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Abstract

Neural Radiance Fields have demonstrated impressive per-
formance in novel view synthesis. However, NeRF and most
of its variants still rely on traditional complex pipelines to
provide extrinsic and intrinsic camera parameters, such as
COLMAP. Recent works, like NeRFmm, BARF, and L2G-
NeRF, directly treat camera parameters as learnable and es-
timate them through differential volume rendering. However,
these methods work for forward-looking scenes with slight
motions and fail to tackle the rotation scenario in practice. To
overcome this limitation, we propose a novel camera param-
eter free neural radiance field (CF-NeRF), which incremen-
tally reconstructs 3D representations and recovers the cam-
era parameters inspired by incremental structure from mo-
tion. Given a sequence of images, CF-NeRF estimates camera
parameters of images one by one and reconstructs the scene
through initialization, implicit localization, and implicit opti-
mization. To evaluate our method, we use a challenging real-
world dataset, NeRFBuster, which provides 12 scenes under
complex trajectories. Results demonstrate that CF-NeRF is
robust to rotation and achieves state-of-the-art results without
providing prior information and constraints.

Introduction
3D reconstruction is a hot topic in computer vision that aims
to recover 3D geometry from RGB images. However, tra-
ditional methods contain lots of complex procedures, such
as feature extraction and matching (Lowe 2004; Yi et al.
2016), sparse reconstruction (Agarwal et al. 2011; Wu 2013;
Schonberger and Frahm 2016; Moulon et al. 2016), and
dense reconstruction (Yao et al. 2018; Mi, Di, and Xu 2022;
Yan et al. 2023). Consequently, traditional methods are not
a differential end-to-end reconstruction pipeline and require
high-quality results from each sub-module to achieve accu-
rate results. When the quality of results is poor, it is chal-
lenging to identify which module is causing the problem.

Recently, Neural Radiance Fields (NeRF) (Mildenhall
et al. 2020; Yu et al. 2021a; Müller et al. 2022) have demon-
strated a novel way to render highly realistic novel views
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(a) NeRFmm (b) SiRENmm (c) BARF

(d) GARF (e) L2G-NeRF (f) CF-NeRF

Figure 1: We select a sequence from NeRFBuster (Warburg
et al. 2023) and use novel views synthesis to compare the
quality of camera parameters from NeRFmm (Wang et al.
2021b), SiRENmm (Guo and Sherwood 2021), BARF (Lin
et al. 2021), GARF (Chng et al. 2022), L2G-NeRF (Chen
et al. 2023) and our method CF-NeRF.

with impressive quality. Without recovering 3D geometry,
NeRF relies on multi-layer perception (MLP) to predict
color and sigma for each point in the scene and samples
several points along a ray to render a pixel through differ-
ential volume rendering. Unlike traditional 3D reconstruc-
tion, NeRF simplifies the reconstruction into one step and
implicitly represents the 3D scene. Benefiting from the ex-
cellent ability of NeRF, it has been further extended to dy-
namic scenes (Pumarola et al. 2021), large-scale (Turki, Ra-
manan, and Satyanarayanan 2022), and even surface (Wang
et al. 2021a) and material reconstruction (Boss et al. 2021a).
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Despite the remarkable performance of NeRF and its vari-
ants in novel view synthesis, they still require camera param-
eters before training. The most common processing pipeline
is first recovering camera parameters using traditional com-
plex methods (Schonberger and Frahm 2016; Moulon et al.
2016), and then training the NeRF through differential vol-
ume rendering. In other words, the differentiability of the
whole reconstruction pipeline is destroyed and divided into
two separate parts, resulting in the NeRF not being end-to-
end and the reconstruction quality being unidirectionally de-
pendent on traditional methods.

To unify camera parameter estimation and reconstruction,
researchers have tried to recover or optimize camera param-
eters along with NeRF. The straightforward idea is to treat
camera parameters as learnable, as NeRFmm (Wang et al.
2021b) does. BARF (Lin et al. 2021) recovers extrinsic cam-
era parameters and the NeRF model by dynamically adjust-
ing weights of different frequencies of positional encoding.
GARF (Chng et al. 2022) replaces ReLU with Gaussian ac-
tivations to obtain high-accuracy results. NeROIC (Kuang
et al. 2022) and NeRFStudio (Tancik et al. 2023) optimize
camera parameters and the NeRF simultaneously. However,
these methods are only suitable for forward-looking scenes
or scenes with initial camera parameters and cannot be di-
rectly used in the real world with complex movement.

