vocabulary.

* CLIP (Group) (Radford et al. 2021): We sequentially
conduct clustering, voting, and Hungarian matching on
CLIP image embeddings for structural zero-shot transfer,
using S*A vocabulary.

e CLIP (Ideal) (Radford et al. 2021): it denotes zero-shot
transfer with pre-trained CLIP but given an ideal vocab-
ulary, showcasing the upper bound performance of CLIP
representation.
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Methods | SDogs IN100 IN1K LV17 NL26 ET13 ET30 | Avg
CLIP (Ideal) | 57.59/58.07 84.67/84.90 65.38/65.53 75.24/75.53 80.03/80.05 78.43/78.50 77.99/78.03 | 74.19/74.37
DINO+KMeans -/45.99 -/75.16 -/55.27 -/72.52 -/62.81 -/67.37 -/64.69 -/63.40
CLIP 53.43/55.43 29.39/38.54 32.21/39.77 37.31/47.24 33.35/38.96 30.09/40.00 31.23/39.90 | 35.29/42.83
CLIP (Group) | 19.37/55.92 40.62/77.68 26.41/56.92 38.33/68.81 41.09/70.51 32.85/71.08 36.36/70.78 | 33.57/67.38
MUST 57.20/60.61 33.37/52.56 28.97/37.00 31.71/49.35 35.30/48.68 38.46/58.25 33.41/47.08 | 36.92/50.50
SCD 52.63/55.93 48.89/77.39 37.06/57.00 43.33/68.81 52.18/71.84 40.46/71.25 46.29/70.89 | 45.83/67.59
S3A (Our) \ 58.94/62.19 52.08/82.76 42.43/63.15 48.34/75.57 56.20/75.97 45.21/76.92 50.41/76.14 \ 50.51/73.24

Table 2: Transductive evaluation on seven benchmarks. Top-1 classification accuracy scores (left of */*) and clustering accuracy
scores (right of ‘/°) are reported in percentage. We highlight the highest scores except for the upper bound.

ImageNet-100 Living17

#Row | Prompt S.T. Ls¢r Acc  Cluster | Acc  Cluster
1 X X X |[4889 7739 |4333 6881
2 v X X ||51.81 7938 |44.60 68.69
3 X v X | 4623 81.49 |46.28 74.60
4 X vV vV |[4900 8208 | 4655 73.04
s | v vV V5208 8276 |4834 7557

Table 3: Top-1 accuracy and Clustering results for our
method ablations on IN-100 and LV17. We conduct abla-
tions on our discriminative prompt augmentation (Prompt),
self-training stage (S.T.), and structural semantic alignment
loss (Lg¢r).

e MUST (Li, Savarese, and Hoi 2022): it is an unsu-
pervised ZSC method leveraging instance-wise unsuper-
vised self-training jointly with self-supervised masked-
image prediction. We adapt it with our huge vocabulary.

e SCD (Han et al. 2023): it is an unsupervised/semi-
supervised zero-shot transfer method with WordNet vo-
cabulary. Its iterative algorithm aligns each cluster with
one category name. We adapt it with our S*A vocabulary.

Implementation Details. In our method, we fix m =
3 and 0.25 on all datasets. Considering efficiency,
we only compute prompting at the first epoch. We adopt
ViT-B/16 (Dosovitskiy et al. 2020) as our CLIP backbone.
Our data augmentations and optimizer follow MUST (Li,
Savarese, and Hoi 2022). We train on all datasets for up to
30K iterations, with 60 epochs for Pet and 30 epochs for
other datasets. Besides, we linearly warmup the EMA de-
cay parameter to 0.9998 within specified iterations. We set
the initial EMA weight decay of Pet and other datasets as
0.99 and 0.999, respectively. The warmup iterations are 500
for CIFAR, 100 for Pet, and 2000 for other datasets. The
threshold 7 are 0.3 for CIFAR, 0.7 for Pet, and 0.5 for other
datasets. During inference, we adopt the teacher model for
prediction on entire S3A vocabulary. Experiments are con-
ducted on a single A6000 GPU.

