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Abstract

Class-incremental object detection (CIOD) is a real-world de-
sired capability, requiring an object detector to continuously
adapt to new tasks without forgetting learned ones, with the
main challenge being catastrophic forgetting. Many methods
based on distillation and replay have been proposed to alle-
viate this problem. However, they typically learn on a pure
visual backbone, neglecting the powerful representation ca-
pabilities of textual cues, which to some extent limits their
performance. In this paper, we propose task-aware language-
image representation to mitigate catastrophic forgetting, in-
troducing a new paradigm for language-image-based CIOD.
First of all, we demonstrate the significant advantage of
language-image detectors in mitigating catastrophic forget-
ting. Secondly, we propose a learning task-aware language-
image representation method that overcomes the existing
drawback of directly utilizing the language-image detector
for CIOD. More specifically, we learn the language-image
representation of different tasks through an insulating ap-
proach in the training stage, while using the alignment scores
produced by task-specific language-image representation in
the inference stage. Through our proposed method, language-
image detectors can be more practical for CIOD. We conduct
extensive experiments on COCO 2017 and Pascal VOC 2007
and demonstrate that the proposed method achieves state-of-
the-art results under the various CIOD settings.

Introduction
Object detection has shown remarkable advancements in fa-
cilitating various applications, including traffic monitoring,
robotics (Xu et al. 2022) and autonomous driving (Li et al.
2023a). Most object detection works mainly focus on the
offline training paradigm. However, online training plays a
more important role in real-world applications in dynamic
environments which urgently requires a model to contin-
uously recognize new classes and maintain the ability on
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Figure 1: The performance comparisons (mAP[0.5]) of
language-image and pure visual-based detectors on Pascal
VOC 2007 and COCO 2017 with various incremental pro-
tocols. Here, we take Dyhead (Dai et al. 2021a) as a pure
visual-based detector, and GLIP as a language-image detec-
tor, where GLIP replaces the classifier used in Dyhead with
language-image alignment and others the same as Dyhead.
We can see that the language-image detector (GLIP) brings
clear improvements in most incremental settings. However,
there is still catastrophic forgetting in some challenging set-
tings (e.g., 40+40 on COCO). To further address this issue,
we first learn task-aware language-image representation and
then use a selective inference strategy for CIOD, which out-
performs naive GLIP by a large margin.

learned classes. Therefore, exploiting continual (incremen-
tal) object detection based on online data streaming has be-
come an attractive yet challenging topic and aims to sequen-
tially solve tasks with ideally no performance drop when in-
ferred on the previously seen tasks.

In order to mitigate performance drop on previous classes,
some class-incremental object detection (CIOD) methods ei-
ther use knowledge distillation (Shmelkov, Schmid, and Ala-
hari 2017; Hu et al. 2021; Peng et al. 2021; Feng, Wang,
and Yuan 2022) on image features or replay a small num-
ber of previous exemplars (Shieh et al. 2020; Joseph et al.
2021a,b; Liu et al. 2023b). Commonly, these methods typi-
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cally learn on a pure visual backbone, and their performance
is limited to training data (images and the corresponding an-
notations) to some extent. It’s worth noting that it always
suffers from serious background-foreground conflict, which
means a proposal that belongs to the foreground in previ-
ous tasks is likely to be the background in future tasks in
incremental detection scenarios. Therefore, the catastrophic
forgetting issue will further be exacerbated by adopting pure
visual-based CIOD methods due to background-foreground
conflict.