This paper proposes a new end-to-end approach called
camera parameter free NeRF (CF-NeRF) to address the lim-
itations of existing NeRF-based methods in estimating cam-
era parameters. Figure 1 compares rendered novel views
by camera parameters estimated by several methods (Wang
et al. 2021b; Guo and Sherwood 2021; Lin et al. 2021; Chng
et al. 2022; Chen et al. 2023) and our method CF-NeRF,
where CF-NeRF is the only method that successfully re-
constructs the 3D scene with rotation. Unlike other meth-
ods that simultaneously estimate all camera parameters, CF-
NeRF inherits ideas from incremental structure from mo-
tion (SfM) and recovers camera parameters one by one. CF-
NeRF contains three major components: initialization, im-
plicit localization, and implicit optimization. CF-NeRF uses
initialization to recover camera parameters and NeRF by a
few images and estimates camera parameters of other im-
ages through two steps: the implicit localization provides an
initial camera parameter for the newly added image, and the
implicit optimization optimizes camera parameters of all im-
ages to reduce drift. Our contributions are as follows:

1. We propose a novel end-to-end method, CF-NeRF, that
does not need prior information or constraints to recover
the intrinsic and extrinsic camera parameters and the
NeRF simultaneously.

2. We design an incremental training pipeline for the CF-
NeRF, inspired by the incremental SfM, to avoid trapping
to local minimal and is suitable for complex trajectories.

3. Experiments of our method achieve state-of-the-art re-
sults on the NeRFBuster dataset (Warburg et al. 2023)
captured in the real world, proving that the CF-NeRF can
estimate accurate camera parameters with the specifically
designed training procedure.

Related Work
In this section, we introduce the development of NeRF-
related methods with known camera parameters and several
camera parameter estimation methods using SfM&SLAM
(simultaneous localization and mapping) and the NeRF.

NeRF
NeRF (Mildenhall et al. 2020) uses the MLP to represent the
3D scene implicitly and can be trained through differential
volume rendering from a set of images with known cam-
era parameters. However, NeRF suffers from efficiency and
needs around 1-2 days to train a scene and several minutes
to render a novel view at the testing. Instant-NGP (Müller
et al. 2022) builds a multi-resolution hash table to store
space-aware feature vectors and reduces the complexity of
the MLP network. Meanwhile, (Sun, Sun, and Chen 2022;
Fridovich-Keil et al. 2022) try to use the coarse-to-fine strat-
egy and (Yu et al. 2021a; Chen et al. 2022; Garbin et al.
2021) update the network structure to speed up training or
testing. Besides, NeRF faces another problem that it can-
not work for large-scale, unbounded 3D scenes. NeRF++
(Zhang et al. 2020) and MipNeRF360 (Barron et al. 2021,
2022) utilize different sampling strategies for foreground
and background to model unbounded 3D scenes by a finite
volume. MegaNeRF (Turki, Ramanan, and Satyanarayanan
2022) and BlockNeRF (Tancik et al. 2022) split a large scene
into multiple small regions and assign a network for each
part. Moreover, (Martin-Brualla et al. 2021; Pumarola et al.
2021; Attal et al. 2021) extend NeRF to dynamic scenes and
(Jain, Tancik, and Abbeel 2021; Yu et al. 2021b; Niemeyer
et al. 2022; Kim, Seo, and Han 2022) introduce context or
geometry information into NeRF to suit scenes with sparse
views. In addition to the advances in novel view synthe-
sis, NeRF has made significant progress in geometric re-
construction (Yariv et al. 2021; Wang, Skorokhodov, and
Wonka 2022; Darmon et al. 2022; Long et al. 2023; Fu
et al. 2022). UniSURF (Oechsle, Peng, and Geiger 2021)
and NeUS (Wang et al. 2021a) estimate the zero-level set
of an implicit signed distance function instead of the space
density. Furthermore, some work (Zhang et al. 2021; Verbin
et al. 2022; Boss et al. 2021a; Kuang et al. 2022; Boss et al.
2021b, 2022) even combines BRDF and NeRF to decom-
pose a scene into shape, reflectance, and illumination. How-
ever, all of these methods split the reconstruction into two
steps and require traditional methods to provide camera pa-
rameters, which significantly limits the application of NeRF.

