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Abstract

Recent advancements in implicit neural representations have
contributed to high-fidelity surface reconstruction and photo-
realistic novel view synthesis. However, with the expansion
of the scene scale, such as block or city level, existing meth-
ods will encounter challenges because traditional sampling
cannot cope with the cubically growing sampling space. To
alleviate the dependence on filling the sampling space, we
explore using multi-modal priors to assist individual points to
obtain more global semantic information and propose a prior-
rich multi-modal implicit neural representation network, PM-
INR, for the outdoor unbounded large-scale scene. The core
of our method is multi-modal prior extraction and cross-
modal prior fusion modules. The former encodes codebooks
from different modality inputs and extracts valuable priors,
while the latter fuses priors to maintain view consistency and
preserve unique features among multi-modal priors. Finally,
feature-rich cross-modal priors are injected into the sam-
pling regions to allow each region to perceive global infor-
mation without filling the sampling space. Extensive experi-
ments have demonstrated the effectiveness and robustness of
our method for outdoor unbounded large-scale scene novel
view synthesis, which outperforms state-of-the-art methods
in terms of PSNR, SSIM, and LPIPS.

1 Introduction
Implicit neural representations have shown promising per-
formance in surface reconstruction and novel view synthesis
for single objects or object-centric small-scale scenes under
sparse or limited posed camera images (Barron et al. 2021;
Martin-Brualla et al. 2021; Park et al. 2021) and have been
widely applied in the field of virtual reality and augmented
reality. However, the difficulty exacerbates at the cubic level
when the sampling space increases from a small-scale sce-
nario or object to an outdoor unbounded large-scale scene.
The core of the problem is that the existing implicit neural
representation networks only model the scene by sampling
points according to the ray direction from the entire scene
space. Hence, Neural Radiance Fields (NeRF) methods de-
signed for small-scale scenes (Mildenhall et al. 2021; Verbin
et al. 2022) are challenging to fill the sampling space for
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Figure 1: PM-INR is capable of handling outdoor un-
bounded large-scale scenes, and we have demonstrated
this capability through experiments with scenes from the
OMMO dataset (Lu et al. 2023). Impressively, PM-INR
shows superior performance in various large scenes such as
stone hills, memorials, buildings, etc.

large-scale scenes and will synthesize rough geometry and
blurry images.

Fortunately, Some methods have also noticed this prob-
lem and sample small regions rather than individual sample
points to alleviate exploding sampling spaces to some ex-
tent (Barron et al. 2021, 2022; Ding et al. 2023). Moreover,
compared to sampling individual points, sampling a small
region allows a region of space to be compactly featured,
which can help improve NeRF’s (Mildenhall et al. 2021)
ability to represent fine details. While for the block or city-
level scenes, view synthesis quality degrades as the camera
is moved far from the center of the scene. Meanwhile, in-
spired by codebook-assisted vision tasks, which learn a rep-
resentative codebook to denote valuable prototypes and have
been applied to image segmentation (You et al. 2022; Ra-
hebi 2022; Zhou et al. 2022; Yin and Zhou 2020; Ye et al.
2022a; Yin et al. 2023b; Wu et al. 2023), image synthe-
sis (Esser, Rombach, and Ommer 2021; Zhang et al. 2021;
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Figure 2: Multi-modal prior extraction and fusion module. Multi-modal priors are extracted from three parallel modules bene-
fiting from valuable codebooks obtained from pre-trained models, as shown on the left. Feature-rich priors are fused to ensure
cross-modal scene consistency and preserve each modality-specific feature, as shown on the right.

Esser et al. 2021; Yin et al. 2023a), and small-scale scene
implicit representation (Yin et al. 2022; Shen, Ma, and Wang
2022; Yang et al. 2023; Ye et al. 2022b), rich global prior
knowledge extracted from cross-modal codebooks coupled
with local sampling regions seems able to cope with outdoor
large-scale scene implicit representations. For local-sampled
NeRF, prior knowledge can offer valuable global insights,
which is lacking in ray-sampling based networks and is nec-
essary for scene understanding and reconstruction. There-
fore, equipping each region with rich priors is an unreached
and promising approach for implicit large-scale scene neural
representation.

