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Abstract

Cross-view geo-localization holds significant potential for
various applications, but drastic differences in viewpoints
and visual appearances between cross-view images make this
task extremely challenging. Recent works have made notable
progress in cross-view geo-localization. However, existing
methods either ignore the correspondence between geometric
spatial layout in cross-view images or require high costs or
strict constraints to achieve such alignment. In response to
these challenges, we propose a Feature Recombination Mod-
ule (FRM) that explicitly establishes the geometric spatial lay-
out correspondences between two views. Unlike existing meth-
ods, FRM aligns geometric spatial layout by directly recombin-
ing features, avoiding image preprocessing, and introducing
no additional computational and parameter costs. This effec-
tively reduces ambiguities caused by geometric misalignments
between ground-level and aerial-level images. Furthermore, it
is not sensitive to frameworks and applies to both CNN-based
and Transformer-based architectures. Additionally, as part of
the training procedure, we also introduce a novel weighted
(B+1)-tuple loss (WBL) as optimization objective. Compared
to the widely used weighted soft margin ranking loss, this inno-
vative loss enhances convergence speed and final performance.
Based on the two core components (FRM and WBL), we de-
velop an end-to-end network architecture (FRGeo) to address
these limitations from a different perspective. Extensive ex-
periments show that our proposed FRGeo not only achieves
state-of-the-art performance on cross-view geo-localization
benchmarks, including CVUSA, CVACT, and VIGOR, but
also is significantly superior or competitive in terms of com-
putational complexity and trainable parameters. Our project
homepage is at https://zqwlearning.github.io/FRGeo.

Introduction

The goal of cross-view geo-localization is to determine the
geographical location of a ground image (known as a query
image) from geo-tagged aerial images (known as reference
images) without relying on GPS or other positioning devices.
Existing methods to cross-view geo-localization commonly
frame the problem as a retrieval task. In practical deployment,
the task involves retrieving the reference image that is most
similar to the query image and utilizing its location label
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Figure 1: Performance comparison on CVUSA R@1. Bubble
size indicates the number of trainable parameters. Ours
indicates the integration of FRM and WBL into the TransGeo
1-stage, which is a pure Transformer-based method. Ours
(FRGeo) achieves the highest R@1 while enjoying signifi-
cantly less number of trainable parameters and GFLOPs.

as predictive result. This task offers an alternative means
for geo-localization in real scenarios, particularly crucial in
environments where GPS signals are obstructed or perturbed
by noise. The potential applications of this task are extensive,
encompassing areas such as autonomous driving (Héne et al.
2017; Kim and Walter 2017), robotic navigation (McManus
et al. 2014), and 3D reconstruction (Middelberg et al. 2014).

Despite the enticing potential for application, the task
of cross-view matching presents substantial challenges due
to the dramatic changes in viewpoints and visual appear-
ances between ground and aerial images. Consequently, it
is paramount to understand and correspond both image con-
tent (appearances and semantics) and geometric spatial layout
across views. Considering that the correspondence of geo-
metric spatial layout can be implicitly modeled by models
autonomously or guided by external priors, existing meth-
ods (Shi et al. 2019, 2020) for aligning the geometric spa-
tial layout between different views achieve alignment by
warping aerial images to match ground images. This help
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Figure 2: Geometric spatial layout correspondence between
two views. The context information contained in the same
indexed regions is closely related. For example, a building in
region @ of the ground image is also located in region ® of
the aerial view (the red boxes indicate the building).

reduce ambiguities caused by geometric misalignments be-
tween cross-view images. However, such a method results
in obvious distortions in appearance, introduces additional
image preprocessing steps, and requires assumptions of spa-
tial alignment to the center and orientation. Other endeavors
(Liu and Li 2019) improve performance by introducing ori-
entation information for each pixel through the addition of
orientation maps, yet this also introduces strict constraints
and augmented computational costs. While these methods
hold considerable promise, they either entail intricate designs,
incurring substantial preprocessing time and computational
costs, or entail strict dataset requirements. The presence of
the aforementioned issues limits the applicability of these
methods, prompting us to seek a low-cost method to mini-
mize cross-view image misalignment, accomplish alignment
of geometric spatial layout, and relax strict dataset require-
ments, thereby enabling wider applications.

