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Abstract

Multi-Object Tracking (MOT) aims to detect and associate all
desired objects across frames. Most methods accomplish the
task by explicitly or implicitly leveraging strong cues (i.e.,
spatial and appearance information), which exhibit power-
ful instance-level discrimination. However, when object oc-
clusion and clustering occur, spatial and appearance infor-
mation will become ambiguous simultaneously due to the
high overlap among objects. In this paper, we demonstrate
this long-standing challenge in MOT can be efficiently and
effectively resolved by incorporating weak cues to compen-
sate for strong cues. Along with velocity direction, we in-
troduce the confidence and height state as potential weak
cues. With superior performance, our method still main-
tains Simple, Online and Real-Time (SORT) characteris-
tics. Also, our method shows strong generalization for di-
verse trackers and scenarios in a plug-and-play and training-
free manner. Significant and consistent improvements are
observed when applying our method to 5 different repre-
sentative trackers. Further, with both strong and weak cues,
our method Hybrid-SORT achieves superior performance on
diverse benchmarks, including MOT17, MOT20, and espe-
cially DanceTrack where interaction and severe occlusion fre-
quently happen with complex motions. The code and models
are available at https://github.com/ymzis69/HybridSORT.

Introduction
Recently, tracking-by-detection (Bewley et al. 2016; Wojke,
Bewley, and Paulus 2017; Zhang et al. 2021, 2022; Du et al.
2023; Ren et al. 2023; Cao et al. 2023) has become the most
popular paradigm in Multi-Object-Tracking (MOT), which
divides the problem into two sub-tasks. The first task is to
detect objects in each frame. The second task is to associate
them in different frames. The association task is primar-
ily solved by explicitly or implicitly utilizing strong cues,
including spatial and appearance information. This design
is reasonable because these strong cues provide powerful
instance-level discrimination. However, the commonly used
strong cues suffer from degradation under challenging situ-
ations such as occlusion and clustering (ID 1 and 2 in Fig-
ure 1). Specifically, when two objects are highly overlapped
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in the current frame, the Intersection over Union (IoU) be-
tween detections and estimated tracklet locations becomes
ambiguous, and the appearance features of both objects are
dominated by the foreground ones (red dash arrow in the
Strong Cues part of Figure 1).

In the Weak Cues part of Figure 1, we demonstrate that
weak cues, such as confidence state, height state, and ve-
locity direction, can effectively alleviate the ambiguous as-
sociations where strong cues become unreliable. However,
to the best of our knowledge, weak cues have been ignored
in most methods except for very few (e.g., OC-SORT (Cao
et al. 2023), MT-IOT (Yan et al. 2022)), as they only possess
reliable discrimination among certain objects. As shown in
Figure 1, the confidence state is only reliable for distinguish-
ing ID 2 from other IDs.

In this paper, we select the confidence state and height
state as potential types of weak cues, in addition to the veloc-
ity direction used in OC-SORT (Cao et al. 2023). The con-
fidence state can explicitly indicate the occluding/occluded
(i.e., foreground/background) relations among clustered ob-
jects, providing a critical clue that strong cues (i.e., spatial
and appearance information) lack. Height state is a stable
property of objects which is usually robust to diverse object
poses and contains some degree of depth information (i.e.,
reflects the distance from the camera to the objects).

To maintain the Simple, Online and Real-Time (SORT)
characteristics, we propose simple yet effective strategies
to exploit the aforementioned weak cues, namely Tracklet
Confidence Modeling (TCM) and Height Modulated IoU
(HMIoU). For TCM, we use Kalman Filter and Linear Pre-
diction to estimate the confidence state of tracklets, which
is then used as a metric to associate with detections. For
HMIoU, the height state is also modeled by Kalman Filter.
The height cost matrix for the association is first defined as
the IoU along the height axis for the estimated tracklet box
and detection box, then fused with the standard IoU matrix
based on the area metric.