Recently, language-image models have exhibited impres-
sive results on zero-shot (Radford et al. 2021; Zhou et al.
2022; Zhai et al. 2022) and continual image classification
(Li et al. 2023b). Meanwhile, this cross-modality learning
paradigm has shown strong zero-shot and few-shot transfer-
ability to object detection, such as GLIP (Li et al. 2022),
Grounding Dino (Liu et al. 2023a), and MQ-Det (Xu et al.
2023). Considering catastrophic forgetting issues in CIOD,
we believe that this strong transferability should benefit in-
cremental object detection tasks because of the separability
between visual features and language representation. Here,
we take GLIP as an example and simply extend it to the
CIOD setting. The experimental comparisons of language-
image GLIP and pure visual baseline are shown in Figure 1
on COCO and VOC with different incremental protocols.
We can see that the language-image detector (GLIP) brings
clear improvements (e.g., 32.1% mAP with 10+10 setting
on VOC) compared pure visual method in most incremen-
tal settings. However, there is still catastrophic forgetting in
some challenging settings (e.g., 40+40 on COCO).

The above drawback is mainly attributed to serious
background-foreground conflict due to the instance of dif-
ferent categories contained in an image becoming more dis-
persed across different tasks as the categories increase. More
specifically, the separability between visual features and lan-
guage representation has been insufficient to resolve this se-
rious background-foreground conflict, resulting in poor per-
formance in these challenging settings. Inspired by Der (Dai
et al. 2021a) which uses an independent model to learn vi-
sual representation for each task, we consider that this learn-
ing paradigm can reinforce the separability to better mitigate
catastrophic forgetting, as learning independent representa-
tion will no longer be subject to the background-foreground
conflict dilemma.

To this end, we propose a learning task-aware language-
image representation method that further separates the visual
features and language representation to mitigate catastrophic
forgetting. Specifically, in the training stage, a Task-Aware
Module (TAM) is proposed to account for a part of the non-
overlapping channels of the image feature map and the hid-
den states of text embedding for producing task-aware rep-
resentation in each task. While in the inference stage, for the
alignment scores predicted by language-image alignment,
a Selective Inference Strategy (SIS) is proposed to use the
task-aware portion of the alignment scores to unify a final
clarifying prediction alignment score. Our contributions are
summarized below:
• We are the first to apply the language-image detector to

class-incremental object detection and identify its supe-

riority in mitigating catastrophic forgetting over the pure
visual-based detector.

• We propose a learning task-aware language-image rep-
resentation method, which mitigates the background-
foreground conflict by reinforcing the separability of the
language-image detector.

• The leap in performance compared with all competitors
on various benchmarks demonstrates its efficacy, while
substantial qualitative evidence verifies each of our de-
signs.

Related Work
Incremental Learning
Incremental learning algorithms intend to mitigate catas-
trophic interference while facilitating the transfer of skills
whenever possible and achieve excellent performance in
downstream tasks like classification, detection, etc. To this
end, currently, popular studies can be roughly categorized
as (1) the rehearsal-based approach aims to help the model
not forget the old knowledge when learning a new task by
saving a part of the old samples (Zhao et al. 2021; Petit et al.
2023); (2) the regularization-based method adds a penalty
term to the loss function when learning new tasks so that the
model is optimized to adapt all tasks (Yang et al. 2021; Zhao
et al. 2023; Tian et al. 2023); (3) the method based on param-
eter isolation (Yan, Xie, and He 2021; Wang et al. 2022; Cai
et al. 2023) separates the model parameters used by different
tasks, so as to mitigate catastrophic forgetting. Most related
to our work is Der (Yan, Xie, and He 2021), but it is only ap-
plicable for a few incremental steps due to the linear growth
of model parameters. On the contrary, we use an approach
based on learning task-aware representation, which is more
compatible with incremental learning, and with arbitrary in-
cremental steps, our model parameters keep constant.

Incremental Object Detection
Class-incremental object detection is a common scenario
in practical applications (Shmelkov, Schmid, and Alahari
2017), where images could contain lots of instances that be-
long to different tasks, and the annotation of instances is pro-
vided only current task. To solve this problem, existing stud-
ies on this issue fall into two main categories: (1) Knowledge
Distillation-based, which adds regularization terms to the
learning objective as an attempt to preserve previous knowl-
edge when training the model on new data (Cermelli et al.
2022; Feng, Wang, and Yuan 2022; Yang et al. 2022); (2)
Rehearsal-based utilize a buffer to memorize some of the
past training data, replaying them in the following phases
to “call back” the old object categories (Shmelkov, Schmid,
and Alahari 2017; Liu et al. 2023b). Several methods make
different efforts to class-incremental object detection, e.g.,
meta learning-based (Joseph et al. 2021b), regularization-
based (Liu et al. 2020), and pseudo labels (Guan et al. 2018).