Contrary to traditional strategies, our method is centered
around establishing a clear geometric spatial layout corre-
spondence between two views at the region level, which de-
rives discriminative matching cues from these approximately
aligned regions. Specifically, we observe that both ground
and aerial images cover the same field of view (FoV, observed
visible region) range, and they can be naturally divided into
4 regions according to North (0°), East (90°), South (£180°)
and West (—90°). We use 4 indexes @, @, @, and @ to repre-
sent these regions, as shown in Figure 2. Since the regions
with the same index are different representations of the same
FoV under different views, the context information they con-
tain are closely related. Inspired by the above observation, we
propose the Feature Recombination Module (FRM). FRM
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uses the division in Figure 2 to divide the feature maps into
different regions and performs spatial average pooling within
each region, then recombines to obtain final representations.

Significantly, unlike polar transform or the addition of
orientation maps to the network, our method does not need
to strictly align the geometric spatial layout between two
views at the pixel level. Instead, we adopt a simpler and
more flexible alignment method to approximately align at
the region level, which has no additional transformations
or precise alignment, and is therefore more realistic, more
tractable and more widely applicable (even to datasets with
non-central alignment, e.g., VIGOR). In addition, our method
operates directly on feature maps, thereby avoiding any ap-
pearance distortion and image preprocessing. Remarkably, it
introduces no additional computational or parameter costs,
and thanks to its simple design, FRM can be plugged into
any CNN or Transformer (Vaswani et al. 2017) architecture.

We also delve into the loss, which is one of the crucial
part of the cross-view geo-localization task. Previous works
have widely used weighted soft margin ranking loss (Hu et al.
2018), which has the limitation of considering only one neg-
ative sample during the construction of a triplet while not
interacting with the other negative samples in each update.
To address this issue, we propose a novel weighted (B + 1)-
tuple loss (WBL) as our optimization objective that allows
joint comparison multiple negative samples and introduces a
weighted coefficient a. This proposed loss enhances conver-
gence speed and final performance. Extensive experiments
demonstrate that our method (named FRGeo with FRM and
WBL as key components) not only achieves state-of-the-
art performance but also exhibits significant advantages or
competitiveness in terms of computational complexity and
trainable parameters, as illustrated in Figure 1.

Our main contributions can be summarized as follows:

* We propose a novel Feature Recombination Module
(FRM), which explicitly establishes the correspondence of
geometric spatial layouts between two views at the region
level, to reduce ambiguities caused by geometric misalign-
ments. It has the advantages of no image preprocessing,
being lightweight, and plug-and-play.

* We design a weighted (B + 1)-tuple loss (WBL) as part
of the training procedure, enabling simultaneously push-
ing away of multiple negative samples, which effectively
speeds convergence and improves performance compared
to traditional weighted soft margin ranking loss.

* The Feature Recombination Geo-localization network
(FRGeo) outperforms previously developed deep net-
works for the cross-view geo-localization task on CVUSA,
CVACT, and VIGOR datasets. Furthermore, FRGeo ex-
hibits a noteworthy advantage or competitiveness in terms
of computational complexity and trainable parameters.

Related Work

We roughly categorize existing cross-view geo-localization
methods into feature-based and geometry-based methods.
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Feature-based Methods

Feature-based methods focus on learning discriminative im-
age representations to differentiate similar images. Work-
man, Souvenir, and Jacobs (2015) first introduce CNNs to
cross-view matching, drawing inspiration from the success
of CNNs in the computer vision (Krizhevsky, Sutskever,
and Hinton 2012). Subsequently, Hu et al. (2018) integrate
the NetVlad (Arandjelovic et al. 2016) with a dual-branch
VGG (Simonyan and Zisserman 2015) backbone network
to obtain viewpoint-invariant representations. They also pro-
pose a weighted soft margin ranking loss to expedite network
training, an optimization objective that has found widespread
application in subsequent research. Despite promising, most
of the above feature-based methods rely on models implicitly
modeling spatial information and rarely pay enough atten-
tion to the importance of explicitly aligning geometric spatial
layouts. In this study, we explicitly establish the geometric
spatial layout correspondence between views via a Feature
Recombination Module, to reduce ambiguities caused by
geometric misalignments.