To evaluate the generalization ability of our design, we ap-
ply the proposed designs to 5 different representative track-
ers, including SORT (Bewley et al. 2016), DeepSORT (Wo-
jke, Bewley, and Paulus 2017), MOTDT (Chen et al. 2018),
ByteTrack (Zhang et al. 2022), and OC-SORT (Cao et al.
2023). Both of our designs for confidence state and height
state consistently achieve significant improvements, demon-
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strating the importance of weak cues for MOT.
Further, to advance the state-of-the-art performance of

Simple, Online and Real-Time (SORT) MOT methods, we
modify the current state-of-the-art SORT-like algorithm OC-
SORT (Cao et al. 2023) as our strong baseline. Firstly,
we modify the velocity direction modeling in OC-SORT,
namely Observation-Centric Momentum (OCM), by extend-
ing the box center to four box corners and the fixed temporal
interval to multiple intervals. Secondly, we include an addi-
tional association stage for low-confidence detection follow-
ing ByteTrack (Zhang et al. 2022). Along with the proposed
TCM and HMIoU, our method Hybrid-SORT achieves supe-
rior performance on all DanceTrack, MOT17, and MOT20
benchmarks by leveraging both strong and weak cues, while
still maintaining Simple, Online and Real-Time (SORT).
We hope that the generalization ability, plug-and-play and
training-free characteristics of Hybrid-SORT make it attrac-
tive for diverse scenarios and edge devices.

• We demonstrate the long-standing challenges of occlu-
sion and clustering in MOT can be substantially allevi-
ated by incorporating weak cues (i.e., confidence state,
height state and velocity direction) as compensation for
commonly used strong cues.

• We introduce simple Tracklet Confidence Modeling
(TCM) and Height Modulated IoU (HMIoU) to model
and leverage the confidence state and height state. With
delicate modeling, the weak cues effectively and ef-
ficiently relieve the ambiguous matches generated by
strong cues with negligible additional computation.

• The plug-and-play and training-free design generalizes
well over diverse scenarios and trackers. We implement
our design on 5 representative trackers, achieving consis-
tent and significant improvements. Finally, Our method
Hybrid-SORT achieves superior performance on Dance-
Track, MOT17, and MOT20 benchmarks.

Related Work
Heuristic Matcher
Spatial-based Heuristic Matcher Spatial information is
the most widely used strong cue in high-FPS benchmarks.
When time intervals between frames are short, the move-
ment of an object is also small and can be treated as lin-
ear. This makes spatial information an accurate metric in
the short-term association. The pioneer work SORT (Bew-
ley et al. 2016) uses Kalman Filter (Kalman et al. 1960) to
predict the spatial locations of tracklets and perform asso-
ciates based on the IoU metric. Subsequent works, such as
CenterTrack (Zhou, Koltun, and Krähenbühl 2020), Byte-
Track (Zhang et al. 2022), MotionTrack (Qin et al. 2023),
and OC-SORT (Cao et al. 2023), are all heuristic matching
that only utilize spatial information for association. How-
ever, even the most advanced method, OC-SORT (Cao et al.
2023), still suffers from heavy occlusion and clustering.

Appearance-based Heuristic Matcher Unlike spatial in-
formation, appearance information possesses relatively sta-
ble consistency throughout the whole video, thus benefiting
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Figure 1: The discrimination capacity of strong and weak
cues. Green solid arrows represents reliable discrimination
between pairwise objects, while red dashed arrows indicate
unreliable discrimination. The higher the value of the arrow,
the more reliable the discrimination is.

long-term association. Following SORT, DeepSORT (Wo-
jke, Bewley, and Paulus 2017) and GHOST (Seidenschwarz
et al. 2023) utilize an independent ReID model to extract
appearance features for the association. Then the following
work JDE (Wang et al. 2020), FairMOT (Zhang et al. 2021),
CSTrack (Liang et al. 2022), QDTrack (Pang et al. 2021),
FineTrack (Ren et al. 2023) and UTM (You et al. 2023) inte-
grated the detection and ReID models for joint training and
designed improved network architectures to enhance perfor-
mance. However, we observe that among clustered objects,
both spatial and appearance cues suffer from severe discrim-
ination degradation, even if delicate network architectures
and association strategies are designed.