In this paper, we propose PM-INR: A Prior-rich multi-
modal Implicit Neural Representation that aims to extract
and fuse prior knowledge across multiple modalities to
facilitate the implicit neural representation of large-scale
scenes. To achieve this, we first extract various priors from
codebooks obtained from different modal inputs, includ-

ing, Image Prior, extracted from the image codebook en-
coded by Vector Quantised-Variational AutoEncoder (VQ-
VAE) (Van Den Oord, Vinyals et al. 2017), contains valuable
global semantic and appearance information for each scene
and unique surface texture patterns for each training view;
Prompt Prior, with the help of the pre-trained Contrastive
Language-Image Pre-Training (CLIP) (Radford et al. 2021)
model, the text prompts of each training view are converted
into a more accessible format to form a text codebook, and
then extract prototypes rich in scene layout and positional re-
lationships, which are high-level properties that are not easy
to see just from visualizing data; Geometry (3D) Prior,
benefiting from Multi-view Stereo (MVS) (Seitz et al. 2006)
methods and pre-trained MinkowskiEngine (Choy, Gwak,
and Savarese 2019) convolutions, we encode the geometric
codebook from reconstructed sparse point clouds and then
filter out geometric priors with scene structure and topology
properties. To reduce the distance between different modal-
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ities while maintaining cross-modal scene consistency, we
propose a multi-modal prior fusion module, which fuses pri-
ors from different modalities into a feature-rich cross-modal
prior. Some of the fused prior prototypes are shared by all
modalities while others are unique, where the former can
maintain scene consistency across modalities, and the latter
provides additional information to enhance feature represen-
tation from different modalities. Finally, cross-modal priors
are injected into sampling regions to perceive global seman-
tic information and cope with the exploding sampling space.

Extensive experiments show the effectiveness of multi-
modal prior in large-scale implicit neural representa-
tion, which outperforms state-of-the-art method Mip-NeRF
360 (Barron et al. 2022) by more than 17% on each evalua-
tion metric. We summarize the contributions as follows:

• We propose an effective implicit neural representation
pipeline to cope with the cubically growing sampling
space of outdoor unbounded large-scale scenes by ex-
tracting rich priors from multi-modal inputs and equip-
ping sampling regions;

• A multi-modal prior fusion module is proposed to ensure
scene cross-modal consistency while enriching regional
feature representations;

• Extensive experiments demonstrate that our PM-INR
outperforms state-of-the-art methods, including robust-
ness to large-scale outdoor scene representation and the
capability to synthesize more photo-realistic novel views.
Our code and models will be available.

2 Related Work
Large-scale Neural Scene Representation. Large-scale
scene representation is a crucial aspect of Implicit Neu-
ral Representation (INR) research, involving capturing and
modeling complex scenes that encompass extensive spa-
tial extents, such as urban environments, landscapes, or
virtual worlds. NeRF++ (Zhang et al. 2020) handles the
unbounded scenes by separately modeling foreground and
background, and Mip-NeRF 360 (Barron et al. 2022) uses
a non-linear scene parameterization to model large-scale
unbounded scenes. Block-NeRF (Tancik et al. 2022) and
Mega-NeRF (Turki, Ramanan, and Satyanarayanan 2022)
decompose a scene into several partitions spatially and train
model for each partition in parallel. BungeeNeRF (Xian-
gli et al. 2022) introduces an approach that progressively
adds residual blocks to the network representation. Mega-
NeRF (Turki, Ramanan, and Satyanarayanan 2022) and
BungeeNeRF (Xiangli et al. 2022) address the challenges of
modeling and rendering large-scale scenes, spanning from
buildings to multiple city blocks and utilizing thousands of
images captured from drones. However, when the camera is
posed far away from the scene’s center, such as in the urban
environment, the visual synthesis quality will dramatically
degrade. Consequently, existing methods face constraints in
applying neural implicit reconstruction to expansive, out-
door, and unbounded scenes. To overcome these challenges,
a robust and scalable solution is urgently in demand.
Prior Information in Implicit Neural Representation.
Recently, the application of prior information in implicit