Geometry-based Methods

Geometry-based methods aim to reduce ambiguities caused
by geometric misalignments between ground and aerial im-
ages. Liu and Li (2019) introduce orientation maps to inject
the orientation information of each pixel into the network.
Shi et al. (2019) uses polar transform to warp aerial images,
aligning the geometric spatial layout of ground-aerial image
pairs. Subsequently, the same authors introduced DSM (Shi
et al. 2020) using a sliding window for geo-localization of
limited field of view ground images. CDE (Toker et al. 2021)
combines GAN (Goodfellow et al. 2014) and SAFA (Shi
et al. 2019) for geo-localization and ground image synthe-
sis. GeoDTR (Zhang et al. 2023) extracts geometric layout
descriptors from raw features, also proposing layout sim-
ulation and semantic data augmentations. While the above
methods have improved performance, many still rely on polar
transform for fine-grained geometric spatial layout alignment,
leading to appearance distortions and additional preprocess-
ing. Moreover, these methods exhibit strict dataset require-
ments, rendering them unsuitable for non-centrally aligned
datasets, e.g., VIGOR (Zhu, Yang, and Chen 2021b). Our
method, however, aligns at the more macro level, avoiding
pixel-level micro geometry alignment. Consequently, it does
not demand data to possess strict center alignment properties,
accommodating non-centrally aligned datasets, e.g., VIGOR.
Remarkably, benefitted from the model design, our method
does not rely on polar transform while introducing no addi-
tional computational or parameter costs.

Recent researches, several methods employing the Trans-
former as backbone have emerged. L2LTR (Yang, Lu, and
Zhu 2021) explores a hybrid ViT-based model, whereas
TransGeo (Zhu, Shah, and Chen 2022) introduces a pure
Transformer-based model. These methods exclusively rely on
the Transformer to implicitly model spatial information. Nev-
ertheless, our method explicitly aligns the geometric spatial
layout across different views, thereby reducing ambiguities
caused by geometry misalignments and leading to enhanced
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performance. Furthermore, in comparison to L2LTR, FRGeo
exhibits conspicuous advantages in terms of computational
complexity and trainable parameters, all without necessitat-
ing the 2-stage training paradigm proposed by TransGeo.

Methodology

Problem Formulation

A set of ground-aerial image pairs is denoted as {(I7,1¢)}%,
where the superscripts g and a denote ground and aerial
images, respectively; /N denotes the number of pairs. Each
ground-aerial image pair corresponds to distinct geo-location,
where the geo-tags is unknown for ground images {I7}V
and known for aerial images {I¢}"V. In cross-view geo-
localization task, given a query ground image I with index
4, q € {1,2,..., N}, the objective is to retrieve the optimal
matching reference aerial image I¢,r € {1,2,...,N}, to
determine the specific geo-location of IJ.

For a given set {(I7,1¢)}¥, we infer the corresponding
image representations as {(f?, £2)}"V. These representations
are expected to possess the following properties: the distance
between matched image pairs is smaller than the distance
between unmatched image pairs, expressed as d(f7, f) <
{d(£g,£)|Vi € {1,..,N},i # q}, d(-,-) denotes the L
distance. Consequently, the cross-view geo-localization task
can be made explicit as:

r = argmin d(f,f)
ie{1,...N}

ey

If the retrieval is correct, r equals q. For the sake of nota-
tion simplicity, we will omit the subscript ¢ in the subsequent
sections, except when discussing the loss function.

