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Abstract

To enhance the interaction between intelligent systems and
the environment, locating the affordance regions of objects is
crucial. These regions correspond to specific areas that pro-
vide distinct functionalities. Humans often acquire the abil-
ity to identify these regions through action demonstrations
and verbal instructions. In this paper, we present a novel
multimodal framework that extracts affordance knowledge
from exocentric images, which depict human-object inter-
actions, as well as from accompanying textual descriptions
that describe the performed actions. The extracted knowl-
edge is then transferred to egocentric images. To achieve
this goal, we propose the HOI-Transfer Module, which
utilizes local perception to disentangle individual actions
within exocentric images. This module effectively captures
localized features and correlations between actions, lead-
ing to valuable affordance knowledge. Additionally, we in-
troduce the Pixel-Text Fusion Module, which fuses affor-
dance knowledge by identifying regions in egocentric im-
ages that bear resemblances to the textual features defining
affordances. We employ a Weakly Supervised Multimodal
Affordance (WSMA) learning approach, utilizing image-
level labels for training. Through extensive experiments, we
demonstrate the superiority of our proposed method in terms
of evaluation metrics and visual results when compared to
existing affordance grounding models. Furthermore, abla-
tion experiments confirm the effectiveness of our approach.
Code:https://github.com/xulingjing88/WSMA.

Introduction
The notion of affordance, originally proposed by Gibson
(Gibson 2014), posits that objects possess ”action possibili-
ties”. For instance, a knife can be employed for cutting ob-
jects, while a cup can be used for drinking. However, merely
knowing the purpose of an object is insufficient to enable in-
telligent agents to actively engage with their environment.
Precise understanding of interaction locations is crucial. For
example, a knife’s blade is for cutting, while its handle is for
gripping. This concept has garnered significant attention in
the domains of robotics and computer vision, finding appli-
cations in tasks such as robotic grasping and scene compre-
hension.
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Figure 1: Comparison between Previous Methods and Our
Proposed Method. (a) One focused on individual object
learning, and the other utilized cross-view transfer from ex-
ocentric images. (b) Our WSMA leverages local cross-view
transfer from exocentric images and additionally learns from
corresponding textual descriptions.

Navigating affordance knowledge is riddled with chal-
lenges. Firstly, many dominant techniques, such as those ref-
erenced in (Myers et al. 2015; Nguyen et al. 2017; Chuang
et al. 2018; Do, Nguyen, and Reid 2018; Fang et al. 2018),
are deeply anchored to detailed pixel-level annotations. This
is particularly demanding given the complex nature of affor-
dance regions. For example, annotating the ”drink with” ac-
tion for a cup entails meticulous attention to the rim area—a
task that is both intricate and error-prone. Consequently, the
rigors of such annotation often undermine data quality. Sec-
ondly, in real-world settings, interactions with objects are
informed by both actions and language—an aspect often
underserved by current methodologies. For example, Fig-
ure 1(a) indicates that traditional methods (Grabner, Gall,
and Van Gool 2011; Hermans, Rehg, and Bobick 2011; My-
ers et al. 2015) largely view affordances as unchanging ob-
ject traits, leading to segmentations predominantly based on
visual appearance. Such an approach downplays the fluidity
of human-object dynamics. Conversely, as depicted on the
right side of Figure 1(a), newer research (Nagarajan, Feicht-
enhofer, and Grauman 2019; Li et al. 2023; Luo et al. 2022b)
leans heavily on exocentric images of human interactions,
potentially sidelining other rich data sources.
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To tackle the challenges, we introduce a Weakly Super-
vised Multimodal Affordance Grounding approach, as il-
lustrated in Figure 1(b). Our initial strategy mitigates the
high costs associated with manual annotation by adopting
a weakly supervised learning approach, where image-level
labels guide the process instead of intricate pixel-level an-
notations. Furthermore, to harness diverse learning sources,
we present an innovative methodology that leverages both
exocentric images capturing human interactions and textual
data for affordance knowledge acquisition. Notably, individ-
uals learning interactions through a combination of visual
and textual cues are expected to outperform those solely re-
lying on images.