However, these methods are based on visual-only detec-
tors such as Faster-Rcnn (Girshick 2015), GFL (Li et al.
2020), and DETR-based detector (Zhu et al. 2021), but ne-
glect the rich textual represents, leading to seriously catas-
trophic forgetting. In our work, we explore the application
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Figure 2: The whole pipeline of our method. For clear demonstration, we assume there are two tasks in the whole incremental
learning process, and categories [Cow, Zebra] belong to Task 1 while [Sheep, Bird] belongs to Task 2. The TAM in the training
stage and the corresponding inference strategy SIS are proposed to learn task-aware language-image representation.

of language-image detectors in class-incremental object de-
tection. Although it has a stronger ability to mitigate catas-
trophic forgetting than visual-only detectors, it still faces the
problem of task alignment confusion. To this end, we pro-
pose an effective method to solve it.

Language-Image Pre-training
In recent years, language-image pre-training models have
been widely developed and applied to various vision tasks
like detection (Li et al. 2022) and classification (Radford
et al. 2021). CLIP (Radford et al. 2021) is applied to incre-
mental classification tasks, and main methods (Zhou et al.
2022; Wang et al. 2023) aims to design different prompts
to better utilize the rich knowledge of pre-trained models to
help mitigate catastrophic forgetting. Different from them, a
phase grounding-based object detector GLIP is used as the
baseline. We note that the pre-trained weights of GLIP are
not used, and aim to explore the application of the language-
image alignment model in class-incremental object detec-
tion.

Methodology
Preliminaries
Class-Incremental Object Detection. Let C = {1, . . . , c}
be the set of object categories, In CIOD, a task Tt is defined
as a subset of C, the detector is exposed to at time t : Tt ⊂ C,
where Ti ∩Tj = ∅, for any i , j ≤ t . Let (x, y) ∈ D denote a
dataset D which contains images x and their corresponding
ground truth sets of objects y , i.e., class labels and location
information, such that Dt denote the images containing an-
notated class objects in Tt . CIOD aims to maintain original
performance on {T1, T2, . . . , Tt−1} while continually learn-
ing task Tt without access to all of {D1,D2, . . . ,Dt−1}.
Grounded Language-Image Learning. GLIP (Li et al.
2022) is a language-image detector that reformulates detec-
tion as a grounding task by aligning each region in the image
to a phrase in language prompts. Given object categorizes
[airplane, car, cow, ..., cat], the prompt is designed as:

“airplane. car. cow. ... cat”.
GLIP is mainly composed of (1) a visual backbone fθ(·)
and a language backbone gψ(·). Specifically, the image
x ∈ RH×W×C and the word token e ∈ RD are fed into
fθ(·) and gψ(·) respectively to obtain the image feature map
z ∈ RH′×W ′×C′

and the text embedding w ∈ RD×L,
where H , W , and C are the heights, widths and channels
of x respectively, while D and L indicate the amount of to-
kens and the length of each token; (2) a deep fusion module
used to fuse the image feature maps and text embedding in
the last few encoding layers and can be defined as:

z′,w′ = DeepFusion(z,w). (1)

On this basis, the alignment scores are z′(w′)⊺, and the
alignment loss is formulated as follows.

Lground = loss(z′(w′)⊺, T ),

where loss is a focal loss (Lin et al. 2017b), T is the corre-
sponding token labels which is 1 if z′ and w′ aligned, and 0
otherwise. The training objective of GLIP is defined as:

Lvl = Lground + Lreg + Lcenter, (2)

where Lreg and Lcenter denote the box regression loss and
the centerness loss (Tian et al. 2019) respectively.