FRGeo Model

Model Overview. The propose model (FRGeo) introduces
a Siamese neural network composed of two branches: the
ground and aerial view branches, as depicted in Figure 3 (a).
For a given ground-aerial image pair (19, 1%), a preliminary
stage involves the extraction of raw features utilizing either
CNN-based or Transformer-based backbone. This extraction
obtains F9 € RH XWIxC gpnd Fo ¢ REXW*XC \here
HI, W9, H* and W correspond to the height and width of
raw features from the ground and aerial images, and C' de-
notes channel of raw features. Subsequently, the raw features
FY and F* undergo processing through the Feature Recom-
bination Module (FRM) to obtain the final image feature
representations, f9 € R*C and f¢ € R The optimization
of model parameters is achieved by employing our proposed
weighted (B + 1)-tuple loss (WBL). In the following, we will
describe the core components of FRGeo in detail.

Feature Recombination Module. The FRM utilizes raw
features F'9 and F'* extracted by the backbone as its inputs,
obtaining the final image feature representations f9 and f*
as outputs. On the spatial dimension, the raw feature of
each view is divided into 4 regions according to the divi-
sion method shown in Figure 2, as shown in Figure 3 (b).
Considering Fd\, F{yx, F and Fg denote @, @, @, and
@ regions of the ground raw feature F9; F&yy, Fyn, Fig
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(a) Overview of FRGeo

(b) Feature Recombination Module (FRM)

(c) Weighted (B+1)-tuple Loss (WBL)
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Figure 3: (a) Overview of our proposed FRGeo model. (b) Illustration of the proposed Feature Recombination Module (FRM).
(c) Illustration of the proposed Weighted (B + 1)-tuple Loss (WBL).

and Fg¢ denote @, @, @, and @ regions of the aerial raw
feature F®, respectively. Their formal representations:

FgW :Fg(:,O : Wg/47:) (2)

Fo = FI(,W9/4: W9/2,7) )
Flp = F/(,W?/2: 3W7/4,2) @
i = F9(:, 309 /4 W9,2) %)
Gw = FO(H /2 H, 0:W2/2,5) ()
Fo =F(0: H/2,0: W2, 7
Fip =F"(0: H*/2,W*/2: W :) ®)
b = FO(H"/2: H W /2: W*,:) ©)

where / denotes integer division. The final image feature
representations f9 and f¢ are calculated by:

7 = Cat(Pavg (Fyy ), Pavg (Fyyn)s Pave (FRi), Pavg(F%s()])O)
£ = Cat(Pavg(Fsw), Pavg(Fwn), Pavg(FXg), Pavg(Fis))
Y
where Cat(-,-) denotes the concatenation, and FPp,4(-)
notes spatial average pooling.

Optimization Objective. In previous works (Hu et al.
2018; Shi et al. 2019; Yang, Lu, and Zhu 2021; Zhu, Shah,
and Chen 2022), the most widely employed loss is weighted
soft margin ranking loss (Hu et al. 2018), which is computed
by constructing triplets within each mini-batch. The problem
lies in the fact that this loss uses only one negative sample in
each update, consequently limiting the effective utilization of
information from other negative samples. It ends up with slow
convergence and suboptimal performance. Drawing inspira-
tion from the work by Sohn (2016), we propose the weighted
(B + 1)-tuple loss (WBL). WBL employs the construction
of (B + 1)-tuple thus pushing away the distance between the
anchor sample and all other B — 1 negative samples within
mini-batch during each update, as depicted in Figure 3 (c).
The formulation of WBL is provided below.

For a set of mini-batch samples {(I¢,1¢)}Z, correspond-
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ing to this are collections of image feature representations
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{(£f7,£2)}5, where B denotes the number of pairs in the
mini-batch. When fig is chosen as the anchor sample, the
corresponding positive sample is denoted as f{*, while the
set of negative samples is denoted as {f]@}f ;- Within each
mini-batch, it is feasible to construct 2B (B + 1)-tuples. To
improve the convergence rate, we introduce a weighted coeffi-
cient v to (d(f7, £1") — d(£7, 1)) . resulting in WBL, which
serves as our optimization objective:

Lwpr (£, £ {£175,,) =

f9 fo

B
log | 1+ Z exp[a(d( S &
j=1,j#i
where d(-, -) denotes the L, distance. Loss in a mini-batch
can be calculated by the following equation:

) —d(f],£))] | (12)

B
L{(E7,£)15) = % Z ZEWBL(ff7 f7, {f}c%}f#) 13)

ceC i=1
where C denotes the set of superscripts on the view {g, a}.