Learnable Matcher
Graph-based Learnable Matcher Graph-based learn-
able matchers formulate the association task as an edge
classification task, where the edge label is 1 for tracklet
nodes and detection nodes with the same ID and vice versa.
MOTSolv (Brasó and Leal-Taixé 2020) and GMTracker (He
et al. 2021) are based on Graph Neural Network (GNN)
and make the data association step differentiable. Most re-
cently, SUSHI (Cetintas, Brasó, and Leal-Taixé 2023) lever-
ages graph models to hierarchically connect short track-
lets into longer tracklets in an offline fashion. However, the
major limitation of graph-based matchers is that the train-
ing and inference pipeline is often complicated or even of-
fline, which restricts their practical use in online tracking
scenarios that impose strict real-time demands, such as au-
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tonomous driving.

Transformer-based Learnable Matcher Since the
Transformer became popular in vision tasks, many works
are proposed to utilize its powerful attention mechanism
to model the association task. TrackFormer (Meinhardt
et al. 2022) and MOTR (Zeng et al. 2022) utilize both
track queries and standard detection queries to jointly
perform trajectory propagation and initialization. Most
recently, MOTRv2 (Zhang, Wang, and Zhang 2023) intro-
duces a separate detector to MOTR, trying to resolve the
conflict between detection and association. However, the
Transformer-based matchers involve a significant number
of self-attention and cross-attention operations, preventing
the algorithm from achieving real-time capability.

Method
Hybrid-SORT and Hybrid-SORT-ReID follow the SORT
paradigm, which utilizes Kalman Filter for motion estima-
tion of tracklets with or without ReID module for appear-
ance modeling. The association task is solved by Hungarian
algorithm as bipartite graph matching. The cost matrices for
Hungarian algorithm are computed by measuring the pair-
wise representation similarity between tracklets and detec-
tions. The association pipeline is shown in Figure 2.

Weak Cues Modeling
Tracklet Confidence Modeling The reason why the con-
fidence state helps association is straightforward. Specifi-
cally, when both commonly used strong cues (i.e., spatial
and appearance information) fails as multiple objects are
highly overlapped, the confidence of objects provides ex-
plicit foreground/background (i.e., occluding/occluded) re-
lationships, which is exactly what strong cues lack.

Based on this insight, we introduce two modeling ap-
proaches for tracklet confidence to association with high-
confidence and low-confidence detections. When objects are
unobstructed or only slightly occluded, Kalman Filter is
an ideal model for modeling and estimating the continu-
ous state. Therefore, we extend the widely used standard
Kalman Filter in SORT (Bewley et al. 2016) with two ad-
ditional states: the tracklet confidence c and its velocity
component ċ. For better clarity, we first revisit the standard
Kalman Filter states in SORT, depicted in Eq. 1. Here, u
and v denote the object’s center, while s and r represent the
object box’s scale (area) and aspect ratio, respectively. The
velocity components are denoted by u̇, v̇, and ṡ.

x = [u, v, s, r, u̇, v̇, ṡ] (1)
With the two newly introduced states c and ċ, the complete

states of Kalman Filter in TCM are shown in Eq. 2.

x = [u, v, s, c, r, u̇, v̇, ṡ, ċ] (2)
For low-confidence detections in the second association

step, we utilize Linear Prediction to estimate the tracklet
confidence. The confidence of objects will rapidly increase
or decrease during the occlusion starts or ends. Unfortu-
nately, Kalman Filter exhibits significant lag when attempt-
ing to estimate sudden changes in the confidence state, as

shown in Figure 3. However, we observe clear directionality
in the trend of confidence changes during this short period.
Therefore, we use a simple Linear Prediction based on tra-
jectory history to address this issue. The formula for linear
modeling is given by Eq. 3, where ctrk represents the confi-
dence of tracklets saved in Tracklet Memory.

ĉtrk =

{
ct−1
trk , ct−2

trk = None

ct−1
trk − (ct−2

trk − ct−1
trk ), else

(3)

When utilizing either Kalman Filter or Linear Prediction,
the confidence cost is calculated as the absolute difference
between the estimated tracklet confidence ĉtrk and detection
confidence cdet following Eq. 4.