Camera Parameter Estimation
Traditional SfM (Wu 2013; Moulon, Monasse, and Marlet
2013; Schonberger and Frahm 2016; Moulon et al. 2016)
and SLAM (Mur-Artal, Montiel, and Tardos 2015; Engel,
Koltun, and Cremers 2017) can estimate camera parameters
for given images. However, these methods divide the recon-
struction pipeline into several non-differentiable modules
that need hand-crafted features (Lowe 2004) or learning-
based methods (Yi et al. 2016; Teed and Deng 2020) to es-
tablish image correspondences, and then reconstruct a sparse
scene and camera parameters through multi-view geometry.
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Figure 2: The pipeline of CF-NeRF. CF-NeRF can estimate the weight θ of NeRF F and the camera parameter δ. After
initializing through a few selected images, CF-NeRF recovers δ of the image one by one through implicit localization that only
optimizes the newly added image and implicit optimization that refines θ and δ. Implicit optimization can be divided into partial
and global optimization depending on the number of images used. We visualize δ reconstructed by CF-NeRF and sparse points
from COLMAP (Schonberger and Frahm 2016) to show that CF-NeRF can reconstruct rotation in image sequences.

In light of these limitations, it is worth exploring to es-
timate camera parameters during the training process of
NeRF. The most direct attempt to utilize NeRF is the visual
localization, where iNeRF (Yen-Chen et al. 2021), NeDDF
(Ueda et al. 2022), and PNeRFP (Lin et al. 2023) try to es-
timate the extrinsic camera parameter of a new image by
a pre-trained NeRF model. Then, NeRFmm (Wang et al.
2021b) and SiRENmm (Guo and Sherwood 2021) take the
NeRF and camera parameters as learnable and prove that it
is possible to train the NeRF model from scratch without
camera parameters, but they only work for forward-looking
scenes. To further enhance accuracy in forward-looking or
rotation scenes with initial camera parameters, BARF (Lin
et al. 2021) dynamically adjusts the weight of the positional
encoding, GARF (Chng et al. 2022) replaces the ReLU ac-
tivate function with the Gaussian activation function, and
L2G-NeRF (Chen et al. 2023) introduces a local-to-global
registration. Interestingly, GNeRF (Meng et al. 2021) and
VMRF (Zhang et al. 2022) assume there is a prior known
distribution of camera parameters to decrease the freedom of
camera parameters during training the NeRF model. Mean-
while, other researchers try to add different external restric-
tions to guide the camera parameter estimation. SCNeRF
(Jeong et al. 2021) and Level-S2fM (Xiao et al. 2023) rely
on feature matches to guide camera parameters estimation.
NoPe-NeRF (Bian et al. 2023), iMap (Sucar et al. 2021),
NeRF-SLAM (Rosinol, Leonard, and Carlone 2022), Nice-
SLAM (Zhu et al. 2022), and Nicer-SLAM (Zhu et al. 2023)
integrate depth maps from active sensors or CNN networks
to tune the NeRF. Additionally, LocalLR (Meuleman et al.
2023) combines depth maps and optical flow to train NeRF.

Regrettably, images acquired from real-world scenarios
often exhibit a multitude of challenges. These challenges
include rotations and the absence of prior information of
camera parameters. Furthermore, the introduction of exter-
nal constraints can augment the intricacy and unpredictabil-
ity of the reconstruction process. To solve these problems,
we propose CF-NeRF inspired by the traditional incremental
SfM, which does not require any prior information or exter-
nal constraints while reconstructing the 3D scene and cam-
era parameters end-to-end from image sequences, demon-
strating the powerful reconstruction capability of the NeRF
after using a specific training strategy.

Method
In this section, we provide an overview of the proposed
method. Firstly, we introduce the preliminary background
of the NeRF and the traditional incremental SfM. Then, we
explain the details of CF-NeRF that can recover camera pa-
rameters from image sequences.