Experiment
Datasets and Experimental Settings

Datasets. We evaluate our method on three public cross-
view geo-localization datasets: CVUSA (Zhai et al. 2017),
CVACT (Liu and Li 2019) and VIGOR (Zhu, Yang, and
Chen 2021b). CVUSA and CVACT support standard and
fine-grained cross-view geo-localization, both of which are
one-to-one retrievals; VIGOR supports beyond one-to-one
retrieval, i.e., one-to-many retrieval.

* CVUSA contains 35,532 image pairs for training and
8,884 image pairs for testing. This dataset consists of
images mainly collected at suburban areas.

* CVACT provides 35,532 image pairs for training and
8,884 image pairs for validation (CVACT_val). It also
provides 92,802 image pairs to support fine-grained city-
scale geo-localization (CVACT _test). These images cover
the urban area (Canberra) densely.
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* VIGOR comprises 105,214 ground images and 90,618
aerial images, which assuming that the query ground im-
ages can belong to arbitrary locations in the target area
without center-aligned settings. We follow the setting of
VIGOR with both Same-area and Cross-area protocols.

Evaluation Metrics. Following previous works (Hu et al.
2018; Liu and Li 2019; Shi et al. 2019, 2020), we utilize the
R@K,K = {1,5,10,1%} metrics to evaluate our model,
which represents the probability of correct matches among
the top- K retrieved results. Additionally, for VIGOR, we
report the hit rate, which denotes the probability that the
top-1 retrieved reference image covers the query image.

Implementation Details. We employ a ConvNeXt-T (Liu
et al. 2022) as the backbone with off-the-shelf pre-trained
parameters on ImageNet-1K (Deng et al. 2009). « is set 10
in Equation (12). We train the model on a NVIDIA V100
Server with AdamW (Loshchilov and Hutter 2017) optimizer.

Comparison with State-of-the-art Methods

We compare our method with 8 state-of-the-art methods on
the CVUSA and CVACT datasets, including SAFA (Shi
et al. 2019), DSM (Shi et al. 2020), CDE (Toker et al.
2021), L2LTR (Yang, Lu, and Zhu 2021), TransGeo (Zhu,
Shah, and Chen 2022), SEH (Guo et al. 2022), and
GeoDTR (Zhang et al. 2023). On the VIGOR dataset, we
compare our method with 5 state-of-the-art methods, includ-
ing Siamese-VGG (Zhu, Yang, and Chen 2021a), SAFA,
SAFA+Mining (Zhu, Yang, and Chen 2021b), VIGOR (Zhu,
Yang, and Chen 2021b), and TransGeo. In the main paper,
we evaluate the performance of our model for three tasks,
including standard cross-view geo-localization, fine-grained
cross-view geo-localization and beyond one-to-one retrieval.

Standard Cross-view Geo-localization. We first evalu-
ate our model on the standard cross-view geo-localization
task. The results on the CVUSA and CVACT _val datasets
are shown in Table 1 and 2, respectively. The findings lead
to the results that, in comparison to previous works, FR-
Geo achieves state-of-the-art or competitive performance.
Remarkably, even without resorting to polar transform, FR-
Geo outperforms methods employing it. This highlights the
benefit of our method in aligning geometric spatial layouts.
Furthermore, we propose FRM and WBL can be seamlessly
integrated into the TransGeo 1-stage, surpassing the raw
TransGeo on metrics such as R@1, R@5, and R@10, and
obtaining comparable performance in R@1%. This demon-
strates that FRM and WBL are pluggable and not only ap-
plicable to CNN-based models, but also can significantly
improve the performance of Transformer-based models.

