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Abstract

This paper tackles the problem of federated domain gen-
eralization in person re-identification (FedDG re-ID), aim-
ing to learn a model generalizable to unseen domains with
decentralized source domains. Previous methods mainly fo-
cus on preventing local overfitting. However, the direction of
diversifying local data through stylization for model train-
ing is largely overlooked. This direction is popular in do-
main generalization but will encounter two issues under
federated scenario: (1) Most stylization methods require
the centralization of multiple domains to generate novel
styles but this is not applicable under decentralized con-
straint. (2) The authenticity of generated data cannot be en-
sured especially given limited local data, which may im-
pair the model optimization. To solve these two problems,
we propose the Diversity-Authenticity Co-constrained Styl-
ization (DACS), which can generate diverse and authentic
data for learning robust local model. Specifically, we de-
ploy a style transformation model on each domain to gen-
erate novel data with two constraints: (1) A diversity con-
straint is designed to increase data diversity, which enlarges
the Wasserstein distance between the original and trans-
formed data; (2) An authenticity constraint is proposed to en-
sure data authenticity, which enforces the transformed data
to be easily/hardly recognized by the local-side global/lo-
cal model. Extensive experiments demonstrate the effective-
ness of the proposed DACS and show that DACS achieves
state-of-the-art performance for FedDG re-ID. Project:
https://github.com/FlyingRoastDuck/DACS official.git

1 Introduction
Person Re-identification (re-ID) aims at retrieving target
pedestrian in a non-overlapped camera system, which can
largely benefit the smart city construction, e.g., finding lost
children or escaped criminals. It is reported that deep-based
methods (He et al. 2016; Huang et al. 2019; Wang et al.
2018; Ye et al. 2021; Sun et al. 2018) have drastically pro-
moted the development of re-ID. However, these modern
methods still suffer from the domain shift caused by dif-
ferent domains, leading to unsatisfactory performance when
deployed in novel domains.
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Figure 1: Schematic illustration of the proposed Diversity-
Authenticity Co-constrained Stylization (DACS). Middle:
We introduce a style transformation model (STM) for each
domain to hallucinate novel data with two constraints. (1)
Diversity Constraint: STM is encouraged to generate diverse
images . (2) Authenticity Constraint: We ensure data authen-
ticity by enforcing the transformed data to be easily / hardly
recognized by local-side global model / local model.

Recent studies (Zhao et al. 2021; Song et al. 2019; Dai
et al. 2021) attempt to solve domain shift issue by design-
ing domain generalizable (DG) algorithms, where they learn
generalized re-ID models by training on several labeled
source domains. Despite their success, all of them require
the centralization of training data, raising data privacy con-
cerns. One promising solution is federated learning (McMa-
han et al. 2017), which aims to learn a generalized model
by accumulating (e.g., averaging) the knowledge of models
independently trained on each domain. In such a learning
paradigm, the data privacy issue can be largely alleviated.
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Nevertheless, it is hard to achieve good generalization
without centralizing training data due to the data heterogene-
ity under different environment conditions (Wu and Gong
2021). Moreover, since re-ID is an open-set (Panareda Busto
and Gall 2017) retrieval problem, where each domain has
completely different pedestrians, the optimization of feder-
ated domain generalization in re-ID (FedDG re-ID) is more
challenging than other closed-set tasks like image classifi-
cation (Li, He, and Song 2021) or segmentation (Liu et al.
2021).

To tackle the FedDG re-ID problem, recent works focus
on alleviating the overfitting of each domain’s local train-
ing (Wu and Gong 2021), or adapting the vanilla federated
techniques to the re-ID task (Zhuang et al. 2020). However,
the direction of generating novel data through style trans-
fer (Dumoulin, Shlens, and Kudlur 2017; Huang and Be-
longie 2017) is largely ignored. In the literature, data styliza-
tion is a commonly used strategy in DG (Zhou et al. 2021;
Zhong et al. 2022; Tang et al. 2021), while most of them
are not applicable in FedDG re-ID due to their requirement
of centralizing source domains. Moreover, since the data au-
thenticity is not explicitly ensured in these methods, unre-
alistic data may be generated, which will negatively impact
the optimization.