Incremental Language-Image Detector
Baseline Setting. We employ GLIP (Li et al. 2022) as our
baseline detector and build a CIOD framework based on
fine-tuning. In the first task, the visual backbone and lan-
guage backbone are initiated by pre-trained weights on Ima-
geNet (Deng et al. 2009) and BERT (Kenton and Toutanova
2019), respectively. Afterward, the model is updated by op-
timizing Eq. (2) with D1. While in the incremental task Tt,
the trained weight on Tt−1 is used to initial the whole model
and then updates it by optimizing Eq. (2) with Dt. Here we
note the prompts are disjoint for different tasks.
Forgetting Analysis. As analyzed in Sec. 1, the above base-
line has a strong ability to mitigate catastrophic forgetting,
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Figure 3: A visualized example of our selective inference
strategy which links to the SIS of Figure 2. Our ROWmax
strategy makes clearer predictions than naive solutions (EL-
Emax and ELEmean).

which can be attributed to the expressive power of the pre-
trained language branch, hence we maintain a rather slow
update during the training phase to have it appropriately
adapt to each task. However, as the amount of categories in-
creases, its superiority in mitigating catastrophic forgetting
rapidly vanishes. We first conduct the following empirical
study to reveal how and where forgetting occurs. As shown
in Figure 4, the image feature map z1 and z2 have subtle
differences, while significant disparities exist on z′

1 and z′
2 .

This phenomenon allows us to comprehend two aspects (1)
seriously catastrophic forgetting occurs in the deep fusion
module due to substantial distinctions of the deep fused im-
age feature maps; (2) At Task 1, the total channels of the
image feature map and hidden states of text embedding are
used to deep fuse. But when it comes to Task 2, all of the
channels and hidden states need to be reused, leading to only
focusing on the labeled regions in the feature map of Task 2.
Based on the above analysis, it becomes critical to address
the catastrophic forgetting caused by using all channels and
hidden states for deep fusion.

Task-Aware Representation Learning
To address the above problem, we propose to learn task-
aware language-image representation by a Task-Aware
Module (TAM) that selects partial channels and hidden
states respectively for deep fusion. The whole incremen-
tal learning pipeline is shown in Figure 2. Specifically, for
the training phase (the upper part of Figure 2), images x
and prompts are fed into the visual and language backbone
respectively, where image x and prompts consist of cat-

𝑧! 𝑧!"

𝑧# 𝑧#"

Task 2:  Person

Task 1:  Bottle

Forgetting

Figure 4: A visual illustration of where forgetting occurs,
the yellow part of features with high activation. z1 and z2

are the image features extracted by vision backbone which
belong to Task 1 and Task 2 respectively, while z′

1 and z′
2 are

the image features obtained by deep fusion module which
belong to Task 1 and Task 2 respectively.

egory labels belong to D1. Afterward, the feature map z
and text embedding w are partially utilized by the TAM,
and then fed into the deep fusion module to learn task-
aware language-image representation. Finally, we update the
whole model by optimizing Eq. (2). While in the incremen-
tal task, images x and prompts consist of category labels
belonging to Dt. What’s more, we only utilize the unex-
ploited part of channels and hidden states in the previous
task {T1, T2, . . . , Tt−1} to learn task-aware language-image
representation. For the inference phase (the bottom part of
Figure 2), the test image x belongs to all learned categories,
and prompts consist of all learned category labels. The TAM
will produce two groups of selected channels and hidden
states. After being fed into a deep fusion module, two groups
of alignment scores are obtained. Finally, we propose a Se-
lection Inference Strategy to unify these alignment scores
for final prediction.
Task-Aware Module. The proposed task-aware module
serves two purposes. On the visual side, we select different
channels to learn task-aware visual representation to avoid
reuse between different tasks. On the linguistic side, dif-
ferent hidden states are used to learn task-specific textual
representation, hence the powerful representation ability of
the pre-trained model can be applied to different tasks adap-
tively without interference from other tasks.