neural representation has attracted significant attention as
researchers aim to improve the performance in 3D scene
reconstructions. Prior information helps the implicit neural
representation to leverage domain knowledge, such as ge-
ometry, materials, lighting, and semantics. Pixel-NeRF (Yu
et al. 2021) addresses the challenge of learning neural
radiance fields from limited input images by incorporat-
ing prior information from a pre-trained 2D convolutional
neural network(CNN). Mixture of volumetric primitives
(MVP) (Lombardi et al. 2021) designs an unsupervised
method for learning implicit shape representations using a
MVP as prior information, enabling high-fidelity 3D recon-
structions without explicit 3D supervision. DeRF (Rebain
et al. 2021) designs a method to decompose a scene into
multiple depth layers, each represented by its own neural
radiance field. FastNeRF (Garbin et al. 2021) addresses the
issue of sampling artifacts in the original NeRF model by in-
corporating prior information about the scene’s density dis-
tribution. Point-NeRF (Xu et al. 2022) introduces surface
point clouds as priors to guide point sampling and achieve
scene generalization. Recently, CoCo-INR (Yin et al. 2022)
learns a representative codebook from the large-scale 2D
dataset ImageNet (Deng et al. 2009) with limited global fea-
tures of the scene, which leads to inconsistencies between
different views and rendering artifacts. These works have
demonstrated the potential of incorporating prior informa-
tion into implicit neural representation. However, the utility
of prior knowledge in the large-scale implicit neural repre-
sentation remains unexplored, especially multi-modal prior
knowledge.

Inspired by the above work, our method attempts to ex-
plore the effect of multi-modal prior knowledge in the large-
scale implicit neural representation for the first time, and
proposes to enhance the understanding of scenes by extract-
ing and fusing multiple modal priors.

3 Methodology
In this paper, we aim to develop a prior-rich multi-modal im-
plicit neural representation to improve the capacity to repre-
sent the outdoor unbounded large-scale scenes. We first de-
sign a multi-modal codebook and prior extraction module
to establish a codebook and extract prior knowledge from
multiple modalities (c.f. Sec.3.1 and Fig.2). Then we pro-
pose a multi-modal prior fusion module to incorporate het-
erogeneous prior knowledge and develop cross-modal prior
features with rich scene-level semantics, contextual knowl-
edge as well as the geometric properties of the scene (c.f.
Sec.3.2 and Fig.2). Next, we inject the feature-rich cross-
modal prior into each sampling region, which will help bet-
ter model the outdoor unbounded large-scale scenes (c.f.
Sec.3.3 and Fig.2). Finally, the implementation will be in-
troduced (c.f. Sec.3.4).

3.1 Multi-modal Codebook and Prior Extraction
Image Codebook. To make full use of the rich texture fea-
tures provided by images, which are difficult to obtain in
point-wise sampled implicit neural representations but nec-
essary for synthesizing photo-realistic images, especially
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for large-scale scenes, we derive the image codebook from
training views by Vector-Quantized Variational AutoEn-
coder (VQVAE) (Van Den Oord, Vinyals et al. 2017). We
denote our image codebook as Bg = {p0, p1, ..., pNg

} ∈
RNg×cg , where Ng is the number of prototype vectors, cg
is the dimension of each vector, and pi is each embedding
vector. Given an input image I ∈ RH×W×3, VQVAE lever-
ages an encoder Eg to obtain a set of continuous feature
ẑ = Eg(I) ∈ Rh×w×cg , where h and w are the height and
width of the feature map. Then a quantization Qg is per-
formed onto its closest codebook entry pi for the continuous
feature map ẑ to obtain the discrete representation zq :

zq = Qg(ẑ) := argmin
pk∈E

∥ẑij − pk∥2 , (1)

where ẑij ∈ Rcg . Next, the reconstructed image Î is given
by the decoder Dg:

Î = Dg(zq) = Dg(Qg(Eg(I))) (2)

Since our VQVAE can be optimized by reducing the loss
between the original image I and the reconstructed image Î:

L = ∥I − Î∥2 + ∥sg(zq)− ẑ∥22 + ∥sg(ẑ)− zq∥22 (3)

where sg(.) denotes the stop-gradient operation.
Text Codebook. Text prompts contain rich human-
annotated global descriptions consistent with human percep-
tual and visual systems, and connecting prompts and visual
domains enables implicit neural representation models to
capture a more comprehensive understanding of scene con-
text. Contrastive Language-Image Pre-training (CLIP) (Rad-
ford et al. 2021) is a neural network that efficiently learns vi-
sual concepts from natural language supervision. CLIP is de-
signed to leverage large datasets of images and text pairs to
train a model in a self-supervised manner, learning to break
the gap between visual and textual modalities. We lever-
age the pre-trained CLIP encoder model Et to produce text
embeddings as our text codebook Bt given the input text
prompts L.