Preliminary Background
NeRF NeRF can generate realistic images from a set
of images I = (I1, I2, ..., IN ) from N different places
without explicitly reconstructing. However, NeRF needs
associated camera parameters δ, including camera rota-
tion δR = (δR1

, δR2
, ..., δRN

), camera translation δT =
(δT1

, δT2
, ..., δTN

), and intrinsic camera parameter δK .
Given a NeRF model F and corresponding weight θ , it can
estimate color c and density σ through a implicit function
c(x, d⃗), σ(x) = Fθ(x, d⃗) with a point x and a view direction
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Figure 3: Estimated Parameters. CF-NeRF estimates the
weight θ of NeRF model and the camera parameter δ, which
include the camera rotation δR, the camera translation δT ,
and camera intrinsic parameter δK .

d⃗. To render a pixel p, NeRF needs to sample several points
xp(t) = o+ d⃗t along a ray shooting from the view position o
and generate the color cp by the volume rendering function
R as Eq. 1 shows, where T (t) = exp(−

∫ t

tn
σ(xp(s))ds) in-

dicates the accumulated transmittance along the ray. tn and
tf are the near and far bounds of the ray.

cp = R(p|θ) =
∫ tf

tn

T (t)σ(xp(t))c(xp(t), d⃗)dt (1)

Benefiting from the differential property of the volume
rendering, NeRF can be trained end to end by minimizing
the difference between cp and observed color I(p) as Eq. 2
shows, where L is the loss function. To be noted, NeRF only
estimates θ and borrows δ from traditional SfM methods.
However, NeRFmm (Wang et al. 2021b) prove that it is pos-
sible to estimate θ and δ simultaneously under the forward-
looking situation.

argmin
θ

{
∑
Ii∈I

∑
p∈Ii

L(R(p|θ), Ii(p))} (2)

Incremental SfM Given a set of images, the incremental
SfM can recover δ one by one in a linear time (Wu 2013)
and contains four steps (Schonberger and Frahm 2016):

Initialization The selection of an initial two-view is es-
sential because a suitable initial two-view improves the ro-
bustness and quality of the reconstruction. With a given two-
view and its matched features, incremental SfM computes
the relative pose by multi-view geometry (MVG) and trian-
gulates 3D points to initial the scene.

Image Registration After initialization, incremental SfM
adds images to the scene in order. Given a new image, incre-
mental SfM builds the 2D-3D relationship by matching its
features with images in the scene and recovers the camera
parameter by Perspective-n-Point (PnP).

Triangulation As a newly added image observes addi-
tional information that can extend the scale of the scene,

incremental SfM triangulates more 3D points based on the
new image and matched features.

Bundle Adjustment Adding new images and 3D points
without refinement leads to drift. Therefore, it is essential
to apply bundle adjustment (BA) by minimizing the re-
projection error. In terms of efficiency, incremental SfM pro-
poses partial BA that refines only a subset of images, and
global BA that optimizes all images.

CF-NeRF
Fusing the differentiability of NeRF and the reconstruction
strategy of SfM, we propose CF-NeRF, which is capable of
estimating the camera parameter under complex movement
from sequential images. CF-NeRF consists of three mod-
ules: initialization, implicit localization, and implicit opti-
mization, as Figure 2 shows. To convenient later introduc-
tion, we define the set of images we have completed esti-
mating the camera parameter as E, which starts from ∅.

Parameter CF-NeRF estimates camera parameter δ,
which includes δR, δT , and δK , and the weight θ of NeRF,
as Figure 3 shows. During the differential volume render-
ing, we calculate the ray r⃗p(t) = δTi

+ δRi
δ−1
Ki

p̃t of pixel
p in image Ii ∈ I , where p̃ is the homogeneous expression
of p. Following NeRFmm (Wang et al. 2021b), we use the
axis-angle to represent δR and assume all images have the
same camera intrinsic parameter without distortion so that
δK only contains the focal length. We initialize δR and δT to
zero, and set δK to 53◦ by a common field of view. The ac-
tivation function determines how to initialize θ. NeRF using
ReLU are initialized according to NeRF (Mildenhall et al.
2020), while NeRF using sine are initialized according to
SIREN (Sitzmann et al. 2020).

Initialization Similar to incremental SfM, CF-NeRF re-
quires initialize θ, δR1

, δT1
, and δK before adding images to

E. We select the first Ninit images Iinit from I to optimise
these parameters by Eq. 3 with ξinit iterations. Since the ro-
tation between adjacent images is not large and NeRF is hard
to estimate rotation (Lin et al. 2021), we do not estimate the
rotation in the initialization to reduce the freedom. After ini-
tialization, we add I1 to E and keep θ, δR1

, δT1
, and δK but

discard other camera parameters. Note that, unlike the ini-
tialization in the previous section, the initialization here is
data-specific, similar to the warm-up procedure.

argmin
θ,δT ,δK

{
∑

Ii∈Iinit

∑
p∈Ii

L(R(p|θ, δTi
, δK), Ii(p))} (3)