In this paper, we tackle the FedDG re-ID problem in
the view of data stylization and propose the Diversity-
Authenticity Co-constrained Stylization (DACS) to gener-
ate diverse and authentic data for learning robust local mod-
els. Specifically, we introduce a style transformation model
(STM) for each domain and jointly constrain the STM with
two losses. (1) To generate diverse data, we encourage STM
to produce novel data with a different distribution from the
current domain. This is achieved by enlarging the simplified
2-Wasserstein distance (He et al. 2018) between the original
and transformed data (see Fig. 1(1)). The larger the distance,
the more diverse the generated data will be. In this way,
the local model can see as diverse styles as possible dur-
ing local optimization. However, the unconstrained enlarge-
ment of Wasserstein distance may lead to unrealistic styliza-
tion, which may impair the optimization. We thus propose
the authenticity constraint to solve this problem. (2) Con-
cretely, to ensure data authenticity, we require the generated
data to be hardly / easily recognized by the local model /
local-side global model. This is achieved by measuring and
controlling the entropy produced by these two models (see
Fig. 1(2)). By jointly considering the above two constraints,
STM can generate diverse and authentic data, which helps us
to learn more generalized local model and thereby improves
FedDG re-ID accuracy. The main contributions of this paper
are three-fold:

• We propose a novel data stylization approach for FedDG
re-ID, which enables us to generate novel data for local
training and promote FedDG re-ID accuracy.

• We design a diversity loss to enlarge the distribu-
tional discrepancies between original and generated data,
which enables STM to generate novel data and avoids
overfitting of local models.

• We further introduce an authenticity loss to enforce the

STM to produce authentic data, allowing the model to
better benefit from the stylized images.

Extensive experiments conducted on four large-scale re-
ID benchmarks demonstrate the advantage of our method in
improving the generalization capability of local models. In
addition, our method establishes new state-of-the-art results
for FedDG re-ID.

2 Related Work
Domain Generalization. Deep neural networks are vulnera-
ble to domain shift among different training domains. There-
fore, recent studies resort to domain generalization (DG) (Li
et al. 2018; Zhao et al. 2021; Jin et al. 2020; Chattopad-
hyay, Balaji, and Hoffman 2020) to optimize generalizable
models that can be directly deployed in unseen domains. Re-
cently, many methods are proposed to solve the DG prob-
lem in person re-ID (Jin et al. 2020; Zhao et al. 2021; Dai
et al. 2021). e.g., Zhao et al. (Zhao et al. 2021) adopt meta-
learning to improve the generalization of models with in-
terpolated features. Dai et al. (Dai et al. 2021) optimize an
additional voting network for model aggregation to achieve
generalization. Despite their success, most of them require
the centralization of data from source domains, raising the
risk of privacy leakage. Different from them, this paper tries
to solve DG problem under the federated learning scenario
(FedDG re-ID), which is a more challenging task. Please re-
fer to supplementary for more explanations.
Federated Learning. Federated learning (McMahan et al.
2017; Karimireddy et al. 2020; Liu et al. 2021; Li, He,
and Song 2021) aims at optimizing models with decentral-
ized data to protect data privacy. FedAvg (McMahan et al.
2017) is the first federated learning algorithm, which aver-
ages locally trained models and redistributes the aggregated
model to local clients for further training. Subsequently,
FedProx (Li et al. 2020), MOON (Li, He, and Song 2021),
and SCAFFOLD (Karimireddy et al. 2020) are proposed to
prevent local overfit for better accuracies. These methods
are originally designed for closed-set problems, e.g., image-
classification, where the training and testing sets share the
same classes. To solve the open-set (Panareda Busto and
Gall 2017) tasks, Zhuang et al. (Zhuang et al. 2020) pro-
pose FedPav, which adapts FedAvg to the re-ID by only ex-
changing feature extractors. Wu et al. (Wu and Gong 2021)
first explicitly introduce the definition of FedDG re-ID and
considers each source domain as an individual local client.
They propose to solve the problem with model distillation.
The above methods mainly focus on keeping the consistency
between local and global models. Instead, this paper consid-
ers stylization for local data, which is largely overlooked.
Style Transfer. Style transfer (Dumoulin, Shlens, and Kud-
lur 2017; Huang and Belongie 2017; Choi et al. 2018; Zhu
et al. 2017) is widely studied in the image translation, which
aims to change the styles of images while retaining their se-
mantic contents. Recently, the idea of style transfer is em-
ployed to generate data with different styles, which are used
for learning generalized models. Specifically, (Zhou et al.
2021; Tang et al. 2021) interpolate styles of samples to syn-
thesize novel ones while (Zhong et al. 2022; Wang et al.
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Figure 2: Illustration of our FedDG re-ID method. (a) Illustration of the overall client-server collaborative learning (CSCL),
which contains five steps. 1⃝ Local Training. 2⃝ Model Upload. 3⃝ Model Aggregation. 4⃝ Redistribution. 5⃝ Evaluation on
Unseen Domains. Our paper mainly focuses on step 1⃝ local training. (b) The overall process of our DACS for local training,
which is comprised of 1⃝ Expert Training and 2⃝ Joint Optimization.