Fine-grained Cross-view Geo-localization. In order to
thoroughly evaluate the representational capacity of the
model, we conducte a comprehensive evaluation of our
method in the fine-grained cross-view geo-localization task.
Specifically, we compare FRGeo with state-of-the-art meth-
ods on the challenging large-scale CVACT _test dataset - viz.
10x bigger than CVACT validation set, which is fully GPS-
tagged for accurate localization. The results are shown in Ta-
ble 2. Furthermore, we also report the experimental results

7255

Method R@1 R@5 R@10 R@1%
SAFA 81.15% 94.23% 96.85% 99.49%
SAFA{ 89.84% 96.93% 98.14%  99.64%
DSM7 91.93% 97.50% 98.54% 99.67%
CDEj{ 92.56% 97.55% 98.33% 99.57%
L2LTR 91.99% 97.68% 98.65% 99.75%
L2LTR{ 94.05% 9827% 98.99% 99.67%
TransGeo 94.08% 98.36% 99.04%  99.77%
SEHT 95.11% 98.45% 99.00% 99.78%
GeoDTR  93.76% 98.47% 99.22% 99.85%
GeoDTRY 9543% 98.86% 99.34% 99.86%
Ours® 95.52% 98.66% 99.13%  99.74%
Ours 97.06% 99.25% 99.47% 99.85%

Table 1: Comparisons between FRGeo (Ours) and state-of-
the-art methods on the CVUSA dataset. { indicates applying
polar transform to aerial images. Ours# indicates FRM and
WBL integrating into the TransGeo 1-stage. Best and second
best results shown in bold and underline, respectively.

of integrating FRM and WBL with the TransGeo 1-stage,
arriving at conclusions consistent with the standard cross-
view geo-localization. In comparison with all previous works,
FRGeo achieves state-of-the-art or competitive performances.
The results also demonstrate the superiority of our method.

Beyond One-to-one Retrieval. The beyond one-to-one re-
trieval task is performed on the recently introduced VIGOR.
This dataset assumes that query images can belong to arbi-
trary locations in the target area, thus is not spatially aligned
to the center. Consequently, it is the more complex and real-
istic benchmark. Many existing one-to-one retrieval methods
falter in this context, however, our method remains well per-
forming. In Table 3, our proposed method outperforms the
competing methods by a substantial amount. For both Same-
area and Cross-area evaluation protocols, the R@1 of our
method achieve 71.26% (+9.78%) and 37.54% (+18.55%),
respectively, with relative improvements of 15.91% and
97.68%. The above results demonstrate the powerful learning
ability and widespread applicability of our method, as well as
its robustness to cross-distribution shifts and the advantage
of handling the datasets of spatially unaligned to the center.

Computational Costs

In Figure 1, the proposed method is compared with 5 state-
of-the-art methods in terms of computational complexity and
trainable parameters. It is intuitively clear from the figure
that our method uses the least GFLOPs, which are just less
than one-third of those of SAFA, DSM, L2LTR and GeoDTR.
This observation implies that our method holds the potential
for achieving faster processing speed and higher efficiency in
practical applications. In terms of trainable parameters, our
method is also competitive, especially when compared with
L2LTR. It is important to emphasize that our method not only
achieves the state-of-the-art performance, but also maintains
the least computational complexity and competitive trainable
parameters. These experimental results reflect the powerful
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Method CVACT _val CVACT _test

R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1%

SAFA 78.28% 91.60% 93.79% 98.15% - - - -
SAFAt 81.03% 92.80% 94.84% 98.17% 55.50% 79.94% 85.08% 94.49%
DSM7 82.49% 92.44% 93.99% 97.32% 35.63% 60.07% 69.10% 84.75%
CDEt 83.28% 93.57% 95.42% 98.22% 61.29% 85.13% 89.14% 98.32%
L2LTR 83.14% 93.84% 9551% 98.40% 58.33% 84.23% 88.60% 95.83%
L2LTR{} 84.89% 94.59% 9596% 98.37% 60.72% 85.85% 89.88% 96.12%

TransGeo 84.95% 94.14% 95.78%  98.37% - - - -

SEHT 84.75% 93.97% 95.46% 98.11% - - - -
GeoDTR  8543% 94.81% 96.11% 9826% 62.96% 87.35% 90.70% 98.61%
GeoDTR} 8621% 9544% 96.712% 98.77% 64.52% 88.59% 91.96% 98.74%
Ours® 88.60% 9535% 96.26% 98.13% 69.52% 89.79% 92.36% 98.20%
Ours 90.35% 96.45% 97.25% 98.74% 7215% 91.93% 94.05% 98.66%

Table 2: Comparison between FRGeo (Ours) and state-of-the-art methods on CVACT dataset. Notations are the same as Table 1.

