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Abstract

The look-up table (LUT) has recently shown its practicabil-
ity and effectiveness in super-resolution (SR) tasks due to its
low computational cost and hardware independence. How-
ever, most existing methods focus on improving the perfor-
mance of SR, neglecting the demand for high-speed SR on
low-computational edge devices. In this paper, we propose
an efficient expanded convolution (EC) layer, which expands
the output size of regular convolution to enlarge the recep-
tive field (RF) indirectly. It can increase the size of the LUT
corresponding to the network linearly with the increase of
RF. Additionally, after introducing the EC, multiple LUTs are
merged into one LUT, achieving faster running speed while
maintaining SR performance. More specifically, we expand
the coverage of the convolutional output so that the output
at the current position covers the target position and its sur-
roundings, forming an overlapping sliding window at the out-
put end. We sum up the overlapping parts of the sliding win-
dow as the output, thereby achieving the effect of enlarging
the RF size. Moreover, by expanding the numerical range of
the accumulated results and rescaling them to [0, 255], the
method can mitigate the error caused by quantization output.
Experiments indicate that the proposed method performs bet-
ter than the baseline method and is faster than other LUT-
based SR methods.

Introduction
Single image super-resolution (SISR) aims to recover high-
resolution (HR) images with high-frequency image details
from a single low-resolution (LR) image, which has ex-
tensive applications in medical imaging, video surveillance,
satellite and aerial imaging. In the early days, interpolation-
based methods were common, such as nearest neighbor in-
terpolation, bilinear interpolation, and bicubic (Keys 1981)
interpolation. These methods output the missing pixels
based on the weighted average of nearby pixels at the tar-
get position. Interpolation methods have the advantages of
simplicity and fast processing speed. However, interpolation
methods only consider the positional information without
the arrangement patterns of different pixel values, so they
cannot effectively restore high-frequency signals.
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Figure 1: Comparison of PSNR on Set14 benchmark dataset
for ×4 SR and runtime is measured by generating 1280×720
image. We compare our method with common interpolation
based methods (square), prior LUT-based methods (circle)
and deep learning based methods (diamond). Compared to
previous LUT-based methods, our method show better or
comparable PSNR quality while achieving faster runtime.

Deep neural networks (DNNs) have strong fitting and
nonlinear mapping capabilities. With the development of
deep learning, research on using deep neural networks to
solve SR problems is gradually increasing (Dong et al. 2014;
Dong, Loy, and Tang 2016; Shi et al. 2016). Through its
powerful nonlinear mapping ability, depth models can learn
different mapping relationships for different pixel arrange-
ments in LR images and even predict the lost high-frequency
information. Therefore, deep learning methods are signif-
icantly superior to interpolation methods in restoring im-
age details. Despite the great success of deep models, as
the depth and width of the model increase, although the
super-resolution effect is improved, the computational load
and storage space occupied by the model are also sharply
increasing. Moreover, some attention-based methods also
require a large amount of memory consumption. Without
high-performance hardware support, DNN-based methods
are challenging to apply in practice.

A look-up table (LUT) is commonly used in low-level vi-
sion tasks by storing the outputs of complex computations in
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the LUT and retrieving these values directly without recom-
puting them when needed. Recently, some studies have ap-
plied LUT-based methods to SR tasks (Jo and Kim 2021; Ma
et al. 2022; Li et al. 2022). These methods store the mapping
relationship between input and output pixel values in LUTs
and retrieve them during inference, trading the time cost of
accessing memory for the time cost of complex computa-
tions, thereby accelerating the SR inference process. Since
the inference time cost for these methods mainly comes from
memory access, they could achieve real-time SR without
specific hardware acceleration, significantly improving the
practicality of SR on edge devices.