Bt = Et(L) ∈ RNc×ct (4)
where Nc is the number of text prompts and ct is is the di-
mension of each text embedding.
3D Codebook. Point clouds are data structures that en-
capsulate multiple geometric information, including the ex-
act coordinates of points within a three-dimensional space,
which help inform and enhance the process of implicit neu-
ral representation. The Minkowski Engine (Choy, Gwak,
and Savarese 2019) is an auto-differentiation library for
sparse tensors, which is proposed to provide an efficient and
flexible framework to represent and process point clouds,
which enables the model to obtain the geometric informa-
tion of the scene. We leverage the Minkowski sparse ten-
sor to build our 3D codebook by aggregating the geomet-
ric patterns and relationships present in the point clouds.
Given the original point cloud P = {d0, d1, ..., dn} where
di represents the i-th point. We utilize the Minkowski En-
gine to transform this cloud into a sparse tensor representa-
tion S = (s1, f1), (s1, f1), ..., (sn, fn), composed of tuples

(si, fi), where si and fi denote spatial position and feature
vectors, respectively. To capture and quantize unique geo-
metric patterns within this data, we construct a 3D code-
book Bd = {m1,m2, ...,mND

} ∈ RND×cd , constructed by
encoding S, where mi represents each item in the codebook
Bd. Each feature vector fi is then mapped to its closest entry
in the codebook, ensuring a compact and efficient represen-
tation of the original geometric information.
Prior Extraction. Since the multi-modal codebook might
contain a large number of redundant or unrelated proto-
types for implicit neural representations, we designed a prior
extraction module to query valuable prototypes for scene
representation and novel view synthesis from each modal-
ity codebook. Given a pre-trained codebook B (could be
Bg , Bt or Bd) and learnable query embedding vectors q =
{q1, q2, ..., qM}, each embedding vector qi queries the valu-
able prior Z0 information from the given codebook via a
cross-attention mechanism:

Q← fQ(q), K← fK(B), V← fV(B)

Z0 ← Cross-Attention(Q,K,V) = Softmax(
QKT

√
dk

)
(5)

where fQ, fK , and fV are the query, key, and value lin-
ear projections, respectively. Then we apply a self-attention
module on the initial prior Z0 to improve prior feature rep-
resentations further and obtain the final prior Z:

Z ← Self-Attention(fq(Z0), fk(Z0), fv(Z0)) (6)

where fq , fk, and fv are the query, key, and value lin-
ear projections, respectively. We apply the above method
to the multi-modal codebooks, image codebook BG, text
codebook Bt, and 3D codebook Bd, and obtain the cor-
responding priors, image prior ZG, text prior ZT , and 3D
prior ZD, which contain respective modality-specific scene-
relevant prior information.

3.2 Multi-modal Prior Fusion
The extracted priors of each modality contain rich features,
some of which are shared, describing the same object from
different modalities, and others are unique, providing addi-
tional supplements from their respective modalities. How-
ever, this will also bring certain hidden dangers, such as
scene inconsistency that may be caused by different modal
prior features when describing the same object.

Therefore, finding common ground while reserving dif-
ferences and combining multi-modal priors to create a sin-
gle, unified representation is crucial, which can ensure scene
consistency across modals and help leverage the comple-
mentary and supplementary information present in each
modality to improve the overall performance of scene recon-
struction. Considering the feature distance between image
prior ZG, text prior ZT , and 3D prior ZD, we first employ
linear layers to obtain embedding priors ẐG, ẐT , and ẐD

respectively, and concatenate the elements along the zeroth
dimension to construct a cohesive and unified prior Û :

Û ← concat(ẐG, ẐT , ẐD)) (7)
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We then define a learnable query embedding Uq =
{q1, q2, ..., qM} to query scene-consistent cross-modal pri-
ors U by effectively capturing multimodal relations and de-
pendencies:

U ← Cross-Attention(fQ(Uq), fK(Û), fV(Û)) (8)

where fQ, fK, and fV are the query, key, and value lin-
ear projections, respectively. Through the aforementioned
multi-modal prior fusion module, we will arrive at a series of
representative cross-modal scene priors U , which preserve
consistent features from multi-modal priors to synthesize
view-consistent images while retaining the unique features
of each modality to enrich image details and ensure realism.