CConf = |ĉtrk − cdet| (4)

Height Modulated IoU Identifying the temporally sta-
ble properties of objects is one of the most critical aspects
of multiple object tracking (MOT). The height state can
provide informative clues that help to compensate for the
discrimination of strong cues. Specifically, height state en-
hances association in two aspects. Firstly, the height of ob-
jects reflects depth information to some extent. For datasets
such as DanceTrack, the heights of detection boxes mainly
depend on the distance between objects and the camera. This
makes the height state an effective cue for distinguishing
highly overlapped objects. Secondly, the height state is rel-
atively robust to diverse poses, making it an accurately esti-
mated state and a high-quality representation of objects.

Specifically, we define the two boxes as b1 =
(x1

1, y
1
1 , x

1
2, y

1
2) and b2 = (x2

1, y
2
1 , x

2
2, y

2
2) in which x1 and

y1 represents the top-left corner while x2 an y2 represents
the bottom-right corner. Also, we define the areas of two
boxes as A and B. The computation of conventional IoU is
shown in Eq. 5, which is based on the area metric. Further,
the Height IoU (HIoU) can be generated by computing the
IoU based on the height metric, as in Eq. 6.

IoU =
|A ∩B|
|A ∪B|

(5)

HIoU =
min(y12 , y

2
2)− max(y11 , y

2
1)

max(y12 , y
2
2)− min(y11 , y

2
1)

(6)

To better utilize the height state, we introduce Height
Modulated IoU (HMIoU) by combining Height IoU (HIoU)
with the conventional IoU, as shown in Eq. 7. The · means
element-wise multiplication. Considering the HIoU repre-
sents the height state which is a weak cue, and IoU repre-
sents the spatial information which is a strong cue, we use
HIoU to modulate the IoU by element-wise multiplication,
achieving enhanced discrimination for clustered objects.

HMIoU = HIoU · IoU (7)

Hybrid-SORT
Robust Observation-Centric Momentum In OC-SORT,
the Observation-Centric Momentum (OCM) considers the
velocity direction of object centers in the association. The
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Figure 3: The confidence curve of an object. Kalman Filter
estimation lags behind the actual confidence during occlu-
sion while Linear Prediction performs effectively.

cost metric used in OCM is the absolute difference between
the tracklet velocity direction θt and the tracklet-to-detection
velocity direction θd in radians format, which is expressed
as ∆θ = |θt − θd|. The tracklet velocity direction is ob-
tained from two box centers in the tracklet at a temporal in-
terval ∆t, and the tracklet-to-detection velocity direction is
obtained from the centers of a tracklet historical box and a
new detection box. Given two points (u1, v1) and (u2, v2),
the velocity direction is computed as Eq. 8. However, the
modeling of the original OCM is vulnerable to noise caused
by fixed temporal intervals and sparse points (i.e., only ob-
ject centers).

θ = arctan
( v1 − v2
u1 − u2

)
(8)

We improve the OCM by introducing more robust model-
ing of the velocity direction, namely Robust Observation-

frame 𝑡−1 frame 𝑡 frame 𝑡+1

tracklet tracklet-to-detection

ID ID

Figure 4: Velocity direction of the center and corners. While
the velocity direction of some corners maintains high simi-
larity, the direction of the center is completely opposite.

Centric Momentum (ROCM). The modifications include
two aspects. Firstly, we extend the fixed time interval of 3
frames to the stack of multiple intervals ranging from 1 to
3. Secondly, we use the four corners of the object instead of
its center point to calculate the velocity direction. With mul-
tiple temporal intervals and points, the calculation formula
for the ROCM is as Eq. 9. Figure 4 illustrates that for ob-
jects with complex motions, the velocity direction of corners
maintains high similarity, while the direction of the center is
nearly opposite.

CV el =
3∑

∆t=1

(Clt
∆t + Crt

∆t + Clb
∆t + Crb

∆t)

4
(9)

Appearance Modeling We incorporate appearance infor-
mation using an independent ReID model, as illustrated in
Figure 1. Following BoT-SORT, our pipeline first detects ob-
jects and then feeds the resulting cropped patches into the
ReID model. We model tracklet appearance information us-
ing Exponential Moving Average (EMA), and utilize cosine
distance as the metric for computing cost CAppr between
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the tracklet and detection appearance features. Note that the
ReID components are not the focus of our paper.