We denote two modal (image and text) masks as Mimage
t ∈

{0, 1}1×1×c and Mtext
t ∈ {0, 1}1×l, where c and l repre-

sent the total number of channels for image feature z and
hidden states w for text embedding, respectively. Then, we
select partial channels of z and partial hidden states of w
with the corresponding masks for learning the task-aware
language-image representation. To do element-wise multi-
plication between representations and masks, we have to ex-
pand the dimension of mask Mimage

t and Mtext
t to the same

spatial resolution of z and w as shown in the TAM of Fig-
ure 2. Formally, we have:

ẑ = zMimage
t , ŵ = wMtext

t , (3)
where ẑ and ŵ will be used to learn task-aware representa-
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Setting Method AP AP50 AP75 APS APM APL

70+10

SID (Peng et al. 2021) 32.8 49.0 35.0 17.1 36.9 44.5

ERD (Feng, Wang, and Yuan 2022) 34.9 51.9 37.4 18.7 38.8 45.5

∗CL-DETR (Liu et al. 2023b) 37.6/40.1 56.5/57.8 39.4/43.7 20.5/23.2 39.1/43.2 49.9/52.1

Ours 42.9 59.2 45.2 24.3 45.1 54.1

60+20

SID (Peng et al. 2021) 32.7 49.8 34.6 17.2 37.6 43.5

ERD (Feng, Wang, and Yuan 2022) 35.8 52.9 38.4 20.6 39.4 46.5

Ours 38.9 55.3 42.2 22.2 42.6 53.3

50+30

SID (Peng et al. 2021) 33.8 51.0 36.1 17.6 38.1 45.1

ERD (Feng, Wang, and Yuan 2022) 36.6 54.0 38.9 19.4 40.4 48.0

Ours 41.2 58.5 44.8 23.0 45.4 57.2

40+40

SID (Peng et al. 2021) 34.0 51.4 36.3 18.4 38.4 44.9

ERD (Feng, Wang, and Yuan 2022) 36.9 54.5 39.6 21.3 40.4 47.5

∗CL-DETR (Liu et al. 2023b) 37.0/37.5 56.2/55.1 39.1/40.3 20.9/20.9 38.9/40.8 49.2/50.7

Ours 40.4 57.4 43.9 23.3 44.7 54.5

Table 1: Incremental results (%) based on our detector on COCO benchmark under different scenarios, ∗ indicates CL-DETR’s
two detection baseline UP-DETR (Dai et al. 2021b)/Deformable DETR (Zhu et al. 2021) and the other compared results are
borrowed from the ERD (Feng, Wang, and Yuan 2022).

tion for the current task. In this way, the future tasks are able
to adopt completely independent image-text representations,
i.e, z(1 − Mimage

t ) and w(1 − Mtext
t ), which is no overlap

with the previous tasks. We expect to alleviate catastrophic
forgetting via learning the task-aware representation.
Selective Inference Strategy. Given test images and
prompts, we first extract their feature map z and text em-
bedding w by visual and language backbone respectively.
Then, Mimage

t and Mtext
t are used to select channels zMimage

t
and hidden states wMtext

t that have been trained in different
tasks. After that, deep fusion is used to produce task-aware
language-image representation z′ and w′. Finally, a set of
alignment scores sA×O

t that focus on different tasks respec-
tively for an image region is calculated as:

sA×O
t = z′(w′)⊺, (4)

where A is the amount of image regions, and O is the
amount of all learned categories.