Same-area Cross-area
Method
R@1 R@5 R@10 R@1% Hit R@1 R@5 R@10 R@1% Hit

Siamese-VGG  18.69% 43.64% 5536% 97.55% 2190% 2.77% 8.61% 12.94% 62.64%  3.16%
SAFA 33.93% 58.42% 68.12% 98.24% 36.87% 8.20% 19.59% 26.36% 77.61% 8.85%
SAFA+Mining 38.02% 62.87% 71.12% 97.63% 41.81% 9.23%  21.12% 28.02% 77.84%  9.92%
VIGOR 41.07% 65.81% 74.05% 98.37% 44.71% 11.00% 23.56% 30.76% 80.22% 11.64%
TransGeo 61.48% 87.54% 91.88% 99.56% 73.09% 18.99% 38.24% 4691% 8894% 21.21%
Ours 71.26% 91.38% 94.32% 99.52% 82.41% 37.54% 59.58% 67.34% 94.28% 40.66%

Table 3: Comparison between FRGeo (Ours) and state-of-the-art methods on VIGOR dataset, including Same-area and Cross-
area protocols. Hit means hit rate (Zhu, Yang, and Chen 2021b). Notations are the same as Table 1.

practical value (lighter and more accurate) of our method.

Ablation Study

Effectiveness of Components. To demonstrate the effec-
tiveness of our proposed components (FRM and WBL), we
conducte a series of experiments by sequentially integrat-
ing these components into the Baseline model (i.e., Base-
line, Baseline + FRM, Baseline + WBL, Baseline + FRM
+ WBL). Specifically, the Baseline model adopts a Siamese
architecture with ConvNeXt-T (Liu et al. 2022) serving as
the backbone. To enable a fair comparison, the choice of hy-
perparameters and training strategy for all subsequent models
remain entirely consistent with those of the Baseline. The
results on the CVUSA, CVACT, and VIGOR are shown in Ta-
ble 4. It is evident that upon the introduction of either FRM
or WBL, there is a remarkable improvement in model per-
formance. The optimal performance is achieved when both
components are simultaneously applied, as observed in our
FRGeo. These experimental results successfully validate the
effectiveness of our proposed FRM and WBL.

Additionally, we monitored the evolution of the R@1 met-
ric during the initial 1 to 20 epochs of training on the CVUSA
and CVACT datasets, as depicted in Figure 4 (Left and Mid-
dle). It is apparent that the utilization of FRM and WBL
not only improves performance but also speeds up conver-
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gence. Remarkably, after a mere 10 epochs of training, our
method achieves performance comparable to, if not superior
to, the other state-of-the-art methods that typically require
at least 100 epochs to reach similar results. This excellent
performance is attributed to the rationalization of the geomet-
ric spatial layouts of the FRM explicitly aligned cross-view
images and the effectiveness of the WBL in pushing away
multiple negative samples simultaneously.