3.3 Cross-modal Feature Injection and Implicit
Neural Representations

In this subsection, we inject feature-rich cross-modal pri-
ors into sampled regions for outdoor unbounded large-scale
scene implicit neural representations. We follow the sam-
pling strategy of Mip-NeRF 360 (Barron et al. 2022), which
uses a non-linear scene parameterization to model large-
scale unbounded scenes and samples a region with more lo-
cal features in the sampling space instead of sampling a sin-
gle individual point. Although sampling regions can obtain
more local features, global features are still lacking, espe-
cially for outdoor large-scale scenes. Our unified prior can
overcome this challenge with rich global features from dif-
ferent modalities.

As shown in Fig.2, we inject the feature-rich multi-modal
prior U derived in Sec.3.2 into the sampling domain via a
cross-attention module. Gradually propagating cross-modal
representative prototypes to each sampled region results in
rich global scene features and representative representations
for each sampling region. With the rich global and represen-
tative features, our method can better understand and rep-
resent outdoor unbounded large-scale scenes and synthesize
high-fidelity and more detailed novel views.

Our backbone follows Mip-NeRF 360. We use the same
sampling method and loss function for a fair comparison but
inject our cross-modal prior information into each sampling
region and apply it to outdoor large-scale scene datasets.

3.4 Implementation Details
We train the VQ-VAE network for 20k iterations with a
batch size of 16 accumulated over 21 batches, which needs
about 1 day on two A100 GPUs. The dimensions of image
codebook Bg , text codebook Bt, and 3D codebook Bd are
256, 512, and 16, respectively. In our multi-modal codebook
and prior extraction module, the number of learnable query
embeddings is 128, and each embedding has a dimension
qi ∈ R64. Hence, the size of all priors is 128×64.

We apply one cross-attention mechanism in the prior ex-
traction module, followed by one self-attention block. In the
multi-modal prior feature fusion module, we apply linear
layers to three modalities prior to initially reduce the feature
distribution gap and then concatenate the processed prior
embedding into a unified multi-modal prior embedding. We
apply one cross-attention to the multi-modal prior embed-
ding to derive the feature-rich cross-modal prior embedding.

GT

Ours

Ref-NeRF 

Mega-NeRF 

Mip-NeRF 

NeRF++

NeRF

Mip-NeRF 360 

Figure 3: Qualitative results sampled from the OMMO
dataset. For each scene, we present a visualization of a syn-
thetic novel view and zoom in on two regions.

In the multi-modal feature injection module, we perform one
cross-attention operation in the Mip-NeRF 360’s module of
predicting density. All attention modules are transformer-
based with a multi-head attention mechanism, Layer Nor-
malization, Feed-Forward Network, and GELU activation.

For a fair comparison, we adopt the optimizing strategies
of Mip-NeRF 360, 250k iterations of optimization with a
batch size of 211, using Adam (Kingma and Ba 2014) opti-
mizer with a learning rate that is annealed log-linearly from
2 × 10−3 to 2 × 10−5 with a warm-up phase of 512 itera-
tions, and gradient clipping to a norm of 10−3. Our method
is built with Pytorch framework. Each scene is trained on
four Nvidia A100 GPU devices for around one day.