2021) adopt learnable modules to directly optimize novel
styles. These methods commonly require centralization of
multiple domains to ensure the diversity of the generated
styles, which is not applicable in federated learning. In addi-
tion, the data authenticity is not explicitly considered, which
may hamper the model optimization. In this work, we devise
a novel strategy to jointly ensure the diversity and authentic-
ity, which is tailored-made for FedDG re-ID.

3 Methodology
Problem Definition. Given N labeled source domains S =
{D1,D2, ...DN}, where the i-th domain Di = {Xi,Yi} is
comprised of Mi training images Xi and their correspond-
ing identity labels Yi. FedDG re-ID considers each domain
as an isolated client and can not exchange data with others1.
The objective for FedDG re-ID is optimizing a generalizable
re-ID model that performs well on unseen target domains
by collaboratively utilizing these isolated clients with the
help of central server i.e., client-server collaborative learn-
ing (CSCL). The whole process formulates the cross-silo
federated learning setting (Kairouz et al. 2021). As data cen-
tralization is not allowed, FedDG re-ID becomes more chal-
lenging than vanilla domain generalizable re-ID.

3.1 Overview
The overall process of CSCL for FedDG re-ID is illus-
trated in Fig. 2(a), which contains five steps. In step 1⃝
Local Training, we deploy two re-ID models and one
style transformation model (STM) for each domain. The
two re-ID models, including “local model” and “local-side
global model”, are designed with different purposes. “Lo-
cal model” is trained with only local data to retain domain-
specific knowledge and will not be shared. On the con-
trary, “local-side global model” can be uploaded to central
server. We adopt STM to generate novel data through our
“diversity-authenticity co-constraint stylization” (DACS),
which is achieved by using these two re-ID models as the
supervision for image stylization. The generated data are
subsequently leveraged for the optimization of “local-side
global model”. In step 2⃝ Model Upload, the optimized

1In this paper, “domain” and “client” are interchangeable.

“local-side global model” is uploaded to the central server.
In step 3⃝ Model Aggregation, we aggregate the collected
models to obtain the “server-side global model”. In step 4⃝
Redistribution, the aggregated “server-side global model”
is redistributed to each domain to update “local-side global
model”. By iterating step 1⃝ to 4⃝ until convergence, we
deploy the “server-side global model” to target domains for
evaluation, i.e., step 5⃝ Evaluation on Unseen Domains.

Our paper mainly focuses on step 1⃝ and tries to gener-
ate novel data with our diversity-authenticity co-constrained
stylization (DACS) for local generalization. The details of
our two-stage DACS for local training are demonstrated in
Fig. 2(b). Concretely, in stage 1⃝ “Expert Training”, we
conduct vanilla optimization on local model to maintain
domain-specific knowledge. Then, in stage 2⃝ “Joint Op-
timization”, we devise diversity and authenticity losses to
synthesize novel data for the joint optimization of STM and
local-side global model. The former is designed to generate
diverse data by enlarging Wasserstein distance between the
original and transformed counterparts. The latter ensures the
authenticity of generated images by enforcing the them to be
hard/easy for the local/local-side global model to recognize
through entropy function. Next, we introduce our DACS for
local training in detail. Since DACS will be applied to each
domain, we omit the subscript i for simplicity.