Few-shot Training. To further verify the effectiveness of
FRM and WBL, we conduct a series of few-shot training
aimed at training a model capable of generalizing from a
limited set of training samples (He et al. 2020). To sup-
port this task, we randomly select a certain percentage
(100%/80%/60%/40%/20%) of samples from the CVUSA
training set for training, while keeping the test set unchanged.
These training subsets are employed to train the models, and
subsequent testing is performed on the raw test set to ob-
serve the impact of varying training subset sizes on both the
Baseline model and FRGeo, as shown in Figure 4 (Right).
The results consistently demonstrate that the simultaneous
omission of FRM and WBL continues to impair performance,
particularly evident when the training subset size is smaller.
For instance, with only 20% of samples participating in train-
ing, the Baseline drops by as much as 18.84% compared to
the R@1 performance of FRGeo. This shows that the combi-
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Method CVUSA VIGOR Same-area
R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1% Hit
Baseline 94.10% 98.57% 99.22% 99.83% 56.25% 83.98% 88.96% 99.00% 68.93%
Baseline + FRM 96.70% 99.12% 99.39% 99.84% 67.38% 8895% 92.38% 99.37% 77.86%
Baseline + WBL 9527% 99.03% 99.38% 99.82% 66.58% 90.83% 93.99% 99.51% 80.53%
Baseline + FRM + WBL (Ours) 97.06% 99.25% 99.47% 99.85% 71.26% 91.38% 94.32% 99.52% 82.41%
CVACT _val CVACT _test

Baseline 84.77% 95.24% 96.66% 98.77% 59.19% 86.59% 90.74%  98.71% -
Baseline + FRM 88.79% 96.20% 97.02% 98.71% 68.35% 90.34% 93.08%  98.69% -
Baseline + WBL 87.42% 96.06% 97.04% 98.75% 6528% 89.28% 92.49% 98.76 % -
Baseline + FRM + WBL (Ours) 90.35% 96.45% 97.25% 98.74% 7215% 91.93% 94.05% 98.66% -

Table 4: Effectiveness of the proposed components. Sequentially integrate FRM and WBL into the baseline model, and their
performance is reported on the CVUSA, CVACT and VIGOR datasets. Best results shown in bold.

94567 %0 8818 100

90 95
- ~75 -

g7 S g0

- - - 85
®60 ® 60 ®

4 4 € 80
3 G s P
1]

g 45 —— Baseline § ——— Baseline 2 75

(] 30 Baseline + FRM o Baseline + FRM 3 70

Baseline + WBL 30 Baseline + WBL —&— Baseline
1s —— Baseline + FRM + WBL (Ours) —— Baseline + FRM + WBL (Ours) 651 _m Ours 64.17
15
0 5 10 15 20 0 5 10 15 20 0 100%  80%  60%  40%  20%

Epoch

Epoch

Proportion of Training Pairs

Figure 4: Left and Middle: The training curve (R@1) on CVUSA (Left) and CVACT (Middle) datasets. The red dot data indicates
the performance of FRGeo (Ours) at the 10th training epoch. Right: Few-shot training on CVUSA dataset. 100% indicates using

all training samples. Best viewed on screen with zoom-in.

nation of FRM and WBL not only improves performance but
also enhances generalization ability.

Visualization Analysis

Ground

Baseline

Ours

Figure 5: Heatmap visualization of the Baseline and FRGeo
model. Best viewed on screen with zoom-in.

To comprehend what FRGeo has learned, and to compare
the differences in the regions that different models focus
on, we visualize heatmaps. Figure 5 shows the heatmaps of
both the Baseline and FRGeo model. It is discernible that the

Baseline mainly focuses on road information, while FRGeo
pays more attention to some salient buildings in addition to
road information. We argue that these buildings are more dis-
criminative localization cues for cross-view geo-localization
task, since buildings in different ground-aerial images often
have substantial differences in appearance and layout. We
attribute the heightened focus of FRGeo on discriminative
regions (e.g., salient buildings) to the efficacy of the FRM,
which aligns geometric spatial layout alignment cross-view
images, thereby making it easier for the model to learn them.

Conclusion

In this paper, we propose a novel and efficient cross-view
geo-localization method for aligning the geometric spatial
layout between cross-view images by feature recombination,
reducing ambiguities caused by geometry misalignments and
making discriminative localization cues easier to be learned.
Moreover, we introduce the weighted (B + 1)-tuple loss,
and show that it notably accelerates training speed and im-
proves the performance of our method. Extensive experi-
ments demonstrate that our method achieves state-of-the-art
performance on the CVUSA, CVACT, and VIGOR datasets
with significant advantages or competitiveness in terms of
computational complexity and trainable parameters.
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