Please refer to Figure 3 for the graphic illustration of our
Selective Inference Strategy, where we assume the total of
image regions and tasks both as two, and each task includes
two categories for simplicity. The s1 is produced via using
Mimage

1 and Mtext
1 , and the same for s2. The simple solution

is to directly unify the maximum/average alignment scores
to generate a final prediction score:

smax = ELEmax(s1, s2), (5)

smean = ELEmean(s1, s2), (6)

where ELEmax is the element-wise maximum operation and
ELEmean is the element-wise average operation. Since there
is no overlap in the prompts used in the different tasks,

Eq. (5) and Eq. (6) can consequently make each image re-
gion more prone to be assigned with a series of false cate-
gories, i.e., False Positive predictions, and thus result in poor
predictions. The Selective Inference Strategy is proposed to
solve this dilemma, shown in the ROWmax part of Fig-
ure 3, for any alignment scores s, e.g., s1, s2, only the por-
tion produced via task-aware representation is used, i.e., s′1,
s′2. Finally, we unify these task-specific alignment scores by:

su = ROWmax(s′1, s
′
2), (7)

where ROWmax is the row-wise maximum operation.
Specifically, we use the maximum confidence prediction be-
tween s′1 and s′2 as the final prediction.

Experiments
Datasets and Evaluation Metrics. Existing methods prove
the validity of the method in two dataset settings, one us-
ing Pascal VOC 2007 and Microsoft COCO 2014, and the
other using only Microsoft COCO2017. In order to bet-
ter prove the validity of our method, the proposed method
is evaluated on two benchmark datasets, i.e., Pascal VOC
2007 and Microsoft COCO 2017. VOC 2007 has 20 object
classes, and we use the trainval subset for training and the
test subset for evaluation, the mean average precision (mAP)
at 0.5 IoU threshold is used to measure the performance. We
ensure consistency between data partitioning methods and
CIOD (Dong et al. 2023) for VOC 2007. COCO 2017 has
80K images in the training set and 40K images in the val-
idation set for 80 object classes, we use the train set for
training and the minival set for testing, and the standard
COCO protocols are used as the evaluation metrics, i.e.,
AP,AP50, AP75, APS , APM , and APL. We ensure consis-
tency between data partitioning methods and ERD (Feng,
Wang, and Yuan 2022) for COCO 2017.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7100



Method
19+1 15+5 10+10

1-19 20 1-20 Avg 1-15 16-20 1-20 Avg 1-10 11-20 1-20 Avg

Upper 77.2 80.3 77.4 78.8 78.8 73.0 77.4 75.9 77.2 77.5 77.4 77.4

Fine-tuning 61.4 62.8 61.5 62.1 46.6 59.2 40.9 52.9 33.0 68.1 50.6 50.6

LOD (Zhou et al. 2020) 70.5 53.0 69.6 61.8 - - - - - - - -

Meta (Joseph et al. 2021b) 70.9 57.6 70.2 64.3 71.7 55.9 67.8 63.8 68.3 64.3 66.3 66.3

MVCD (Yang et al. 2022) 70.2 60.6 69.7 65.4 69.4 57.9 66.5 63.7 66.2 66.0 66.1 66.1

CIOD (Dong et al. 2023) 70.3 65.3 70.1 67.8 71.4 57.5 67.9 64.5 69.8 64.4 67.1 67.1

Ours 73.2 66.5 72.9 69.9 73.6 60.2 70.3 66.9 71.2 70.0 70.6 70.6

Table 2: mAP@0.5% results on single incremental step on Pascal-VOC 2007, all compared results are borrowed from the
corresponding papers.

Figure 5: Incremental results (mAP%) on COCO 2017
dataset under different scenarios, all compared results are
borrowed from the corresponding papers.

TAM Strategies 1-10 11-20 1-201-10 11-20
first 75% last 25% 68.0 71.9 70.0
first 25% last 75% 67.6 72.0 69.9

random 50% rest 50% 69.7±1.0 71.0±1.1 70.4±1.0
first 50% last 50% 71.2 70.0 70.6

Table 3: mAP@0.5% results on different feature map chan-
nels and text embedding hidden states selection strategies on
VOC 2007 dataset with 10+10 setting.