Implicit Localization After initialization, CF-NeRF esti-
mates the camera parameter of the remaining images one
by one and determines δRn

and δTn
for each new image In

by localization. Specifically, we first initialize δRn
and δTn

by δRn−1
and δTn−1

, and then optimize them by minimizing
Eq. 4 with fixed θ through ξloc iterations. The localization is
similar to iNeRF (Yen-Chen et al. 2021), but CF-NeRF does
not have a pre-trained F .

argmin
δRn ,δTn

{
∑
p∈In

L((p|δRn , δTn), In(p))} (4)
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(a) GT (b) NeRFmm (c) SiRENmm (d) BARF (e) GARF (f) L2G-NeRF (g) CF-NeRF

Figure 4: We select two sequences from NeRFBuster (Warburg et al. 2023) and render novel views to evaluate camera parame-
ters. Our method CF-NeRF generates high-quality images, while results of NeRFmm (Wang et al. 2021b), SiRENmm (Guo and
Sherwood 2021), BARF (Lin et al. 2021), GARF (Chng et al. 2022) and L2G-NeRF (Chen et al. 2023) contain lots of noise.

Implicit Optimization Although implicit localization can
roughly determine δRn and δTn , it faces two problems: the
observation from In is not added to NeRF, and the local-
ization does not take the multi-view consistency into ac-
count to reduce drift. Incremental SfM solves these prob-
lems using two separate steps: triangulation and BA, while
CF-NeRF benefits from the volume rendering and deals with
these problems together. However, it is time-consuming to
optimize all images in E every time a new image is added.
Therefore, CF-NeRF splits optimization into implicit partial
optimization and implicit global optimization.

Each time localizing a new image In, CF-NeRF per-
forms implicit partial optimization. We select In and previ-
ous Npart−1 images to construct the partial image set Ipart,
then optimizes them with ξpart iterations, as Eq.5 shows.

argmin
θ,δR,δT

{
∑

Ii∈Ipart

∑
p∈Ii

L(R(p|θ, δRi
, δTi

), Ii(p))} (5)

When the number of images in E can be evenly divided by
Nglob, CF-NeRF employs implicit global optimization for
θ and all images in E to enhance the overall accuracy and
reduce drifts with ξglob iterations, as Eq. 6 shows.

argmin
θ,δR,δT ,δK

{
∑
Ii∈IE

∑
p∈Ii

L(R(p|θ, δRi
δTi

, δK), Ii(p))} (6)

Coarse-to-Fine CF-NeRF uses a coarse-to-fine strategy to
improve robustness. CF-NeRF first constructs a Gaussian
pyramid with depth dG, then recovers all parameters at a

low-resolution image through the incremental pipeline. Fi-
nally, CF-NeRF directly performs implicit global optimiza-
tion with a higher resolution in each scale of the Gaussian
pyramid with ξG iterations.

Loss Function To improve robustness, we employ the
Smooth-L1 loss function, as Eq. 7 shows, where gt repre-
sents the ground truth, pr is the estimated value, and β is the
set to 1.0 by default.

L(pr, gt) =
{
0.5 ∗ (gt− pr)2/β if |gt− pr| < β

|gt− pr| − 0.5 ∗ β otherwise
(7)

Experiments
Dataset
We evaluate our method using a real-world dataset NeRF-
Buster (Warburg et al. 2023), mainly rotating around an ob-
ject. We sample around 50 frames for each scene and resize
all images to 480×270 with ground truth (GT) camera pa-
rameters from COLMAP (Schonberger and Frahm 2016).

Implementation
CF-NeRF is implemented using PyTorch. Similar to
NeRFmm (Wang et al. 2021b), CF-NeRF does not have hi-
erarchical sampling and uses the coarse network, which has
eight layers and the dimension of the hidden layers is set
to 128. Moreover, we use the sine activation function in-
stead of the ReLU, as SiRENmm (Guo and Sherwood 2021)
is more robust than NeRFmm. We utilize the Adam opti-
mizer to optimize all learnable parameters. Specifically, we
set the learning rate of θ to 0.001, which undergoes a decay