3.2 Diversity-Authenticity Constrained
Stylization

Style Transformation Model. We deploy a style trans-
formation model (STM) for each domain to generate data
with novel distributions. The STM of each domain is com-
prised of two trainable parameters µ̂ ∈ RC×H×W and σ̂ ∈
RC×H×W , which can transform local data to novel styles
through simple scaling and shifting. Specifically, given a
batch of local images x ∈ RB×C×H×W , we first compute
their channel-wise data statistics µ and σ with:

µ =
1

HW

∑
h∈H,w∈W

xh,w,

σ =

√
1

HW

∑
h∈H,w∈W

(xh,w − µ)2,

(1)
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where H and W are the spatial dimensions of input images,
C equals to 3 for RGB images, and B is the batch size. The
obtained channel-wise µ ∈ RB×C and σ ∈ RB×C are uti-
lized for stylization with the following equation:

x′ = ϕ(x; µ̂, σ̂) = σ̂ ∗ (x− µ)

σ + ϵ
+ µ̂, (2)

where x′ is the transformed data and ϵ is a small value to
avoid zero division. µ̂ and σ̂ are the trainable tensors in
STM, which are initialized with Gaussian noise and will be
optimized to explore the most plausible styles.
Diversity Loss. To generate novel data, we attempt to en-
large the distributional difference between x and x′. Based
on our STM design, we can readily estimate the distribu-
tion of x′ as P(x′) ∼ Nnovel(µ̂, σ̂

2). Similarly, the distri-
bution of original data x can also be formulated as P(x) ∼
Nori(µ, σ

2), where µ and σ are obtained through Eq. 1. We
thus define the diversity loss Ldiv as:

Ldiv(x;ϕ) = −D(P(x),P(x′)), (3)

where D(·, ·) is the distributional metric with various
choices like Jensen–Shannon divergence (JSD) (Lin 1991)
or KL divergence (Shannon 1948). We adopt simplified 2-
Wasserstein distance (He et al. 2018) as the distributional
metric due to its low computational burden and simple form.
Therefore, the final diversity loss can be formulated as:

Ldiv(x;ϕ) = Ldiv(x; µ̂, σ̂) = −||µ− µ̂||22−||σ− σ̂||22. (4)

By reducing the above diversity loss, we generate novel
data x′ with a different data distribution from current do-
main. However, the unconstrained enlargement of Wasser-
stein distance may generate unrealistic samples and bring
negative effects on local optimization. We thus propose an-
other constraint to ensure data authenticity.
Authenticity Loss. In each domain, we have two re-ID mod-
els: “local model” and “local-side global model”. The for-
mer is solely optimized with local data while the latter is
initialized with averaged global model. Therefore, the lat-
ter model has more generalized knowledge than the for-
mer model and can be utilized to assess the authenticity
of input data. To this end, we propose to adopt both mod-
els for authenticity estimation. Concretely, (1) we require
the transformed data to be well recognized by the local-
side global model for high authenticity (i.e., keep low global
uncertainty). (2) However, consistently reducing global un-
certainty is not sufficient as STM may be prone to trivial
solution and keep the input images unchanged. To avoid
this problem, we additionally enforce the transformed data
to be hardly discriminated by the “local model” ( i.e., in-
creasing local uncertainty). As the “local model” contains
more domain-specific information, increasing the local un-
certainty enables STM to generate out-of-domain data and
thus avoid the trivial solution. (3) Moreover, to facilitate
the optimization of STM for data transformation, the gener-
ated counterparts should also be harder for local-side global
model to recognize than the original images. We thus fur-
ther constrain the global uncertainty of the transformed data
to be larger than the original data.

Algorithm 1: The Process of Our Local Training.
Inputs: Training data from the i-th domain Xi and labels
Yi. Local iteration number iter. STM ϕi
Outputs: Feature Extractor for i-th domain θGi

.
1: function LOCALTRAIN(Domain i, STM ϕi, local

model fLi , local-side global model fGi )
2: for iter num in iter do
3: Sample a batch of training data {xi, yi} ;
4: // Stage 1⃝: Expert Training.
5: Unfreeze fLi

;
6: Optimize fLi

with Eq. 7 and {xi, yi};
7: // Stage 2⃝: Joint Optimization.
8: Freeze fLi

;
9: Transform x to x′ with ϕi via Eq. 2;