Algorithm Framework The association stage primarily
consists of three stages: the first association stage for high-
confidence objects, the second association stage for low-
confidence objects (BYTE in ByteTrack), and the third asso-
ciation stage to recover lost tracklets with their last detection
(OCR in OC-SORT).

Taking into account all the strong and weak cues, the final
cost matrix basically comprises the following terms:

C = CHMIoU + λ1CV el + λ2CConf + λ3CAppr (10)

Experiments
Experimental Setting
Datasets We evaluated our design on various MOT bench-
marks, including DanceTrack (Sun et al. 2022), MOT20
(Dendorfer et al. 2020) and MOT17 (Milan et al. 2016).
DanceTrack is currently one of the most challenging bench-
marks in the MOT field, characterized by diverse non-linear
motion patterns as well as frequent interactions and occlu-
sions. It is noteworthy that the detection task in DanceTrack
is relatively easy, making it an ideal benchmark to evaluate
association performance. MOT20 was developed to evalu-
ate algorithms under dense objects and severe occlusions.
MOT17 is a widely used standard benchmark in MOT, in
which the motion is mostly linear. Given the characteris-
tics of these benchmarks, we primarily focus on comparing
our method on DanceTrack as we aim to improve associa-
tion performance with weak cues in challenging situations.
We use MOT17 and MOT20 to evaluate the generalization
ability of our method under diverse scenarios. The MOT17
validation set follows a widely adopted convention (Zhou,
Koltun, and Krähenbühl 2020), where the train set is split
into halves for training and validation.

Metrics We selected HOTA (Luiten et al. 2021) as our
primary metric due to its higher-order nature. HOTA com-
bines several sub-metrics that evaluate algorithms from dif-
ferent perspectives, providing a comprehensive assessment
of algorithm performance. We also include other well-
established metrics, such as MOTA (Bernardin and Stiefel-
hagen 2008) and IDF1 (Ristani et al. 2016). IDF1 reflects the
association aspect of the tracker, while MOTA is primarily
influenced by detection performance.

Implementation Details To ensure a fair comparison and
demonstrate the superiority of our Hybrid-SORT, we di-
rectly adapt publicly available detection and ReID models
from existing works. Specifically, for the detection part, we
use the same detection model (i.e., YOLOX (Ge et al. 2021))
as our baseline OC-SORT. Likewise, for the ReID part, we
use the model (i.e., BoT (Luo et al. 2019)) in BoT-SORT
(Aharon, Orfaig, and Bobrovsky 2022). The dimension of
the appearance feature is 2048. The weight hyper-parameter
of the confidence cost matrix in the first and second asso-
ciation stages are 1.5 and 1.0 on DanceTrack, 1.0 and 1.0
on other benchmarks. The weight of ROCM cost is 0.2, the
same as OCM in OC-SORT. The IoU threshold to reject

a match is set to 0.15 on DanceTrack, and 0.25 on other
benchmarks. Following ByteTrack (Zhang et al. 2022), FPS
is measured with FP16-precision (Micikevicius et al. 2018)
with batchsize of 1. The hardware is a single V100 GPU
with Intel Xeon(R) Silver 4214R CPU @ 2.40GHz.

Benchmark Results
In this section, we present benchmark results on Dance-
Track, MOT20 and MOT17. Methods with identical detec-
tion results are grouped together at the bottom of each Table.

We emphasize that Hybrid-SORT consistently outper-
forms the baseline OC-SORT in all three datasets with neg-
ligible additional computation and still maintains Simple,
Online and Real-Time (SORT) characteristics, even though
its performance lags slightly behind by a few works with
much heavier models (i.e., MOTRv2), offline pipelines (i.e.,
SUSHI) or complex pipelines (i.e., MotionTrack and Fine-
Track) on certain datasets.

The limited improvement of Hybrid-SORT on MOT17/20
largely attributes to the inherent shortcomings of the datasets
themselves. Prominent studies such as DanceTrack (Sun
et al. 2022) and PersonPath22 (Shuai et al. 2022) present two
key arguments. First, the performance of methods may not
be accurately assessed due to the limited sizes of MOT17/20,
which are nearly 10× smaller than DanceTrack. Second, the
two datasets mostly consist of simple linear motions and the
performance becomes relatively saturated.