However, existing LUT-based SR methods still have some
drawbacks. When creating LUTs, all inputs need to be tra-
versed, which makes the size of a single LUT grow expo-
nentially with the increase of input pixels. Considering the
limitation of memory size, the number of input pixels must
be controlled to reduce the LUT size, further limiting the re-
ceptive field size. Therefore, the performance of LUT-based
SR methods is usually limited. Although recent studies have
enlarged the receptive field by using multiple LUTs (Ma
et al. 2022; Li et al. 2022), the total size of the correspond-
ing LUTs grows linearly with their indexing capability, thus
improving SR performance while ensuring practicality. Nev-
ertheless, using multiple LUTs for indexing increases the
memory access time and makes these methods lose their ad-
vantage in inference speed.

To address these issues, in this paper, we propose an effi-
cient expanded convolution (EC) method that indirectly en-
larges the RF by expanding the output size of the convolu-
tion. This operation helps to reduce the LUT size compar-
ing to increasing the size from the input end and is more
friendly for the LUT query operation. Therefore, the pro-
posed method has a great advantage in inference speed.
Specifically, we follow the SR-LUT approach overall, but
with two differences. On the one hand, we add an EC layer
at the end of the network. The output of the EC contains the
output at the target position and the outputs around the tar-
get position. Compared with expanding the input, expanding
the output also achieves the effect of enlarging the RF, and
makes the LUT grow linearly. Moreover, since only a single
query is required in the inference phase, our method is faster
than using multiple LUTs. On the other hand, since dis-
cretizing the output with 8bit storage introduces errors, we
expand the numerical range of the sum of index results and
rescale the result to [0, 255] to obtain the final result, which
effectively improves the error introduced by quantization.
Since there is no floating-point operation in the whole infer-
ence process and only a single LUT is used, our method has
very fast inference speed. More importantly, our method has
great flexibility and can be easily combined with other meth-
ods. For example, using multiple LUTs to sacrifice more in-
ference time for better inference quality. In summary, our
contributions can be summarized as follows:

• We propose a novel expanded convolution (EC) method
that enlarges the RF by expanding the output size of the
convolution. The EC method is very friendly for the LUT,
as it can merge multiple look-ups into one and give the

LUT more advantage in speed of inference.
• We propose a method that is simple and effective to mit-

igate the error caused by quantizing the result to 8 bits
during the LUT recording process by using a scaling fac-
tor to multiply the accumulated result.The computational
cost of this method is negligible.

• Experimental results show that our method has a sig-
nificant improvement in inference speed compared with
other LUT-based SR methods, while having comparable
performance, demonstrating its practicality.

Related Work
Single Image Super-Resolution
Deep neural networks have powerful fitting capabilities.
With the development of deep learning, models based on
deep learning have made significant progress in SISR tasks.
Dong et al. (Dong et al. 2014) first successfully attempted
to use a three-layer convolutional neural network for super-
resolution, SRCNN, which is the groundbreaking work of
SR based on deep learning. SRCNN requires performing
bicubic interpolation on the image to up-sampling to the
target size before using CNNs to refine the results. In con-
trast, FSRCNN (Dong, Loy, and Tang 2016) eliminates up-
sampling at the input end and up-scales at the output end,
improving computational efficiency. Shi et al. (Shi et al.
2016) proposed the ESPCNN, which introduced a sub-pixel
convolutional layer and achieved real-time super-resolution
by zooming in on images at the end of the network. Ledig et
al. (Ledig et al. 2017) introduced adversarial learning, which
can add more details to images, making them more natural
and realistic.

With the further development of deep learning, it has be-
come a consensus that deeper networks have stronger feature
representation and fitting capabilities. By increasing depth
and using residual connections, VDSR (Kim, Lee, and Lee
2016a) improves performance. Lim et al. (Lim et al. 2017)
further increased the depth and width of the network and
proposed a model called EDSR. Zhang et al. (Zhang et al.
2018a) further improved SR performance by introducing
channel attention. Kim et al. (Kim, Lee, and Lee 2016b) first
used recursive methods to increase network depth, known as
DRCN. Tai et al. (Tai, Yang, and Liu 2017) further proposed
DRRN by incorporating local residual learning into DRCN.
Ahn et al. (Ahn, Kang, and Sohn 2018) proposed a cascaded
residual network, which integrates features from different
layers using a cascaded framework at both local and global
levels, achieving high SR performance with fewer parame-
ters. Later, Ledig et al. (Ledig et al. 2017) proposed SRRes-
Net, which uses dense connections for improvement. These
methods using residual learning have achieved significant
improvements compared to traditional SR methods, demon-
strating the effectiveness of residual networks.