Main Results

To validate the effectiveness of our proposed method, S3A,
we conducted an extensive evaluation under RZSC setting.
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We compared our S?A with various baselines on both fine-
grained and generic datasets. The results are in Table 2.
Our method, S3A, consistently achieves SOTA results,
outperforming CLIP by a substantial margin, i.e., +15% in
top-1 accuracy. Furthermore, S’A notably excels over our
adapted SOTA baselines, with nearly +5% top-1 accuracy
and +6% clustering accuracy. Generally, we can observe
that more classes introduce challenges, and fine-grainedness
decreases clustering quality but improves alignment accu-
racy, e.g., IN100, NL26. Besides, CLIP (Group) encounters
alignment issues though with quality clustering, as seen on
INIK and SDogs. We argue that our S*A can dynamically
calibrate noisy clustering during self-training. Note that the
existing UF SOTA, MUST, sometimes degenerates its initial
representation when on S3Avocabulary. This underlines the
significance of structural alignment learning for RZSC.

Ablations and Analysis

Method Ablations. To validate the contribution of S3A
components, we conduct method ablations on one generic
and fine-grained dataset, i.e., IN100 and LV17. We present
the results in Table 3. The last row represents our full
method. When we only keep the initial iterative clustering
in our CVPR (the 1! row), our method is equivalent to
SCD (Han et al. 2023). The 2"¢ row denotes our CVPR
without all self-training-related components; while, the 3rd
row conducts self-training only with instance-wise seman-
tic alignment. The 4" row indicates our S?Awithout LLM
knowledge guidance. Based on the results, we can conclude
that: (1) From Row 4&S5, although the clustering quality
remains comparable without our discriminative prompt aug-
mentation, the semantic alignment degrades, as witnessed
by the drop in top-1 accuracy. (2) From Row 1&2&3, self-
training with structural alignment dominates the contribu-
tion in representation adaptation, witnessed by the cluster
performance boosts. (3) From Row 3&4, we observe that
the structural alignment w/o prompt augmentation yields
great improvements on generic datasets, while its effect is
less pronounced on fine-grained datasets due to the lack of
language signals to discriminate among similar visual cate-
gories. All components contribute to the performance.
Performance on Estimated K. In Table 4, we present
performance with estimated K instead of the ground-truth in
Table 2. We implement an iterative estimation approach with
three passes: first, we scan the range [LB, UB], then [LB,



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Methods | LV17 (73) NL26 (101) ET13 (252) ET30 (206) #Row | Methods | INIK ETI3 ET30
DINO+KMeans| -/72.68  -/62.93 /6741  -/63.22 | |CLIP (Ideal) | 65.38/96.58 78.43/99.61 77.99/99.58
CLIP 37.31/47.24 33.35/38.96 30.09/40.00 31.23/39.90
MUST 31.71/49.35 35.30/48.68 38.46/58.25 33.41/47.08 2 |CLIP 32.21/96.49 30.09/97.31 31.23/95.83
SCD 40.70/69.17 52.63/70.21 40.12/71.37 45.03/69.14 3 |SCD 37.06/35.09 40.46/32.31 46.29/39.94
: SO69.17 526577021 9. 127157 2595769 4 |CHILS* 36.23/34.46 41.13/33.33 46.09/39.94
S3A (Est-K)  |49.83/76.23 57.10/75.66 45.54/77.23 47.86/72.75 5 [Our (WordNel) | 18.69/18.42 21.82/16.85 20.38/15.94
S2A (GT-K) 48.34/75.57 56.20/75.97 45.21/76.92 50.41/76.14 6 | Our (Single) 37:40/35:74 41:13/33:00 47:09/40:76
7 | Our (ChatGPT) | 37.69/36.11 42.65/36.84 47.43/41.18
Table 4: Transductive evaluation on four fine-grained bench- 8 |Our (GPT-4) |37.95/36.48 44.98/37.56 48.37/42.01

marks with estimated cluster numbers (Acc/Cluster). The es-
timated number is behind the dataset title.