10: Compute Eq. 8 with fLi
, fGi

, and ϕi;
11: Update fGi

, and ϕi;
12: end for
13: Return Feature extractor θGi of fGi .
14: end function

In this paper, we adopt entropy function H(·) =
−
∑

j pj(·) log pj(·) to measure the model’s uncertainty for
the given data, where pj(·) is the probability of classifying
the input data to the j-th class. Our authenticity constraint
can be formulated as:

H(fG(x)) < H(fG(x
′)) < H(fL(x

′)), (5)

where x and x′ are original and transformed data. fG(·) and
fL(·) are the logits predicted by “local-side global model”
and “local model”, respectively. Since these inequalities can
not be optimized by back-propagation, we convert Eq. 5 to
the following loss:

Lau(x;ϕ) = Softplus(H(fG(x))−H(fG(ϕ(x))))

+ Softplus(H(fG(ϕ(x)))−H(fL(ϕ(x)))),
(6)

where Softplus(·) = ln(1 + exp(·)) is a monotonically
increasing function. Minimizing the first term of Eq. 6 is
equivalent to achieving H(fG(x)) < H(fG(x

′)). Mean-
while, minimizing the second term of Eq. 6 means satisfying
H(fG(x

′)) < H(fL(x
′)). It should be noted that Lau is de-

signed only for optimizing STM ϕ, and other models (local
model fL and local-side global model fG) will not be up-
dated in back-propagation.

3.3 Local Training
We improve the generalization of local-side global model
and optimize STM with our proposed DACS during the local
training. As shown in Fig. 2(b), our local training includes
two stages: “expert training” and “joint optimization”.
Expert Training. In this stage (see Fig. 2(b)- 1⃝), we train
the local model with a sampled batch of local data x and
their corresponding labels y with the following loss:

Lloc(x, y; fL) = Ltri(θL(x), y) + Lce(fL(x), y), (7)

where θL is the feature extractor part of local model fL
and outputs intermediate features to compute triplet loss

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

6480



Algorithm 2: The Process of Our FedDG re-ID method.
Inputs: N decentralized domains. Their corresponding
training data Xi and labels Yi (1 ≤ i ≤ N ). Local iteration
number iter. Total number of Epochs E.
Outputs: Generalized Feature Extractor θS .

1: // Client-Server Collaborative Learning (CSCL).
2: function FEDDGTRAIN(Training epochs E, N decen-

tralized domains)
3: Initialize all θL and θG with

ImageNet-pretrained weights;
4: for epoch num in E do
5: // Step 1⃝: Local Train via DACS.
6: for i in N do
7: θGi

= LocalTrain(i, ϕi, fLi
, fGi

);
8: end for
9: // Step 2⃝: Model Upload.

10: Upload {θG1 , ..., θGN
} to server;

11: // Step 3⃝: Model Aggregation.
12: Obtain θS via Eq. 9;
13: // Step 4⃝: Redistribution.
14: Redistribute θS to each domain;
15: Update {θG1

, ..., θGN
};

16: end for
17: Return θS for evaluation.
18: end function

(e.g., pool-5 features if we adopt ResNet-50 as the back-
bone). Ltri and Lce are commonly used triplet and cross-
entropy losses. This stage ensures fL’s capability of retain-
ing domain-specific data distribution.
Joint Optimization. In the second stage (see Fig. 2(b)- 2⃝),
we adopt the original data and their generated counterparts
to optimize both fG and STM. Meanwhile, STM will also be
supervised by our diversity and authenticity losses to ensure
the data quality used for joint optimization. The final loss for
joint optimization is formulated as:
LDACS(x, y; fG, ϕ) = Lloc(x, y; fG) + Lloc(ϕ(x), y; fG, ϕ)

+ λdivLdiv(x;ϕ) + λauLau(x;ϕ),
(8)

where λdiv and λau are balancing factors. It should be noted
that both diversity and authenticity losses will not affect
the optimization of local-side global model fG. Therefore,
we jointly optimize STM and local-side global model in
LDACS . The overall process is illustrated in Alg. 1.

3.4 Subsequent Learning
Model Upload. We upload the local-side global model to
the central server. Different from federated learning in im-
age classification, each domain has different pedestrians in
FedDG re-ID. Therefore, for the local-side global model
fGi

= {θGi
, ψi} in the i-th domain, we only share the fea-

ture extractor θGi
and keep classifier ψi in its own client.