In addition to improving super-resolution performance,
reducing model parameters and accelerating running speed
is another worthwhile direction. Using a pyramid frame-
work, the LapSRN proposed by Lai et al. (Lai et al. 2018)
can effectively perform SR at extremely low resolutions.
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Figure 2: The overview of ECLUT. The figure is depicted for ×2 SR (r = 2). (a) A small deep SR network with an expanded
convolution layer. The blue dashed part indicates the rotation trick, the green box indicates the output of the network, and the
green block part indicates the output of the SR network without dilated convolution. (b) All inputs of the trained network are
traversed and the corresponding outputs are stored, resulting in a LUT that is equivalent to the network. (c) In the testing phase,
the LUT replaces the network.

Later, Muqeet et al. (Muqeet et al. 2020) proposed stacked
multi-attention blocks, effectively compensating for param-
eter loss. However, these methods use very deep networks,
consuming a large amount of computing resources during
execution.

Look-up Table

Space-time tradeoff is a common strategy, and the look-up
table is a space-time tradeoff method. The look-up table
records the output results corresponding to all inputs in ad-
vance and uses simple and fast memory access operations
instead of complex and lengthy computations, thus signifi-
cantly improving the algorithm running efficiency. LUT has
many applications, such as color space conversion (Monga
et al. 2016), numerical computation (Rizvi et al. 1995; Chin-
Chen et al. 2000), and video coding (Lee, Lee, and Park
2010; Tsang, Chan, and Siu 2013). In addition, LUT is also
commonly used in camera imaging pipelines (Karaimer and
Brown 2016). After the rise of deep learning, many studies
have proposed LUT methods combined with deep learning
for low-level vision tasks (Wang et al. 2021a,b; Zeng et al.
2022). Zeng et al. (Zeng et al. 2022) first proposed an adap-
tive 3D look-up table for image enhancement, and Wang et
al. (Wang et al. 2021b) further proposed a learnable spatially
aware 3D look-up table. Jo et al. (Jo and Kim 2021) first
proposed a LUT-based SR method by training an SR net-
work and then transferring the mapping relationship in the
SR network to LUT. Combined with Rotational Ensemble
and interpolation techniques, they developed SR-LUT. Li et

al. (Li et al. 2022) designed a new indexing scheme based
on SR-LUT by using multiple LUTs to enlarge the receptive
field, and they improved the SR performance. Ma et al. (Ma
et al. 2022) proposed SP-LUT, which also used multiple cas-
caded LUTs to enlarge the receptive field by using MSB and
LSB, two parallel branches to compensate for the accuracy
loss caused by discretization. They avoided interpolation op-
erations.

Method
Preliminary
Given an LR image ILR, the goal of SR task is to generate
an HR image ISR that is close to the ground-truth image
IHR. For each pixel (i, j) on the SR image, we think that
it is mapped from the pixels around (i′, j′) on the input im-
age. Let Φ be the mapping function for an SR network. The
input of Φ is all the pixels covered by the RF of the SR net-
work. LUT-based SR methods first find an Φ, then traverse
all possible inputs of Φ to generate corresponding outputs.
These input data and corresponding output data form key-
value pairs. We record these data in LUT, where the key
is implicit in the index, and the output can be obtained by
querying LUT with the input as the index. The inference
process is to read the pixels covered by RF at position (i′, j′)
on LR in turn, combine them as an index, retrieve the result
from LUT, and write it to the corresponding position (i, j)
on SR.

Generally speaking, the larger the RF, the stronger the
mapping ability of Φ, and the better the SR performance.
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Figure 3: The proposed expanded convolutional network. The penultimate layer uses sub-pixel convolution to upscale the
features, and then indirectly implements expanded convolution by using space shift and summation operations on the obtained
k feature maps.