Methods | Caltech (0.34) CIFAR100 (0.12)  Pet (0.62)
CLIP (Ideal) | 91.25/90.96 81.54/81.12  90.87/92.39
CLIP 50.59/49.66 41.62/41.65  55.60/57.96
MUST 51.20/50.80 42.93/42.96  58.32/55.83
SCD 54.08/54.46 42.62/41.64  58.57/57.58
S°A (Our) | 55.29/55.55 46.10/46.40  59.00/60.57

Table 5: Tranductive and inductive evaluation on out-of-
vocabulary benchmarks (Train/Test Acc). The OOV ra-
tios for each dataset are provided alongside their respec-
tive names. Performance is reported by cosine similarity of
generic pre-trained Sentence-BERT, upscaled x100.

S1], and finally [S, %], each time applying elbow algo-
rithm optimized with Silhouette score (Rousseeuw 1987).
Here, S; and S, denote the solution of the first and second
pass. We consistently set LBy = 50 and UBy = 2000 for all
datasets. Consequently, we obtain minor (+1.0, +1.2, —0.9)
train/cluster/test accuracy differences when K is overesti-
mated by 30% w.r.t. the performance with ground-truth K
on NL26, which exhibits robustness.

On Out-Of-Vocabulary (OOV) Scenarios. Consider-
ing the scenarios in which target datasets have cate-
gory names out of our S?A vocabulary, we further con-
duct an out-of-vocabulary evaluation on three benchmarks,
i.e., Caltechl101 (Fei-Fei, Fergus, and Perona 2004), CI-
FAR100 (Krizhevsky, Hinton et al. 2009), and Oxford-IIIT
Pet (Parkhi et al. 2012). The out-of-vocabulary ratios of
datasets and results are presented in Table 5. We can con-
clude that S®A still achieves SOTA performance in this chal-
lenging setup on both inductive and transductive evaluation.

On Effectiveness of S°A Prompt Augmentation. In
this ablation experiment, we analyze the effect of the pro-
posed LLM-guided discriminative prompt augmentation in
our CVPR algorithm. We compare with four augmentation
setups in Table 6: (1) using WordNet definition for aug-
mentation (5*" row); (2) reduce prompt semantic discrimi-
nativeness by requesting visual attributes for only a single
category name in each LLM prompt (6" row); (3) our
prompt augmentation guided by ChatGPT (7" row); (4)
our prompt augmentation guided by GPT-4. Besides, we also
compare with a recent SOTA, CHILS (Novack et al. 2023),
in prompt augmentation for zero-shot prediction. We use
their prompt to generate ten subcategories for each class. We
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Table 6: Ablations on prompt augmentation techniques (Ac-
c/IoU). Performance is reported by cosine similarity of
generic pre-trained Sentence-BERT, upscaled x100.

0538 SCD 0506 Our
0.384
0.334
0.079 0.07
miniature standard miniature tibetan miniature standard tibetan

schnauzer Schnauzerschnauzer terrier schnauzerschnauzer terrier

SCD Our
0.362

0.685 0.61

0.281
0.034 0.028

gondolier gondola sampan gondola gondolier sampan

gondola

Figure 4: Qualitative results in IN100 without finetuning
(SCD (Han et al. 2023) and our CVPR).

can draw the following conclusions: (1) Semantic distinc-
tiveness in prompts aids fine-grained differentiation; (2)
Incorporating WordNet linguistic knowledge hinders se-
mantic discriminativeness; (3) Our approach outperforms
CHILS, thus is more tailored to RZSC tasks; (4) CLIP fo-
cuses on instance alignment and leads to low ACC but high
IoU; (5) Our method benefits from advanced LLMs.

Qualitative Examples. We present qualitative examples
from IN100 in Fig. 4, which demonstrate that our CVPR
algorithm can effectively correct category misrecognitions
and precisely focus on salient objects.

Conclusion

In this work, we address the challenging task of Realistic
Zero-Shot Classification, without assuming partial source
supervision or ideal vocabularies. We propose a Self Struc-
tural Semantic Alignment (S3A) framework, anchored by
an innovative Cluster-Vote-Prompt-Realign (CVPR) algo-
rithm for structural semantic relationship mining and a self-
training process for iterative semantic alignment. Our exper-
iments demonstrate the effectiveness of S3A, consistently
achieving significant accuracy improvements over baseline
methods on all generic and fine-grained benchmarks, with
unknown class numbers, and in out-of-vocabulary scenarios.
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