The fundamental concept driving our proposed method-
ology unfolds as follows: during the training phase, we em-
ploy pairs of exocentric images and corresponding affor-
dance text to amass affordance knowledge, which is subse-
quently transposed to egocentric images. As depicted in Fig-
ure 1(b), our network architecture consists of three branches:
Exocentric, Egocentric, and Text. The Exocentric branch is
trained with exocentric images to glean affordance insights
from these visual inputs. This acquired visual knowledge is
then transmitted to the Egocentric branch through the HOI-
Transfer Module. This integration incorporates a localiza-
tion strategy, enabling the effective differentiation of vari-
ous actions. In parallel, the Text branch is trained with affor-
dance text and transfers its learned knowledge to the Ego-
centric branch. By amalgamating insights from both exo-
centric images and text, our approach achieves refined lo-
calization of affordance regions. During the testing phase,
we retain the Egocentric and Text branches, employ class
activation mapping (CAM) (Zhou et al. 2016) to infer the
pertinent affordance regions, and subsequently enhance seg-
mentation results using the CAM Refined Module.

In summary, our salient contributions are as follows:
• We propose a multimodal weakly-supervised framework

(WSMA) designed to localize affordance regions by in-
tegrating affordance knowledge from both exocentric im-
ages and their corresponding textual descriptions, effec-
tively transferring the acquired knowledge to egocentric
images.

• We introduce the HOI-Transfer Module to extract local
affordance knowledge from exocentric person-object in-
teraction features and supervise the training of egocentric
images. Concurrently, the Pixel-Text Fusion Module is
incorporated to facilitate the transfer of knowledge from
text to images by integrating text and egocentric image
features.

• In our evaluation, we conduct experiments on two
datasets: ADE20K and HICO-IIF. The experimental re-
sults clearly underscore the superiority of our proposed
approach over existing methods, showcasing its optimal
performance in localizing affordance regions.

Related Work
In our work, we employ a weakly supervised multimodal ap-
proach for Affordance Grounding. In this section, we survey
works in domains related to our method.

Visual Affordance Grounding
Visual affordance grounding aims to locate object regions
responsible for specific functionalities, thereby enhancing
the comprehension of human interactions. While recent re-
search has delved into this task, initial works relied on pixel-
level annotations for supervised training (Koppula, Gupta,
and Saxena 2013; Myers et al. 2015; Chuang et al. 2018;
Do, Nguyen, and Reid 2018), but were limited by the com-
plexity of annotations. The field has also yielded various
weakly supervised approaches. For example, Sawatzky et
al. (Sawatzky and Gall 2017) proposed a method using a
minimal number of points as weak supervision, while Na-
garajan et al. (Nagarajan, Feichtenhofer, and Grauman 2019)
leveraged videos for learning. Recently, weak supervision
through image-level labels (Luo et al. 2022b; Li et al. 2023)
has emerged, primarily focusing on exocentric images for
affordance learning. In contrast, our work introduces a com-
prehensive framework that not only attends to exocentric im-
ages but also incorporates affordance knowledge from tex-
tual sources.

Cross-view Knowledge Distillation
Knowledge distillation is a training technique in deep learn-
ing that involves the transfer of model knowledge from a
teacher model to a student model (Mirzadeh et al. 2020;
Chen et al. 2020). Conversely, cross-view knowledge dis-
tillation focuses on transferring knowledge across different
perspectives. Research in this field has expanded in recent
years (Fang et al. 2018; Sigurdsson et al. 2018; Nagara-
jan, Feichtenhofer, and Grauman 2019; Li et al. 2021; Luo
et al. 2022b; Li et al. 2023), with some methods leverag-
ing videos for knowledge transfer. For instance, Ego-exo (Li
et al. 2021) proposes a method that uses third-person videos
to uncover latent signals and predict specific attributes in
egocentric views. Other methods utilize images from differ-
ent perspectives for knowledge transfer. Both Cross-view-
AG (Luo et al. 2022b) and LOCATE (Li et al. 2023) learn
affordance knowledge from exocentric images and trans-
fer this knowledge to egocentric images. In this paper, we
employ cross-view distillation using newly designed local
losses between exocentric and egocentric images.