However, as mentioned before, LUT records all input-output
pairs. As RF expands, the domain of Φ expands exponen-
tially, which means that the size of LUT will grow dramat-
ically. As discussed by (Jo and Kim 2021), suppose LUT
stores 8bit input-output, magnification factor r = 4, when
RF covers two pixels, the size of LUT is 1MB. When RF
covers 3, 4, and 5 pixels, the size of LUT is 256MB, 64GB,
and 16TB, respectively. The large size of LUT not only con-
sumes more storage space but also may increase the time
of retrieving LUT. Therefore, in order to control the size of
LUT, some tricks are needed, such as rotational ensemble,
processing each channel separately, sampling LUT, etc.

Overview
Our method is outlined in Figure 2. Overall, we follow the
practice of SR-LUT (Jo and Kim 2021), using the rotational
ensemble trick to train an SR network and then save all the
output values of the network in LUT. According to the pre-
vious analysis, SR performance is limited by RF size, and
RF size affects LUT size. Therefore, we suggest expanding
the output, indirectly increasing the RF size, and making the
LUT size grow linearly. Compared with SR-LUT, we addi-
tionally output the intermediate results of the target position
(i, j) and its surrounding eight regions. These nine regions
form a huge sliding window at the output end and have over-
lapping areas when sliding. This process is similar to the in-
put end window sliding of convolutional networks, except
that the former is writing data, and the latter is reading data.
For the overlapping areas, we sum up the results as the fi-
nal output. Eventually, our LUT size is nine times that of
SR-LUT (for the V model of SR-LUT). These output val-
ues are stored adjacently in LUT and can be obtained by
one indexing for all regions, which can speed up the index-
ing compared with using multiple LUTs. By such operation,
EC-LUT expands RF from 5 pixels to 21 pixels, thus achiev-
ing better performance.

Expand LUT
Convolution operation can map an input of size ks × ks to
an output of size 1× 1. As pointed out by Dong et al. (Dong
et al. 2014), there is no efficient implementation of convo-
lutional layers with an output size larger than the input size.
Subsequently, Shi et al. (Shi et al. 2016) proposed sub-pixel
convolution, which achieves the magnification operation of
SR by rearranging the elements in the tensor. Inspired by
this, we propose expanded convolution, which also achieves
the magnification operation at the output end of the convo-
lution by rearranging the elements in the tensor. Compared
with the original sub-pixel convolution, we go further and
enlarge the output size of a single convolution operation to
r × k × r × k. As the convolution kernel slides on the in-
put, a sliding window with overlap is formed at the output
end. The output of the convolution is obtained by summing
up the overlapping parts. This process can be expressed as
follows:

X(i, j) = Φθ(F(i, j)),

ISR(i, j) =
∑
x∈χ

x(i, j) (1)

where X(i, j) denotes the sliding window obtained by
the convolution operation at the position (i′, j′). Φθ denotes
the feature mapping function, i.e. the expanded convolution.
F(i, j) is the input feature at the position (i′, j′). I(i, j) rep-
resents the output of the EC, and χ denotes the sliding win-
dow sets that cover the position (i, j). In practice, we do
not actually redesign the operator but achieve the goal by
padding the tensor. Figure 3 shows the specific implementa-
tion process. We output r×r×9 channels at the last layer of
the network and then rearrange the tensor to obtain a tensor
of shape 9×rH×rW . Next, we pad the separated nine ten-
sors in different directions so that their RFs will shift in dif-
ferent directions. After adding up the nine feature maps, the
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Figure 4: Visualization of the RF relative to the red-marked
feature after each operation. The rotation operation maps
different directions using the same LUT. Expanded convo-
lution enlarges the RF by one cycle using a single operation.

resulting feature map has a larger RF. Note that this process
is similar to the working principle of the aggregation module
of SP-LUT. The only difference is that SP-LUT uses hori-
zontal aggregation module and vertical aggregation module
separately, while our method generalizes to any case.