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

6444



aloe art car century flowers garbage picnic pikachu pipe plant roses table

∆R↓

NeRFmm 159.973 177.591 129.580 119.626 106.920 150.823 154.778 113.700 164.821 165.030 102.275 115.299
SiRENmm 155.151 177.364 127.267 89.0172 103.874 82.9375 44.3671 25.3603 159.757 114.076 132.538 93.2612
BARF 158.669 59.1868 133.453 101.601 88.6842 88.7832 69.7201 41.0302 64.5250 143.198 133.757 111.288
GARF 125.980 171.917 153.559 105.187 106.060 84.4992 49.8503 32.7285 126.960 156.606 118.975 164.656
L2G-NeRF 124.237 24.3753 55.7291 131.968 96.3498 110.478 146.312 116.891 70.9131 70.7562 95.9982 116.497
CF-NeRF 12.1226 19.2496 17.5570 9.6811 8.2556 9.7658 12.6501 11.3067 19.9926 4.8968 5.1229 4.5837

∆T↓

NeRFmm 11.5935 15.0762 23.9514 24.5934 12.8753 16.3842 12.9675 25.6841 19.3563 23.6613 8.0367 13.3849
SiRENmm 11.4912 14.8720 27.7235 28.8582 15.4841 13.3099 8.3607 15.8052 20.4572 31.2943 9.0498 13.8350
BARF 9.6196 17.3299 36.0351 26.0549 15.3166 17.1936 9.6679 18.7184 18.8936 31.8629 8.5266 17.5453
GARF 13.9100 17.1527 26.5184 26.0096 14.1459 16.1054 11.7021 17.4975 18.8366 32.3170 11.2654 15.0367
L2G-NeRF 14.4012 13.4240 20.5634 23.2650 7.4559 17.7167 12.9408 32.4048 11.4012 18.5012 10.7110 12.8061
CF-NeRF 3.3788 2.2821 6.5452 2.7383 2.7026 4.0535 1.2833 4.0586 9.4491 3.4346 1.1945 1.2127

PSNR↑

NeRFmm 20.6912 16.8220 17.7504 16.0326 18.4377 17.7229 18.4300 25.3819 20.0978 21.1558 17.7735 14.1651
SiRENmm 22.7462 20.3890 22.0268 18.0252 19.4640 17.2283 21.5628 27.8706 20.9538 23.4980 16.7480 18.8135
BARF 22.4366 21.1947 16.7665 15.3436 17.8350 15.9065 19.1846 23.0386 19.9728 25.5135 13.6741 13.8227
GARF 19.0241 19.3556 15.4460 14.4117 16.2955 15.3383 15.4035 20.9663 18.5371 20.5600 13.1274 12.6677
L2G-NeRF 21.3398 19.8099 17.3255 16.6476 18.0016 13.6077 18.5268 22.4939 18.1787 19.0160 17.2614 15.5658
CF-NeRF 26.9367 26.5293 22.4654 21.7072 21.6950 22.4736 22.5475 32.3661 22.2719 25.7312 24.3918 26.8491

LPIPS↓

NeRFmm 0.5560 0.4954 0.5991 0.5793 0.5778 0.5661 0.6113 0.3683 0.5614 0.4927 0.5371 0.6073
SiRENmm 0.4508 0.4034 0.4450 0.4785 0.5048 0.5193 0.5227 0.2883 0.5170 0.3256 0.5333 0.4659
BARF 0.3328 0.3511 0.5361 0.5394 0.5552 0.5480 0.5358 0.3440 0.5198 0.3217 0.6138 0.5913
GARF 0.5257 0.4055 0.5984 0.5845 0.6158 0.5931 0.6086 0.3987 0.5688 0.4345 0.6189 0.6356
L2G-NeRF 0.4620 0.4186 0.5409 0.5116 0.5466 0.6016 0.5530 0.4051 0.4741 0.3840 0.4788 0.5309
CF-NeRF 0.1939 0.2316 0.3983 0.3627 0.3983 0.3859 0.4686 0.1679 0.4453 0.2594 0.2831 0.3011

Table 1: We conduct experiments on the NeRFBuster (Warburg et al. 2023), which is captured in the real world with complex
trajectories. CF-NeRF achieves state-of-the-art results compared to NeRFmm (Wang et al. 2021b), SiRENmm (Guo and Sher-
wood 2021), BARF (Lin et al. 2021), GARF (Chng et al. 2022), L2G-NeRF (Chen et al. 2023).