4 Experiments
4.1 Experimental Setup
Dataset. We evaluate our PM-INR on two datasets, namely
the OMMO (Lu et al. 2023) and BlendedMVS (Yao et al.
2020) dataset. The OMMO dataset contains a total of 33 un-
bounded large-scale scenes with prompt annotations, tags,
and 14k calibrated images. The BlendedMVS contains 17k
pose images, covering 113 scenes, which are divided into
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the general scene part and the large scene part according to
the scene scale. We conduct experiments on all scenes of the
OMMO dataset and the five outdoor unbounded large-scale
scenes of the BlendedMVS dataset due to the time cost con-
straints caused by per-scene optimization.
Baselines. We choose the recent state-of-the-art implicit
large-scale scene neural representation methods, includ-
ing NeRF (Mildenhall et al. 2021), NeRF++ (Zhang et al.
2020), Mip-NeRF (Barron et al. 2021), Mip-NeRF 360 (Bar-
ron et al. 2022), Mega-NeRF (Turki, Ramanan, and Satya-
narayanan 2022), Ref-NeRF (Verbin et al. 2022) as the base-
lines. NeRF (Mildenhall et al. 2021) designs the first con-
tinuous MLP-based neural network to represent the scene,
NeRF++ (Zhang et al. 2020) separately models the fore-
ground and background neural representations to handle
the unbounded scenes, Mip-NeRF (Barron et al. 2021) ex-
tends NeRF to represent the scene at a continuously-valued
scale and improves NeRF’s ability to represent fine details,
Mip-NeRF 360 (Barron et al. 2022) uses a non-linear scene
parameterization to model large-scale unbounded scenes,
Mega-NeRF (Turki, Ramanan, and Satyanarayanan 2022)
decomposes a scene into several spatially to train the model
in parallel, Ref-NeRF (Verbin et al. 2022) improves the qual-
ity of appearance and normal in synthesized views of the
scene by reparameterizing NeRF’s directional MLP.
Evaluation Metrics To evaluate the performance of each
method in large-scale implicit neural representation, we use
three standard metrics: Peak Signal Noise Ratio (PSNR),
Structural Similarity (SSIM) (Wang et al. 2004) and the
VGG implementation of Learned Perceptual Image Patch
Similarity (LPIPS) (Zhang et al. 2018) on novel view syn-
thesis. Higher PSNR and SSIM mean better performance,
while a lower LPIPS means better.

4.2 Performance Comparison
OMMO dataset. Quantitative results on the OMMO
dataset are reported in Tab. 1, which demonstrates that our
method outperforms others on the average and most scenes
in terms of PSNR, SSIM, and LPIPS. Among them, Mip-
NeRF 360 and Mega NeRF are both aimed at unbounded
scenes, and our average gain of the three evaluation metrics
is 17% and 24% higher than the two of them, respectively,
implying that our method is more effective for large-scale
scenes. At the same time, our LPIPS, a metric that correlates
more strongly with human-perceived distance, is over 43%
higher than all baselines, demonstrating that our method can
generate more photo-realistic novel views.

The qualitative results on the OMMO dataset are drawn
in Fig.1. Our method can reconstruct finer texture in un-
bounded large-scale scenes, and some representative details
are selected and zoomed in in Fig.1. It is worth noting
that our method expresses better robustness for outdoor un-
bounded large-scale scene representation.
BlendedMVS dataset. To further demonstrate the perfor-
mance of our method for large scale scenes, we conduct
the experiments and make comparisons with Mip-NeRF
360 (Barron et al. 2022), which is aimed at unbounded
scenes and overperforms other methods on the OMMO
dataset. Quantitative results between Mip-NeRF 360 (Bar-

Method PSNR↑ SSIM↑ LPIPS↓

NeRF 18.72 0.48 0.600
NeRF++ 21.45 0.58 0.538

Mip-NeRF 18.39 0.50 0.623
Mip-NeRF 360 23.10 0.67 0.419

Mega-NeRF 21.63 0.62 0.508
Ref-NeRF 360 21.28 0.55 0.574

PM-INR (Ours) 27.10 0.81 0.239

Table 1: Quantitative comparison results of our model PM-
INR with baselines on the OMMO dataset. ↑ means the
higher, the better, ↓ means the lower, the better.

ron et al. 2022) and our method on the BlendedMVS dataset
are reported in Tab. 2. We conduct experiments on five
outdoor unbounded large scale scenes of the BlendedMVS
dataset. Tab. 2 demonstrates that our method also outper-
forms others on the average and most scenes in terms of
PSNR, SSIM, and LPIPS. We compare our method on the
BlendedMVS dataset with the baseline Mip-NeRF 360, and
our average gain of the three evaluation metrics is 30 per-
cent higher than Mip-NeRF 360 on the outdoor unbounded
large scale scenes of the BlendedMVS dataset.

Method PSNR↑ SSIM↑ LPIPS↓

Mip-NeRF 360 23.10 0.67 0.419
PM-INR (Ours) 27.10 0.81 0.239

Table 2: Quantitative comparison results of our model PM-
INR with baseline Mip-NeRF 360 on the five outdoor un-
bounded large-scale scenes of the BlendedMVS dataset. ↑
means the higher, the better, ↓ means the lower, the better.