Figure 4 visualizes the change process of the RF. During
inference, two pixels are read from the input image, then the
LUT is queried, and the retrieved data is placed on the output
matrix according to the position and added in place. After
one query, the RF changes from 1×2 to 3×4. Further, using
the rotation trick, the RF can be enlarged to 21 pixels. Since
the above operations can be completed at the position (i, j)
simultaneously, our method has a faster inference speed.

Rescale Output
When training an SR network, 32-bit or 64-bit floating-point
numbers are usually used, which have high precision. Dur-
ing inference, the LUT replaces the SR network to perform
the mapping. When we transfer the mapping relationship
of SR network to LUT, in order to further reduce the LUT
size, we adjust the output to 8bit, with a numerical range
of [−128, 127]. If LUT stores the final output result, then
8bit just matches the single-channel bit width of a general
image. However, since we use the rotational ensemble and
expanded output methods, LUT actually stores only an inter-
mediate result, and the final result still needs to go through
multiple addition operations. The inference process can be
expressed as follows:

X(i, j) = LUT
[
ILR(i′, j′)

]
(2)

where ILR(i′, j′) denotes pixels on the input image used

for querying. Quantizing the floating-point number in [0, 1]
to the integer in [−128, 127] itself will cause some errors,
and these errors will accumulate after multiple addition op-
erations, eventually affecting the SR performance. There-
fore, we propose to expand the numerical range of the ac-
cumulation results, and readjust them back to the original
numerical range after the accumulation. This process can be
expressed as:

ISR(i, j) = clamp(round(α ·
∑
x∈χ

x(i, j))) (3)

where clamp denotes clipping the result to [0, 255],
round denotes the rounding function, and α is the scaling
factor. By expanding the numerical range and multiplying
by a scaling factor (in practice, we take α as 0.25), the nu-
merical range is pulled back to [0, 255]. This operation can
be seen as adjusting the gradation value of x(i, j) from 1
to 0.25. Experimental results show that this operation effec-
tively improves the error. At the same time, the operation of
multiplying by 0.25 and then rounding can be implemented
by adding 2 and then shifting right by two bits, which has a
very small computational cost.

Experiment
Implementation Details
Datasets and Metrics. Following previous studies, we use
the DIV2K dataset (Timofte et al. 2017) for training. This
dataset has 800 images for training, 100 images for vali-
dation, and 100 images for testing. In addition, there are
five commonly used benchmark test datasets, namely Set5
(Bevilacqua et al. 2012), Set14 (Zeyde, Elad, and Prot-
ter 2012), B100 (Arbelaez et al. 2010), Urban100 (Huang,
Singh, and Ahuja 2015) and Mang109 (Matsui et al. 2017).
We report our results on these five datasets and compare
them with previous studies. The quantitative evaluation met-
rics are PSNR (peak signal-to-noise ratio) on the Y chan-
nel of YCbCr space and structural similarity index (SSIM)
(Wang et al. 2004). In addition, we evaluate the computa-
tion efficiency by recording and presenting the rumtime of
generating 1280× 720 output images on mobile devices. To
be consistent with previous studies, according to (Lim et al.
2017; Zhang et al. 2018b), we use Matlab’s imresize func-
tion to perform bicubic interpolation on HR images to obtain
LR images.