Model Aggregation. We aggregate {θG1
, ..., θGN

} from all
clients to obtain server-side global model θS :

θS =

N∑
i=1

Mi

Mtotal
θGi , (9)

where Mtotal =
∑N

i=1Mi is the total number of images for
all clients.
Redistribution. The obtained θS will be further redis-
tributed to each domain to update local-side global models
for the next epoch of training.
Evaluation on Unseen Domains. After iterating previous
steps until convergence, the obtained “server-side global
model” will be directly deployed to unseen domains for eval-
uation. The overall process is shown in Alg. 2.

4 Experiments
4.1 Experiment Setup
The details of all experiments, including the used datasets,
evaluation protocols, and implementation details, are
demonstrated in the supplementary. Note that, DukeMTMC-
reID has been withdrawn and is thus not used in this work.

4.2 Comparison with State of the Art
We first compare our algorithm with state-of-the-art meth-
ods in Tab. 1. The compared algorithms can be divided
into four categories. (1) Classical federated learning, such as
SCAFFOLD (Karimireddy et al. 2020) and MOON (Li, He,
and Song 2021). (2) Federated re-ID algorithms, including
FedPav (Zhuang et al. 2020) and FedReID (Wu and Gong
2021). FedPav can be seen as the baseline for FedDG re-
ID. (3) Single domain generalization (SDG) for re-ID like
SNR (Jin et al. 2020) and TransMatcher (Liao and Shao
2021). SDG is the only type of normal DG algorithm that
can be used under federated scenario, please find supple-
mentary for more explanations. In Tab. 1, we report the re-
sults of SNR and leave the results of TransMatcher in the
supplementary. (4) Stylization-based domain generalization,
including MixStyle (Zhou et al. 2021) and CrossStyle (Tang
et al. 2021). For “SNR”, we adopt its recommended hyper-
parameters and deploy SNR modules after each ResNet
layer to ensure the best results are achieved. The indepen-
dently trained models are then averaged for evaluation. For
“MixStyle” and “CrossStyle”, we directly deploy them in
each client to generate novel data by mixing or exchang-
ing local styles because federated learning does not allow
data centralization of source domains. “Joint” denotes train-
ing re-ID models with centralized source domains. We also
report the results of using ViT (Dosovitskiy et al. 2021) as
backbone and compare them with FedPav and CrossStyle.

From Tab. 1, we have three conclusions. (1) Optimizing
with more decentralized domains can achieve better ac-
curacies. Here we take experiments evaluated on Market-
1501 to demonstrate. When optimizing with only one do-
main, the best mAP score is 23.3% (“MS→M”), which is
lower than all FedDG re-ID methods trained with multiple
domains. Therefore, FedDG re-ID with multiple domains
is worth researching and has significant meaning for op-
timizing robust and safe re-ID system. (2) Our method
achieves state-of-the-art performance. Specifically, for
“MS+C2+C3→M”, we achieve 36.3% in mAP and 61.2% in
rank-1 accuracy when using ResNet-50 as backbone, which
are the highest accuracies among previous methods. More-
over, our method also outperforms “Joint”, demonstrating
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Methods
MS + C3
+C2 → M

C2 + C3
+M → MS

MS + C2
+M → C3

mAP rank-1 mAP rank-1 mAP rank-1
Single Model (1) 23.3 47.5 2.7 8.8 18.0 18.5
Single Model (2) 13.2 31.1 1.7 6.0 21.6 22.5
Single Model (3) 18.9 41.2 3.3 10.0 10.2 11.2

MOON 26.8 51.1 4.8 14.5 20.9 22.5
SCAFFOLD 26.0 50.5 5.3 15.8 22.9 26.0

FedPav 25.4 49.4 5.2 15.5 22.5 24.3
FedReID 30.1 53.7 4.5 13.7 26.4 26.5
MixStyle 31.2 53.5 5.5 16.0 28.6 31.5

CrossStyle 32.5 59.6 4.6 14.0 27.8 28.0
SNR 32.7 59.4 5.1 15.3 28.5 30.0
Ours 36.3 61.2 10.4 27.5 30.7 34.1

SNR+Ours 37.7 65.9 11.6 29.4 33.6 37.5
Joint 32.2 58.6 5.6 16.3 29.5 29.0

FedPav (ViT) 37.4 62.6 14.6 33.7 23.7 25.0
CrossStyle (ViT) 41.4 65.8 17.9 40.8 31.0 38.4

Ours (ViT) 45.4 70.7 20.3 44.2 36.6 42.1

Table 1: Comparison with state-of-the-arts, we compare our
method with state-of-the-art federated learning algorithms.
M: Market-1501, C2: CUHK02, C3: CUHK03, MS: MSMT-
17. Joint: the model jointly trained on all source domains
without decentralization constraint. Single Model (N): the
model is individually trained on the N-th source domain of
each setting. “ViT”: Results of using ViT as Backbone.