4.3 Ablation Studies and Analysis
Effectiveness of each modal prior. To verify the effective-
ness of each modal prior, we conduct controlled experiments
on different modalities and their pairwise combinations, in-
cluding the image prior (G), text prior (T), 3D prior (D),
image prior plus text prior (G+T), image prior plus 3D prior
(G+D), and text prior plus 3D prior (T+D).

The comparison result in Fig.5 shows that every modal
prior helps contribute to scene reconstruction while remov-
ing any single modal prior degrades the performance across
all metrics. It’s also observed that without any modal prior,
the performance degrades considerably further compared to
the model equipped with any modal prior.
Effectiveness of multi-modal prior fusion module. To
demonstrate the effectiveness of the multi-modal prior fu-
sion module, we conduct ablation studies on different fusion
strategies: removing the module of cross-attention mecha-
nism and directly injecting the initial multi-modal prior em-
bedding, denoted as w/o cross; injecting the multiple modal-
ities into the sampling region serially, denoted as serial; di-
rectly adding the multiple modalities to develop the cross-
modal prior, denoted as plus; concatenating multi-model
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Pm INR (Ours)

GT

Figure 4: Qualitative results sampled from the large-scale part of the BlendedMVS dataset. For each scene, we present a
visualization of a synthetic novel view and zoom in on two regions.

prior in the one dimension rather than the the zeroth dimen-
sion, denoted as hstack. The comparison results are shown
in Tab. 3, which implies that our fusion strategy is the most
advanced among them.

Method PSNR↑ SSIM↑ LPIPS↓

w/o cross 31.12 0.88 0.221
serial 29.36 0.89 0.212
plus 28.34 0.87 0.237

hstack 28.64 0.87 0.230

PM-INR (Ours) 31.338 0.917 0.157

Table 3: Experiment results about the effectiveness of multi-
modal prior fusion module.“w/o” cross represents removing
the cross-attention mechanism of our method, “serial” repre-
sents serially injecting the multiple modalities into our net-
work, “plus” represents directly plusing the multiple modal-
ities prior, and “hstack” represents concatenating the multi-
ple modalities prior in the dimension. ↑ means the higher,
the better, ↓ means the lower, the better.

5 Conclusions and Limitations
In this paper, we propose PM-INR, a priori-rich multi-modal
implicit neural representation network for outdoor un-
bounded large-scale scenes. Benefiting from our advanced
multi-modal prior extraction and fusion modules, represen-
tative feature-rich priors are propagated to each sampling re-
gion. Therefore, without relying entirely on exploring sam-
pling regions through individual sampling points, our PM-
INR network can obtain global-level cross-modal semantics,
which is lacking in current methods to cope with the explod-
ing sampling space. Expensive experiments have demon-
strated that our method surpasses the state-of-the-art method
Mip-NeRF 360 by over 17% in various evaluation met-
rics. Meanwhile, abundant ablation experiments prove each
multi-modal prior knowledge, and our fusion method can
help the network generate more robust scene representations
and synthesize more photo-realistic novel views.

With the help of multi-modal priors, our method can syn-
thesize realistic novel views for outdoor unbounded large-

3D prior

w/o prior

image prior text prior

Our multi-modal prior

image + text prior image + 3D prior text + 3D prior

GT

28.03 / 0.87 / 0.234

(PSNR↑/ SSIM↑ / LPIPS↓)

27.75 / 0.83 / 0.305 28.52 / 0.88 / 0.256

29.79 / 0.89 / 0.267 30.65 / 0.90 / 0.169 29.34 / 0.85 / 0.259

26.82 / 0.83 / 0.294 31.34 / 0.92 / 0.157 - / - / -

Figure 5: Qualitative visualization results for the effective-
ness of each modal prior (zoom-in for the best of views) on
the OMMO dataset. Obviously, using no prior or just a single
modality prior will produce blurry images, while extracting
cross-modal priors from both modalities can produce rela-
tively realistic images.

scale scenes. However, our method still does not have any
scene editing capabilities. We will explore the capability of
scene editing via editing priors, which is considered a fasci-
nating, valuable and promising endeavor.
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