Training Details. Our convolutional network structure is
basically consistent with SR-LUT (Jo and Kim 2021), with
the first convolutional layer having a kernel size of 1 × 2
and the rest having a kernel size of 1 × 1. The difference is
that we use 128 channels of convolution and add expanded
convolution, and also scale the output. We use Adam opti-
mizer (Kingma and Ba 2015) with an initial learning rate of
1 × 10−4 for a total of 20000 epochs, halving the learning
rate every 4000 epochs. The loss function is mean-squared
error (MSE). We randomly crop the LR image into patches
of size 48 × 48 with a mini-batch size of 16 and augment
the data by random rotation and flipping. We train the EC-
LUT model with Pytorch (Chaudhary et al. 2020) on Nvidia
2080Ti GPU.
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Method Runtime Size Set5 Set14 BSDS100 Urban100 Manga109
Nearest 9ms - 26.25/0.7372 24.65/0.6529 25.03/0.6293 22.17/0.6154 23.45/0.7414
Bilinear 20ms - 27.55/0.7884 25.42/0.6792 25.54/0.6460 22.69/0.6346 24.21/0.7666
Bicubic 97ms - 28.42/0.8101 26.00/0.7023 25.96/0.6672 23.14/0.6574 24.91/0.7871
SR-LUT 94ms 1.274MB 29.82/0.8478 27.01/0.7355 26.53/0.6953 24.02/0.6990 26.80/0.8380
SP-LUT 365ms 5.5MB 30.01/0.8516 27.21/0.7427 26.67/0.7019 24.12/0.7058 27.00/0.8430
Mu-LUT 242ms 4.062MB 30.60/0.8653 27.60/0.7541 26.86/0.7110 24.46/0.7194 27.90/0.8633

Ours 41ms 9MB 29.91/0.8461 27.14/0.7419 26.61/0.7019 23.98/0.6977 26.96/0.8362
FSRCNN 371ms 12K 30.71/0.8656 27.60/0.7543 26.96/0.7129 24.61/0.7263 27.91/0.8587
CARN-M 4955ms 412K 31.82/0.8898 2829/0.7747 27.42/0.7305 25.62/0.7694 29.85/0.8993

RRDB 31717ms 16698K 32.68/0.8999 28.88/0.7891 27.82/0.7444 27.02/0.8146 31.57/0.9185

Table 1: Quantitative comparisons with other SR methods on 5 benchmark datasets for r = 4. The best values of LUT-based
methods are shown in bold. Runtime is measured on a MEIZU 16s smartphone for generating 1280× 720 output images. Size
denotes the storage space or the parameter number of each model.

Bicubic SR-LUT SP-LUT MuLUT Ours GT

Figure 5: Visual comparison for ×4 SR on benchmark datasets. The results show our method can generate comparable results
compared to other LUT-based methods.

Comparation with Others
Quantitative Comparison. In this section, we compare
our proposed method with three common interpolation
methods, including nearest neighbor, bilinear, bicubic (Keys
1981) interpolation, LUT-based SR methods including SR-
LUT (Jo and Kim 2021), MuLUT (Li et al. 2022), SP-LUT
(Ma et al. 2022), and DNN-based methods including FSR-
CNN (Dong, Loy, and Tang 2016), CARN-M (Ahn, Kang,
and Sohn 2018), RRDB (Wang et al. 2018). Since MuLUT
did not provide source code, we used the numbers reported
in their paper. To be consistent with previous studies, we

perform four times SR on input images of size 320x180, and
measure the running time.

A quantitative comparison is shown in Table 1. As we can
see, EC-LUT has better inference time than any other meth-
ods, except for nearest neighbor and bilinear interpolation.
Compared with the three interpolation methods, EC-LUT
has better PSNR and SSIM (on Set5 test set, +1.49dB and
+0.036, respectively, compared with bicubic interpolation).
Although DNN-based methods generally have better PSNR
and SSIM than LUT-based methods, their inference time is
tens to hundreds of times longer than EC-LUT. In compari-
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Right Shift
Se5 Set14 BSDS100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
0 bit 29.83 0.8402 27.10 0.7366 26.57 0.6970 23.95 0.6928 26.90 0.8306
1 bit 29.91 0.8454 27.14 0.7404 26.59 0.7003 23.98 0.6967 26.95 0.8338
2 bit 29.91 0.8461 27.14 0.7419 26.61 0.7019 23.98 0.6977 26.96 0.8362
3 bit 29.82 0.8459 27.08 0.7408 26.57 0.7006 23.93 0.6966 26.78 0.8341

no quant 29.91 0.8470 27.13 0.7414 26.60 0.7015 23.96 0.6975 26.88 0.8344

Table 2: Ablation study of rescale operation, where no quant means that the output of the SR network is not quantized and
32bit floating-point numbers are used directly. We use bit shift operations to replace multiplication. The results show that the
SR performance degrades after quantization, but it recovers by shifting the accumulated result two bits to the right (α = 0.25).