of 0.9954 every 200 epochs. Similarly, the learning rate of δ
is set to 0.001 and undergoes a decay of 0.9000 every 2000
epochs. Here, we describe how to set the hyper-parameters
in CF-NeRF. We set Ninit and Npart to 3 to meet the min-
imum requirements that can filter outliers based on MVG.
To balance drift and efficiency, we set Nglob to 5. Consid-
ering the input image resolution, we set dG to 3 to recon-
struct all parameters by coarse-to-fine strategy. The most
important parameter in CF-NeRF is iteration, which is the
epoch number for each image. During initialization, we set
ξinit to 3000 to guarantee that θ and δ can be correctly ini-
tialized with fewer images. Subsequently, during the incre-
mental training, we maintain a consistent value of ξ, setting
ξ = ξloc = ξpart = ξglob = ξG to 900, thus reconstruct-
ing the scene from images one by one. Throughout all our
experiments, we use the NVIDIA RTX3090.

Evaluation
To demonstrate the performance of the proposed method,
we conduct a comprehensive comparison between CF-NeRF
and several state-of-the-art models, including NeRFmm
(Wang et al. 2021b) SiRENmm (Guo and Sherwood 2021),
BARF (Lin et al. 2021), GARF (Chng et al. 2022), and L2G-
NeRF (Chen et al. 2023). We use all images for camera pa-
rameter estimation without employing a train/test split. To
evaluate the quality of the camera parameters, we calculate
the average translation error ∆T and the average rotation er-
ror ∆R by aligning the estimated camera parameters δR and

δT with COLMAP using a similarity transformation Sim(3)
(Lin et al. 2021). It is worth noting that δT represents a rel-
ative translation error rather than an absolute measurement,
as COLMAP can not reconstruct an absolute scale of the
scene. We further evaluate the estimated camera parameters
through a novel view synthesis by PSNR and LPIPS. To en-
sure a fair comparison and avoid the influence of varying
network backbones across different methods, we uniformly
use the NerfAcc (Li, Tancik, and Kanazawa 2022), where
we select one image for testing in every eight images and
the remaining is for training.

Results
We performed qualitative and quantitative evaluations of
these methods on 12 scenes of the NeRFBuster (Warburg
et al. 2023) dataset. Notably, BARF (Lin et al. 2021), GARF
(Chng et al. 2022), and L2G-NeRF (Chen et al. 2023) re-
quire manual setting the focal length. In contrast, NeRFmm
(Wang et al. 2021b), SiRENmm (Guo and Sherwood 2021),
and CF-NeRF have the ability to estimate the focal length.

Table 1 shows the results of qualitative experiments. Our
method obtains the highest accuracy camera parameters,
while all other methods fail outright. It is important to under-
stand that ∆R and ∆T are calculated by aligning the camera
positions with Sim(3) and that a slight difference in camera
position can lead to huge errors. The rotation error ∆R of
our method CF-NeRF is roughly around 10◦, while the other
methods are around 100◦. Moreover, the translation error δT
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G, ξ,Nglob aloe art car century flowers garbage picnic pikachu pipe plant roses table

∆R↓
F, 600, 10 17.8029 24.3389 17.1692 11.5924 11.6163 9.1240 14.6452 13.0037 19.0749 5.3354 5.9091 6.4731
F, 900, 10 14.8730 22.8142 17.8879 11.1201 10.4707 8.6973 11.4209 12.0625 18.4305 4.7303 5.8538 6.8481
C, 900, 5 12.4862 19.1647 17.4755 9.7177 8.4555 9.6460 12.3162 10.9802 19.9855 5.1579 5.5133 5.2821
F, 900, 5 12.1226 19.2496 17.5570 9.6811 8.2556 9.7658 12.6501 11.3067 19.9926 4.8968 5.1229 4.5837

∆T↓
F, 600, 10 4.5457 5.9307 7.5697 2.9652 3.6234 4.5340 2.6677 5.3105 9.3544 4.4384 1.3324 1.9535
F, 900, 10 3.9111 6.1190 7.3752 3.6834 3.3956 4.3080 3.4918 3.2682 8.4666 3.6109 1.3013 2.3973
C, 900, 5 3.4681 2.2770 6.6250 2.8224 2.7405 4.1085 1.2886 4.2462 9.6998 3.5309 1.2182 1.2232
F, 900, 5 3.3788 2.2821 6.5452 2.7383 2.7026 4.0535 1.2833 4.0586 9.4491 3.4346 1.1945 1.2127