Method
Attributes MS+C2

+C3→M
MS+M

+C2→C3
ϕ Ldiv Lau mAP rank-1 mAP rank-1

Baseline × × × 25.4 49.4 22.5 24.3
RS ✓ × × 25.1 50.6 20.4 22.8
DC ✓ ✓ × 31.9 57.1 29.1 30.0
AC ✓ × ✓ 34.5 59.7 27.3 28.0

DACS ✓ ✓ ✓ 36.3 61.2 30.7 34.1

Table 2: Ablation study on STM ϕ, diversity loss Ldiv , and
authenticity loss Lau. RS: RandStyle. DC: diversity con-
straint. AC: authenticity constraint. DACS: Ours.

its capability of learning generalized re-ID models under
federated learning constraint. Similar results can also be
found in other settings. When we change the backbone to
“ViT” (Dosovitskiy et al. 2021), our method can also out-
perform FedPav and CrossStyle, demonstrating its effective-
ness. (3) Our method is compatible with other domain
generalization algorithm. Concretely, when compared with
“SNR”, the mAP scores of “SNR+Ours” are improved. In
sum, the above results demonstrate the superiority and com-
patibility of the proposed method for FedDG re-ID.

4.3 Ablation Study
To better understand how STM ϕ, diversity loss Ldiv ,
and authenticity loss Lau affect the FedDG re-ID re-
sults, we gradually add them into the training process
of “MS+C2+C3→M” and “MS+C2+M→C3” for ablation

Method
MS+C2
+C3→M

MS+M
+C2→C3

mAP rank-1 mAP rank-1
Baseline 25.4 49.4 22.5 24.3

(a) The choice of distributional metric
JSD 34.2 58.8 29.1 32.8
KL 33.6 56.8 28.0 30.4

WD (ours) 36.3 61.2 30.7 34.1
(b) Data transfer in channel or spatial level

Channel level 30.0 55.4 25.1 25.5
Spatial level (Ours) 36.3 61.2 30.7 34.1

(c) The design of authenticity loss
H(fG(x)) < H(fG(x

′)) 33.3 58.4 27.0 29.2
H(fG(x

′)) < H(fL(x
′)) 34.6 59.0 26.7 28.6

Complete (Ours) 36.3 61.2 30.7 34.1

Table 3: Further experiments. (a) The choice of distribu-
tional metric in Eq. 3. (b) The choice of channel-level or
spatial-level transfer. (c) The design of authenticity loss.

study. We compare five different training schemes in Tab. 2.
Baseline: results of vanilla federated learning. RandStyle
(RS): results of transforming data to random styles for op-
timization. The parameters of STM are randomly initialized
and do not have any constraint during the optimization. Di-
versity Constraint (DC): results of DACS without authen-
ticity constraint for local training. Authenticity Constraint
(AC): results of DACS without diversity constraint in local
training step. DACS: results of using complete DACS.
Effectiveness of solely using diversity or authenticity
constraint. By comparing “RS” and “DC” of Tab. 2, we note
that diversity loss Ldiv is beneficial to improving the gener-
alization of FedDG re-ID models. Specifically, in row “RS”,
we do not use any constraint on STM and its parameters
are randomly initialized. In this case, STM can not gener-
ate transformed data that are beneficial to the generalization,
leading to the stagnant re-ID accuracies. The results in “RS”
can not even outperform “baseline”, until taking diversity
loss into optimization. Similarly, the comparison between
“RS” and “AC” in Tab. 2 demonstrate the effectiveness of
using authenticity loss in optimization. We thus conclude
that either diversity or authenticity constraint is capable of
improving FedDG re-ID accuracies.
Effectiveness of diversity-authenticity co-constraint. By
comparing “DC”, “AC”, and “DACS” in Tab. 2, we ob-
serve that jointly using diversity and authenticity losses
can further improve FedDG re-ID accuracies. For exam-
ple, in “MS+C2+C3→M”, only using diversity or authen-
ticity constraint during model optimization achieves 31.9%
and 34.5% mAP scores, respectively. However, after jointly
using our two constrains, the mAP score becomes 36.3%.
Therefore, we conclude that the proposed diversity and au-
thenticity constraints are complementary to each other. Us-
ing both constraints can coherently improve performance.