DanceTrack Compared to the previous state-of-the-art
heuristic tracker OC-SORT, Hybrid-SORT exhibits signifi-
cantly superior performance (i.e., 7.6 HOTA), with identical
association inputs and nearly identical computational com-
plexity (refer to Table 1). The results provide convincing ev-
idence that the introduction and modeling of multiple types
of weak cues, such as confidence state and height state, can
effectively and efficiently resolve ambiguous and incorrect
matches where strong cues fail. Further, with an independent
ReID model, Hybrid-SORT-ReID achieves a state-of-the-
art HOTA of 65.7 on DanceTrack for the heuristic tracker.
For trackers with learnable matcher which show higher per-
formance than Hybrid-SORT, MOTRv2 is also based on
YOLOX detector but utilized a modified Deformable DETR
(Zhu et al. 2020) with 6 layers of Transformer encoder and 6
layers of Transformer decoder as the matcher, while SUSHI
employs GNNs as the matcher with a totally offline pipeline.

MOT20 Hybrid-SORT achieves superior performance in
the MOT20 test set (as shown in Table 2) with high inference
speed. Specifically, Hybrid-SORT surpasses OC-SORT in
all metrics (i.e., 0.4 HOTA, 0.3 IDF1, and 0.9 MOTA), with
practically indistinguishable additional computation. By uti-
lizing an independent ReID model, Hybrid-SORT achieves
a state-of-the-art performance of HOTA 63.9 on MOT20 for
the heuristic tracker. The results demonstrate the effective-
ness, robustness, and generalization of the proposed method
in modeling weak cues for clustered and heavily occluded
scenarios with dense objects.

MOT17 We present the performance of Hybrid-SORT on
MOT17 in Table 3. Specifically, Hybrid-SORT surpasses
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Tracker HOTA ↑ IDF1 ↑ MOTA ↑

Learnable Matcher:
MOTR 54.2 51.5 79.7
MOTRv2 69.9 71.7 91.9
SUSHI 63.3 63.4 88.7
Heuristic Matcher:
CenterTrack 41.8 35.7 86.8
FairMOT 39.7 40.8 82.2
QDTrack 45.7 44.8 83.0
FineTrack 52.7 59.8 89.9
SORT 47.9 50.8 91.8
DeepSORT 45.6 47.9 87.8
ByteTrack 47.3 52.5 89.5
GHOST 56.7 57.7 91.3
OC-SORT 54.6 54.6 89.6
Hybrid-SORT 62.2 63.0 91.6
Hybrid-SORT-ReID 65.7 67.4 91.8

Table 1: Results on DanceTrack test set. Methods in the gray
block share the same detections. The highest-ranking heuris-
tic matcher is emphasized in bold.

the previous state-of-the-art tracker OC-SORT in all met-
rics (i.e., 0.4 HOTA, 0.9 IDF1, and 1.3 MOTA) with negli-
gible additional computation. By incorporating an indepen-
dent ReID model, Hybrid-SORT further accomplishes per-
formance improvements, setting a superior HOTA of 64.0 on
MOT17. It is important to note that our method is primarily
designed to address the challenges of object clustering and
complex motion patterns. Nevertheless, even when applied
to the MOT17 dataset, which represents a more general and
easier scenario of linear motion patterns, our method consis-
tently exhibits enhanced tracking performance.

Ablation Study
Component Ablation As shown in Table 4. The results
demonstrate the effectiveness and high efficiency of the pro-
posed modules in Hybrid-SORT. The confidence state mod-
eled by TCM significantly enhances the performance, with
improvements of 4.0 HOTA. And notably, TCM only has
a minor impact on inference speed (-0.7 FPS). Similarly,
the utilization of height state by HMIoU leads to clear im-
provements in HOTA by 1.6 while barely affecting infer-
ence speed (-0.1 FPS). ROCM also enhances the association
performance in HOTA by 0.6. However, ROCM reduces the
inference speed by 1.5 FPS due to more temporal intervals
and modeled points. With a commonly used ReID model,
Hybrid-SORT-ReID further boosts the HOTA by 3.7, but the
inference speed becomes near real-time. Note that the effi-
cient incorporation of the ReID model into the MOT frame-
work is beyond the scope of this paper.