Model
Se5 Set14 BSDS100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
EC-LUT-V 29.91 0.8461 27.14 0.7419 26.61 0.7019 23.98 0.6977 26.96 0.8362
EC-LUT-F 30.24 0.8555 27.39 0.7488 26.76 0.7078 24.18 0.7082 27.41 0.8487
EC-LUT-S 30.35 0.8592 27.45 0.7484 26.77 0.7062 24.28 0.7101 27.39 0.8466

Table 3: Experiments on different kernel shapes. The kernel shape of V, F and S models are 1× 2, 1× 3 and 2× 2 respectively.

son with other LUT-based methods, EC-LUT achieves supe-
rior SR performance over SR-LUT while being slightly infe-
rior to SP-LUT and MuLUT. However, EC-LUT has an ad-
vantage in inference time. In fact, EC-LUT can also improve
the super-resolution performance by increasing the number
of pixels used for direct indexing (similar to the three models
of SR-LUT), which will be shown in the ablation experiment
section.

Qualitative Comparison. Figure 5 shows the visual com-
parison of bicubic interpolation, SR-LUT, EC-LUT, SP-
LUT, MuLUT, and GT. For the first row, we can see that SR-
LUT and SP-LUT produce blocking artifacts near the pupil,
while our method well controls the artifacts. For the second
row, SR-LUT and SP-LUT fail to produce a smooth tran-
sition at the arc edge area and instead show jagged edges.
Our method and MuLUT both produce smooth arc edges.
For the third and fourth rows, SP-LUT shows blocking ar-
tifacts near some vertical or horizontal lines. Overall, com-
pared with bicubic interpolation, our method can generate
clearer images. Compared with SR-LUT, our method re-
duces some artifacts. Compared with SP-LUT, our method
does not produce blocking artifacts near some vertical or
horizontal lines. Of course, our method still has less index-
ing capability than MuLUT, as only two pixels are used for
single indexing.

Analysis
Rescale Operation. To verify the effectiveness of the op-
eration of rescaling the numerical range of the intermediate
results, we conducted experiments with different degrees of
rescaling. To avoid floating-point multiplication and division
operations, we used shift operations to replace multiplica-
tion and division, and each right shift by x bits means divid-
ing the result by 2x. As shown in Table 2, it can be seen that

after quantization, the SR performance has a significant de-
cline, and after scaling the result by 0.5 or 0.25 times, the er-
ror introduced by quantization is basically offset. And after
scaling by 0.125 times, the SR performance starts to decline
significantly again.

Kernal Shape. Like SR-LUT, our method can also obtain
different models by changing the RF size of the SR network.
However, when the number of pixels used for single index-
ing exceeds 2, it is necessary to sample the LUT to reduce
its size, and interpolation is required to obtain the missing
indexes during inference. To achieve faster inference speed,
we only use two pixels as single indexing in this paper. Ta-
ble 3 shows the results of increasing the number of pixels for
single indexing. It can be seen that as the number of pixels
for single indexing increases, the performance of EC-LUT
also gradually improves.

Conclusion
In this paper, we propose a novel LUT-based single image
SR method, which enlarges the RF effect by expanding the
coverage range at the output end and improves the SR per-
formance by using only one LUT. At the same time, as only a
single LUT is used, our method has an absolute advantage in
inference speed. On the other hand, we propose a method to
mitigate quantization error by rescaling the accumulated re-
sults at the output end, which greatly reduces the SR perfor-
mance degradation caused by quantization. Compared with
previous studies, our method has surpassed or comparable
performance while greatly improving the inference speed,
further enhancing the practicality of the method. In the fu-
ture, we will explore the application of the EC method in
multiple LUTs to further improve SR performance.
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