Experiments Setup. Specifically, we conduct experiments
with different splits in the following class-incremental learn-
ing scenarios. One-step: we notate this setup as B + I , i.e.,
Base + Incremental. we observe a fraction B

B+I of the train-
ing samples with B categories annotated in the first step.
Then, in the second step, we observe the remaining I

B+I
of the training samples, where I new categories are anno-
tated. Four settings for the COCO 2017 dataset, i.e., B + I
= 40+40, 50+30, 60+20, 70+10 and three settings for VOC
2007 dataset, i.e., B + I = 19 + 1, 15 + 5, 10 + 10. Multi-
step: we notate this setup as B + I × N , where N is the
incremental number of times. For the COCO 2017 dataset,
two-step, and four-step settings with 20 and 10 new classes
respectively added each time, i.e., B+ I×N = 40+20×2

and 40 + 10 × 4. We run each experiment three times in
different random orders of categories and report the average
mAP .
Implementation Details. We build our method on GLIP,
which uses Swin-Tiny (Liu et al. 2021) with FPN (Lin et al.
2017a) and BERT (Kenton and Toutanova 2019) as visual
and language backbone respectively. All the experiments are
performed on 8 NVIDIA Tesla V100 GPUs, with a batch
size of 16, we use the ADAMW as the optimizer with the
learning rate of the language backbone is 5× 10-6 and other
parts are 5 × 10-5. For the usage of feature map channels
and text embedding hidden states, we divided them accord-
ing to the proportion of categories, for example, the amount
of channels and the amount of hidden states used in the two
tasks are 50% and 50% respectively in the VOC 2007 dataset
with the 10+10 setting.

Overall Performance
For the COCO 2017, we compared with CL-DETR (Liu
et al. 2023b), ERD (Feng, Wang, and Yuan 2022), SID (Peng
et al. 2021), and LwF (Li and Hoiem 2017), while for the
VOC 2007, we compared with LOD (Zhou et al. 2020), Meta
(Joseph et al. 2021b), MVCD (Yang et al. 2022), and CIOD
(Dong et al. 2023). The total of the above methods is based
on visual-only detectors.

One-step. For the COCO 2017, Figure 1 demonstrates the
performance under four settings, all of our method outper-
forms the current state-of-the-art CL-DETR and other class-
incremental object detection methods. For 70+10 and 40+40
settings, the AP of our method is 2.8 and 2.9 percentage
points higher than CL-DETR, respectively; for 60+20 and
50+30 settings, on which CL-DETR has not experimented,
the AP of our method is 3.1 and 4.6 percentage points higher
than ERD, respectively. Table 2 shows the experimental re-
sults on the VOC 2007, the Avg metric equally weights new
and old classes averaging their aggregated mAP. Under the
three experimental settings of 19+1,15+5,10+10, our mAP is
2.8, 2.4, 3.5 percentage points higher than the state-of-the-
art method, and outperforms the CIOD on both the new and
old classes. All analysis above illustrates that the proposed
method can effectively overcome background-foreground
conflict even in these challenging settings.
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Lines VB LB Ave Max Sel Params 1-10 11-20 1-20
1 Fine-tuning (Baseline) 232M 33.0 68.1 50.6
2 ✓ 464M 42.9 69.7 56.3
3 ✓ 464M 42.2 71.0 56.6
4 ✓ 464M 71.9 72.5 72.2
5 ✓ ✓ 232M 70.2 70.0 70.1
6 ✓ ✓ 232M 35.2 71.0 53.1
7 ✓ ✓ ✓ 232M 38.8 65.8 52.3
8 ✓ ✓ ✓ 232M 33.4 68.3 50.9
9 ✓ ✓ ✓ 232M 71.2 70.0 70.6

Table 4: mAP@0.5% results on VOC 2007 dataset with
10+10 setting. VB and LB indicate the vision branch and
language branch respectively. Ave, Max, and Sel indicate
three inference strategies, i.e., Eq. (5), Eq. (6), and Eq. (7).