Modeling Strategies in TCM In Table 5, we investigate
the performance of Kalman Filter and Linear Prediction for
confidence state modeling on the DanceTrack-val. In the first
association stage with high-confidence detections, Kalman
Filter significantly boosts the association performance by
2.9 HOTA, while Linear Prediction decreases HOTA by 1.1.
We attribute the results to the fact that high-confidence de-

Tracker HOTA ↑ IDF1 ↑ MOTA ↑

Learnable Matcher:
TrackFormer 54.7 65.7 68.6
MOTRv2 61.0 73.1 76.2
UTM 62.5 76.9 78.2
SUSHI 64.3 79.8 74.3
Heuristic Matcher:
FairMOT 54.6 67.3 61.8
CSTrack 54.0 66.6 68.6
FineTrack 63.6 79.0 77.9
MotionTrack 62.8 76.5 78.0
ByteTrack 61.3 75.2 77.8
BoT-SORT 63.3 77.5 77.8
GHOST 61.2 75.2 73.7
OC-SORT 62.1 75.9 75.5
Hybrid-SORT 62.5 76.2 76.4
Hybrid-SORT-ReID 63.9 78.4 76.7

Table 2: Results on MOT20-test with the private detections.
Methods in the gray block share the same detections. The
highest-ranking heuristic matcher is emphasized in bold.

Tracker HOTA ↑ IDF1 ↑ MOTA ↑

Learnable Matcher:
TrackFormer 57.3 68.0 74.1
MOTR 57.8 68.6 73.4
MOTRv2 62.0 75.0 78.6
UTM 64.0 78.7 81.8
SUSHI 66.5 83.1 81.1
Heuristic Matcher:
CenterTrack 52.2 64.7 67.8
QDTrack 53.9 66.3 68.7
FairMOT 59.3 72.3 73.7
CSTrack 59.3 72.6 74.9
FineTrack 64.3 79.5 80.0
MotionTrack 65.1 80.1 65.1
ByteTrack 63.1 77.3 80.3
BoT-SORT 65.0 80.2 80.5
GHOST 62.8 77.1 78.7
OC-SORT 63.2 77.5 78.0
Hybrid-SORT 63.6 78.4 79.3
Hybrid-SORT-ReID 64.0 78.7 79.9

Table 3: Results on MOT17-test with the private detections.
Methods in the gray block share the same detections. The
highest-ranking heuristic matcher is emphasized in bold.

tections usually do not suffer from heavy occlusion, thus the
confidence is stable and does not exhibit a clear directional
trend. So Kalman Filter models the confidence state well but
Linear Prediction fails. In the second association stage with
low-confidence detections, both Kalman Filter and Linear
Prediction perform well (0.7 and 1.1 HOTA, respectively).
The confidence of occluded objects can decrease or increase
rapidly depending on whether the clustering starts or ends.
Kalman Filter is relatively incapable of modeling such sud-
den changes and the estimations usually lag behind the ac-
tual confidence. However, Linear Prediction can model the
directional changes well.
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ROCM TCM HMIoU ReID HOTA ↑ FPS ↑

53.1 30.1
✓ 53.7 28.6
✓ ✓ 57.7 27.9
✓ ✓ ✓ 59.3 27.8
✓ ✓ ✓ ✓ 63.0 15.5

Table 4: Components ablation on DanceTrack-val. Consis-
tent and significant improvements are observed using the
proposed metrics TCM, HMIoU, and ROCM while main-
taining real-time capacity.

first stage second stage HOTA ↑ IDF1 ↑ MOTA ↑

– – 53.7 53.2 88.9
Kalman – 56.6 56.6 89.2
Kalman Kalman 57.3 57.9 89.2
Linear – 52.6 52.1 89.0
Linear Linear 53.9 53.1 89.2

Kalman Linear 57.7 58.5 89.4

Table 5: Different confidence modeling on DanceTrack-val.
The Kalman Filter is effective for unobstructed objects,
while Linear Prediction is suitable for occluded objects.