Table 2: Ablation experiments. We compare the accuracy of camera parameters of CF-NeRF under different hyper-parameter
settings, including the iteration ξ, the global optimization frequency Nglob and the coarse-to-fine strategy, where C means the
coarse stage and F means the fine stage.

of CF-NeRF is approximately about 4, while all other meth-
ods are around 15. Although NeRFmm, SiRENmm, BARF,
GARF, and L2G-NeRF claim high accuracy on forward-
looking scenes from scratch, they are unsuitable for scenes
with rotation and are prone to be trapped in a local mini-
mum. In contrast, CF-NeRF recovers the camera parame-
ters sequentially and can effectively handle image sequences
with complex trajectories. Furthermore, SiRENmm outper-
forms NeRFmm in camera parameter estimation, which is
why CF-NeRF uses the sine activate function.

Table 1 also shows the quality of the novel view synthe-
sis, which serves as an additional evaluation criterion for the
quality of camera parameters. CF-NeRF achieves state-of-
the-art results on PSNR and LPIPS. Interestingly, the recon-
struction results of other methods appear reasonable com-
pared to their poor camera parameters, mainly due to the
high over-fitting ability of NeRF and partial camera parame-
ters are correctly reconstructed. We further visualize the ren-
dering results of three scenes from different methods in Fig-
ure 1 and Figure 4. CF-NeRF can generate high-quality re-
sults, while other methods have lots of noise in their results
due to their inability to provide accurate camera parameters.

Ablation Experiments
We conduct several ablation experiments on the iteration ξ,
the global optimization frequency Nglob, and the coarse-to-
fine strategy to validate the influence of hyper-parameters in
CF-NeRF, and results are presented in Table 2.

The iteration ξ The iteration ξ is the most important
hyper-parameter in our method, determining how many
times to optimize the camera parameter for each image. We
compare two configurations: F, ξ = 600, Nglob = 10 and
F, ξ = 900, Nglob = 10. Table 2 reveals that increasing ξ
improves the final results for almost all scenes. This obser-
vation aligns with NeRF (Mildenhall et al. 2020) and iNeRF
(Yen-Chen et al. 2021), where NeRF requires a large number
of iterations to converge, and iNeRF enhances the quality of
camera parameters through more iterations.

The global optimization frequency Nglob To mitigate
drift while maintaining efficiency, CF-NeRF employs the
implicit global optimization when every Nglob image is
added E. We conduct two experiments F, ξ = 900, Nglob =

10 and F, ξ = 900, Nglob = 5 to find out the influence
of Nglob. As highlighted in Table 2, reducing Nglob yields
improved final results, which can be attributed to the fact
that global optimization ensures global consistency to avoid
NeRF trap into a local minimum.

The coarse-to-fine strategy CF-NeRF adopts a coarse-to-
fine strategy to avoid directly estimating camera parameters
on high-resolution images, where the fine stage refines initial
results from the coarse stage. We conduct two experiments
C, ξ = 900, Nglob = 5 and F, ξ = 900, Nglob = 5. Re-
sults in Table 2 demonstrate that the fine stage outperforms
the coarse stage across almost all scenes. The coarse-to-fine
strategy facilitates the training process of CF-NeRF, as the
pixel gradient is smoother at the coarse stage and has less
RGB information to learn.

Limitation

Although CF-NeRF achieves state-of-the-art results in cam-
era parameter estimation, surpassing other NeRF-based
methods, there are still some gaps between CF-NeRF and
COLMAP (Schonberger and Frahm 2016), and the accuracy
can be further improved through the adjustment of the sam-
ple space (Wang et al. 2023) or the utilization of a more
robust function (Sabour et al. 2023).

Conclusion

This paper presents CF-NeRF, a novel end-to-end method
that does not require prior camera parameters to deal with
image sequences with complex trajectories. Following the
pipeline of incremental SfM, CF-NeRF contains three ma-
jor sub-modules: initialization, implicit localization, and im-
plicit optimization. Experiments on the NeRFBuster dataset
demonstrate that CF-NeRF achieves state-of-the-art results,
while NeRFmm, SiRENmm, BARF, GARF, and L2G-NeRF
only work for forward-looking scenes and get trapped in
the local minimum on the NeRFBuster dataset. More impor-
tantly, CF-NeRF highlights the unlimited potential of NeRF
and differential volume rendering, showing that NeRF has
impressive reconstruction capabilities and can also be used
to estimate camera parameters in complex trajectories.
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