Multi-step. Figure 5 shows the AP in 40+20×2 and 40+
10×4 settings on the COCO 2017. The AP for our first phase
and related are 44.5 and 44.1, respectively. Compared with
the state-of-the-art method CL-DETR, the AP of our final
stage improved by 2.1 and 2.5 percentage points respectively
at 40+20×2 and 40+10×4 settings. This fully demonstrates
that our method is stable and can still maintain its ability to
mitigate catastrophic forgetting under different scenarios.

Ablation Study
We validate the effectiveness of the various parts of our
method on the VOC 2007 dataset, and all experiments are
performed in the 10+10 setting.

Sensitivity of Hyper-parameters Effectiveness of TAM
and SIS. Table 4 illustrates the effectiveness of using the
channel selection strategy on different branches and differ-
ent inference strategies. Shown in lines 2-4, for each task,
we utilize an alone model to learn independent representa-
tion and ensemble all predictions by Eq. (6), Eq. (5), and
Eq. (7), this is likely Der (Dai et al. 2021a). We find that
our inference strategy Eq. (7) is effective. Compared to line
4 with line 9, although the previous one gets better per-
formance, the model parameters are twice as much as our
method, with the increase of incremental tasks, the model
parameters grow linearly, resulting in a huge storage burden.

Lines 5-6 and 9 illustrate the effectiveness of the TAM
on different branches. When TAM is used in the language
branch (LB) only, there is an improvement (line 6) in the
old classes’ performance compared to directly fine-tuning
(line 1). There is a huge improvement when applying TAM
only in the visual branch (line 5). The results demonstrate
that our method reinforces the separability between image
features and language representation, and has effectively
solved the background-foreground conflict problem of class-
incremental object detection.

Line 7 and line 8 use Eq. (6) and Eq. (5), respectively,
to directly average or maximize the alignment scores, which
produces a lot of false negative predictions due to the confu-
sion of alignment between tasks, making it very ineffective.
Line 9 uses Eq. (7) and achieves the peak performance by
selectively using the alignment score strategy.

Task 1: Cat Cow Bicycle   Task 2: Tv  Person

Figure 6: Visualisation of the VOC 2007 dataset un-
der 10+10 setting. The first column is the original im-
age, the second and third columns are feature maps using
{Mimage

1 ,Mtext
1 } and {Mimage

2 ,Mtext
2 } respectively.

Analyze of Selection Strategies. We made four differ-
ent selection strategies for image feature map channels and
text embedding hidden states (shown in Table 3). The first
and second lines use 75% and 25% of the channels and hid-
den states in the first task, respectively, and we find that
the performance of the old and new classes is related to
the amount of used channels and hidden states, so we di-
vided the amount used in the different tasks according to the
amount of classes to achieve the best results (line 4). Specif-
ically, in line 3, when we randomly select the channels and
hidden states (the channels and hidden states are not all con-
secutive), the results do not differ much from those using
consecutive ones, which demonstrates the generalisability of
our method.

Visualized Analysis
We conduct a visual analysis of the feature maps of the im-
ages after deep fusion, and Figure 6 illustrates the results.
The first column displays the original image, while the sec-
ond column shows the feature map obtained after deep fu-
sion using Mimage

1 and Mtext
1 . The third column represents

the feature map obtained using Mimage
2 and Mtext

2 . From
the visualization, it is evident that our task-aware language-
image learning method effectively segregates the categories
of different tasks in the feature maps. It focuses solely on the
regions specific to each task, ensuring task-specific informa-
tion is captured accurately.

Conclusion
In this paper, we implement the first application of a visual-
language detector for class incremental object detection. The
language-image detector is found to have a better ability to
mitigate catastrophic forgetting when there are fewer cate-
gories, which fails when there are more categories due to
increased task alignment confusion. To this end, we propose
to learn task-aware language-image representation to segre-
gate visual feature map channels and text embedding hidden
states for different tasks. State-of-the-art results are achieved
on both VOC 2007 and COCO 2017 benchmark datasets,
demonstrating the effectiveness of our approach.
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