Height State or Width State We argue the height state,
rather than the width state, can benefit association. Similar
to the HMIoU, We propose Width Modulated IoU (WMIoU)
by replacing height with width. As shown in Table 6, width
state significantly hurt association performance, whereas the
height state is beneficial. The reason is the box width varies
irregularly due to pose changes or limb movements, posing
a challenge for precise estimation by the Kalman Filter. In
contrast, the height state undergoes relatively short and con-
tinuous changes during squatting or standing up, making it
effectively modeled by the Kalman Filter.

Generality on Other Trackers We applied our design to
other 4 representative heuristic trackers, namely SORT (Be-
wley et al. 2016), DeepSORT (Wojke, Bewley, and Paulus
2017), MOTDT (Chen et al. 2018), and ByteTrack (Zhang
et al. 2022). Among these trackers, SORT, and ByteTrack
rely solely on spatial information, while MOTDT and Deep-
SORT jointly utilize both spatial and appearance informa-
tion. The results are presented in Table 7 and Table 8, where
a significant improvement can be observed in both Dance-
Track and MOT17 datasets for all aforementioned track-
ers. For instance, our design TCM improves DeepSORT by
4.9 HOTA in DanceTrack and 0.9 HOTA in MOT17, while
our HMIoU boosts SORT by 1.6 HOTA in DanceTrack and
1.0 HOTA in MOT17. These results provide convincing ev-
idence that our insight of introducing weak cues like confi-
dence state and height state as compensation for strong cues
is effective and generalizes well across different trackers and
scenarios. Moreover, our method can be readily applied to
existing trackers in a plug-and-play and training-free man-
ner for enhanced performance.

HOTA ↑ IDF1 ↑ MOTA ↑

IoU 57.7 58.5 89.4
WMIoU 52.6 52.0 89.0
HMIoU 59.3 60.6 89.5

Table 6: Results of different IoU in DanceTrack-val. The
regular height state provides benefits while the irregular
width state causes harm.

Tracker TCM DanceTrack MOT17

ByteTrack 47.06 67.85
✓ 49.32 (+2.3) 68.03 (+0.2)

SORT 48.34 66.32
✓ 51.80 (+3.5) 66.52 (+0.2)

MOTDT 36.47 65.32
✓ 37.66 (+1.2) 65.62 (+0.3)

DeepSORT 40.38 63.45
✓ 45.29 (+4.9) 64.36 (+0.9)

Table 7: TCM in other representative trackers. TCM consis-
tently enhances tracking performance.

Tracker HMIoU DanceTrack MOT17

ByteTrack 47.06 67.85
✓ 49.68 (+2.6) 67.70 (-0.2)

SORT 48.34 66.32
✓ 49.96 (+1.6) 67.30 (+1.0)

MOTDT 36.47 65.32
✓ 36.83 (+0.4) 65.21 (-0.1)

DeepSORT 40.38 63.45
✓ 41.23 (+0.9) 63.64 (+0.2)

Table 8: HMIoU in other representative trackers. HMIoU
consistently enhances tracking performance.

Conclusion
In this paper, we demonstrate that the common and long-
standing challenge of heavy occlusion and clustering can be
effectively and efficiently alleviated with previously over-
looked weak cues (e.g. confidence state, height state, and
velocity direction). These weak cues can compensate for
the limitations of strong cues. Then, we propose Hybrid-
SORT by introducing simple modeling for the newly in-
corporated weak cues and leveraging both strong and weak
cues, which significantly improves the association perfor-
mance. Furthermore, Hybrid-SORT still maintains Simple,
Online and Real-Time (SORT) characteristics, and can be
readily applied to existing trackers in a plug-and-play and
training-free way. Extensive experiments demonstrate the
strong generalization ability of Hybrid-SORT across diverse
trackers and scenarios. With widely used appearance infor-
mation, Hybrid-SORT achieves superior performance over
state-of-the-art methods, with a much simpler pipeline and
faster association. We hope that the aforementioned charac-
teristics of Hybrid-SORT make it attractive for diverse sce-
narios and devices with limited computational resources.
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