Vision-language Models
Visual-language models aim to achieve mutual comprehen-
sion and interaction between images and natural language,
establishing a close nexus between visual and textual infor-
mation. An increasing number of works are dedicated to in-
vestigating this domain, with CLIP (Radford et al. 2021) be-
ing one of the most prominent examples. CLIP undertakes
training on extensive image-text datasets and attains impres-
sive performance benchmarks. Additionally, this area of re-
search has generated numerous other significant contribu-
tions (Xu et al. 2019; Wang, Chan, and Loy 2023; Guo et al.
2023). For instance, certain investigations (Gao et al. 2021a;
Zhang et al. 2021; Zhou et al. 2022) have advanced CLIP’s
training strategies, while others (Rao et al. 2022) focus on
segmentation tasks. Inspired by these developments, we in-
tegrate CLIP’s text encoder into our framework to extract
textual features in our study.
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Figure 2: Overview of the Proposed Framework (WSMA). During the training stage, the proposed framework is divided into
three branches: Exocentric, Egocentric, and Text. (1) The Exocentric branch extracts affordance knowledge from exocentric
images and transfers it to the Egocentric branch using the HOI-Transfer Module. (2) The Egocentric branch extracts features
from egocentric images and incorporates the affordance knowledge provided by the other branches. (3) The Text branch extracts
features from the affordance text and fuses them into the Egocentric branch using the Pixel-Text Fusion Module.
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Figure 3: Detailed Description of Pixel-Text Attention. This
module is designed to transfer textual knowledge.

Method
Figure 2 illustrates our Weakly Supervised Multimodal Af-
fordance (WSMA) framework, which is designed to localize
affordance regions in egocentric images. The following sec-
tions delve deeper into the intricacies of this framework.

Multimodal Fusion
While people typically learn interaction skills through
demonstrations and linguistic cues, current research often
overlooks this. In contrast, our approach authentically de-
rives affordance insights from both exocentric images and
descriptive text. Notably, compared to other weakly super-
vised methods relying on image-level labels, our approach
utilizes the same labels and treats class names as textual in-
put, without introducing new annotations or increasing the
labeling workload in practical scenarios. Accordingly, our
model is built upon three foundational pillars: Exocentric,

Egocentric, and Text branches. The input parameters to our
model include n exocentric images Ii (where i spans from 1
to n), an egocentric image Ig , and an affordance label C.

Egocentric Branch and Text Branch For a single ego-
centric image Ig input, we utilize the DINO-VIT (Caron
et al. 2021) model for feature extraction. DINO-VIT, a self-
supervised vision transformer, provides feature information
pertinent to image semantic segmentation. As shown in Fig-
ure 2, our framework employs a DINO-VIT model M with
b (b = 12) blocks, yielding

(
f1
g , . . . , f

b
g

)
= M (Ig). To

enhance results comprehensively, we extract features from
both the penultimate and final layers, yielding the deep fea-
ture fg = MLP

(
Concat

(
f b−1
g , f b

g

))
, where MLP com-

prises two linear layers.
With regards to the input of affordance text T (tex-

tual descriptions of affordance label C), we recognize the
challenges in manual prompt design. Drawing inspiration
from CoOp (Zhou et al. 2022), we introduce m (m = 16)

trainable prompts preceding T . This results in T
′

=
[V1] · · · [Vm]T , where {V1, . . . , Vm} represent the m train-
able prompts. Using the text encoder MT from CLIP (Rad-
ford et al. 2021), we then derive text embeddings ft =

MT

(
T

′
)

.

Pixel-Text Fusion Module To effectively merge the affor-
dance knowledge from textual information into the Egocen-
tric Image branch, we introduce the Pixel-Text Fusion Mod-
ule. Firstly, to ensure alignment of the image features fg and
text features ft within the same feature space, we use the
following equation:

f
′

g = AttentionPool(Concat(Average(fg), fg)). (1)
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Figure 4: Description of the Testing Stage. We retain only the Egocentric and Text branches, utilizing the attention matrix from
the self-attention structure within the network to optimize the results.

AttentionPool is computed using a multi-head attention
mechanism. Based on this, we propose the equation:

Zclip = f
′

g(0)f
T
t , (2)

where f
′

g(i) refers to the portion of f
′

g with channel index
i. Finally, we utilize Zclip to compute the cross-entropy loss
Lclip, which guides the training.