4.4 Further Experiments
The choice of distributional metric. In Eq. 3, we choose
to enlarge Wasserstein distance between the original and
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Figure 3: (a) The original and transformed data during the optimization of “MS+C2+C3→M”. (b) t-SNE visualizations for
“MS+C2+C3→M”. MS: MSMT-17. C3: CUHK03. C2: CUHK02. MS-Novel: Transformed MS data.

transformed data to ensure the data diversity. However, the
distributional metric has various choices, such as JSD (Lin
1991) or KL divergence (Shannon 1948). We conduct ex-
periments of using these two metrics in “MS+C2+C3→M”
and “MS+M+C2→C3” to find the best distributional metric
for diversity loss. As shown in Tab. 3(a), using Wasserstein
distance can achieve the best re-ID accuracies for both tasks
and we thus use Wasserstein distance in diversity loss.
The choice of channel- or spatial-level style transfer. The
learnable parameters (µ̂ and σ̂) in our STM are C ×H ×W
tensors, which enable us to transfer styles for each pixel, i.e.,
spatial-level style transfer. There is also another type of strat-
egy for data transfer, which defines µ̂ ∈ RC and σ̂ ∈ RC

to uniformly transfer pixels in the same channel to the
same style, i.e., channel-level transfer. In Tab. 3(b), we re-
port the results of using channel-level style transfer on two
FedDG re-ID tasks. From the results, we observe that using
channel-level style transfer achieves lower accuracies than
our spatial-level design. We thus choose to transfer styles of
input images spatially as it is a more effective manner.
Further study on the design of authenticity loss. The
authenticity loss in Eq. 6 is proposed to achieve two in-
equalities, i.e., H(fG(x)) < H(fG(x

′)) and H(fG(x
′)) <

H(fL(x
′)). We conduct experiments of independently using

the two inequalities as constraints and compare them with
the results of using complete Ldiv in Tab. 3(c). From the re-
sults, we note that independently using each inequality can
bring improvements on the re-ID accuracies, while jointly
using both can achieve the best results. Therefore, we con-
clude that both inequalities are important for Ldiv .

4.5 Visualization
We visualize the original / transformed images and features
during the optimization of “MS+C2+C3→M” to better un-

derstand our algorithm. Specifically, given a batch of MS
images x, we obtain their transformed counterparts x′ with
STM and show them in Fig. 3(a). Moreover, these data, com-
bined with data from other source domains (C2 and C3),
are forwarded to server-side global model θS for feature
extraction and t-SNE (Van der Maaten and Hinton 2008)
visualization in Fig. 3(b). From these two figures, we ob-
serve that at the early stage of training (the first 10 epochs),
transformed images x′ are quite different from their orig-
inal counterparts x in both feature-level and image-level.
In image-level (see Fig. 3(a)), the transformed images have
high contrast and unrealistic illumination, which may lead
to the performance degradation of re-ID model. In feature-
level (see Fig. 3(b)), the transformed data have large dis-
crepancies with their original images in the feature space.
However, these discrepancies are gradually reduced at the
later stage of training (after 20th epoch). Based on these ob-
servations, we conjecture that DACS first focuses on the di-
versity of the transformed data and gradually improves the
data authenticity for further local training. The step-by-step
transformation ensures DACS’s effectiveness.

5 Conclusion

In this paper, we propose a diversity-reality co-constrained
stylization (DACS) method for FedDG re-ID task. Specifi-
cally, we adopt STM to generate novel data by jointly con-
sider diversity and authenticity constrains. The diversity loss
requires the generated data to be different from local domain
by enlarging Wasserstein distance. The authenticity loss en-
forces the transformed data to be hard / easy for local model
/ local-side global model to recognize for data authenticity.
Extensive experiments show the efficacy of our method.
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