As illustrated in Figure 3, to seamlessly merge the aligned
textual features with the image features, we introduced the
Pixel-Text Attention Module. This computation employs the
egocentric image feature f

′

g ∈ R(1+hw)×c and the previ-
ously obtained text embedding ft ∈ R1×c. We start with:

fatt = ft[f
′

g(1 :)]T , (3)

where fatt serves as a similarity matrix bridging images and
text. It functions as a subsequent attention matrix for ego-
centric images, directing the model’s focus towards regions
that resonate with the affordance text. fatt undergoes repeti-
tion to yield f

′

att ∈ Rc×hw. The final equation becomes:

Fg = fg × f
′

att + fg, (4)

where Fg represents the culmination of affordance knowl-
edge transfer from the text to the egocentric images. For
classification purposes, Fg is passed through a 3× 3 convo-
lutional layer followed by a fully connected layer, resulting
in the classification scores cego. These scores are then used
to determine the cross-entropy loss Lcls for optimization.

Exocentric Branch To begin with, feature extraction is
conducted for the input of n exocentric images Ii(i =
{1, . . . , n}), mirroring the approach used in the Egocen-
tric branch. Similar to the Egocentric branch, we uti-
lize DINO-VIT for feature extraction. Subsequently, we
merge the outputs from the last two layers of the net-
work (f b−1

i , f b
i ) to yield the comprehensive features f i

x =

MLP (Concat(f b−1
i , f b

i )).
Building upon the Affordance Invariance Mining Module

(AIM) introduced in a prior study (Luo et al. 2022b), we
express the comprehensive features f i

x as Wx × Hi
x + Ei

x.
Here, Wx denotes the sub-feature related to human inter-
actions, while Hi

x and Ei
x represent the coefficient matrix

and individual variations of the i-th image, respectively. By
minimizing Ei

x and iteratively updating Wx and Hi
x using

non-negative matrix factorization (Lee and Seung 2000), we
derive the shared features F i

x = f i
x+Conv(Wx×Hi

x) from
exocentric images. Subsequently, the input features F i

x pass

Exocentric
Branch

HOI Label

𝐶𝐴𝑀
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Figure 5: Detailed Description of the HOI-Transfer Module.
This module is designed to transfer affordance knowledge
from the Exocentric branch to the Egocentric branch.

through a 3 × 3 convolution and a fully connected layer to
produce the classification scores cexo. These scores, cexo,
are also used to compute the cross-entropy loss Lcls.

Weakly Supervised Affordance Grounding
Given the challenges associated with annotating precise af-
fordance regions, we rely solely on image-level annotations
to calculate the loss functions. Our approach incorporates
four specific losses: Lcls, Lclip, Ld, and Ll rela. We have
already discussed Lcls and Lclip in previous sections. Here
we will delve into the details of Ld and Ll rela, which are
integrated within the HOI-Transfer Module.

HOI-Transfer Module Within the HOI-Transfer Mod-
ule (Figure 5), we have formulated two losses, denoted as
Ld and Ll rela, to transfer the affordance knowledge ac-
quired from the Exocentric branch to the Egocentric branch.
Initially, we average the n exocentric features F i

x(i =
{1, . . . , n}) to obtain Fx. We have already acquired feature
Fg from the Egocentric branch and the Text branch. Inspired
by Class Activation Mapping (CAM), we have devised a lo-
cal knowledge transfer mechanism that enables better dif-
ferentiation between distinct behaviors. We use CAM to cal-
culate the weighted sum of the feature maps F j

g , F
j
x (j rep-

resents the j-th channel) from the last convolutional layer,
resulting in the affordance region heatmaps Y Ck

g , Y Ck
x (Ck

represents the k-th class) for each affordance class.

Y Ck

branch={g,x} =
∑

j w
Ck
j F j

branch={g,x}. (5)

Here, wCk
j represents the weights corresponding to the fea-

ture map. Subsequently, we utilize the obtained heatmaps to
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Method Pub.
ADE20K-Unseen ADE20K-Seen HICO-IIF

KLD ↓ SIM ↑ NSS ↑ KLD ↓ SIM ↑ NSS ↑ KLD ↓ SIM ↑ NSS ↑
Weakly Supervised Object Localization
SPA CVPR21 7.425 0.169 0.262 5.528 0.221 0.357 — — —

EIL CVPR20 2.167 0.277 0.330 1.931 0.285 0.522 — — —

TS-CAM ICCV21 2.104 0.201 0.151 1.842 0.260 0.336 — — —

Affordance Grounding
Hotspots ICCV19 1.994 0.237 0.577 1.773 0.278 0.615 — — —

Cross-view-AG CVPR22 1.787 0.285 0.829 1.538 0.334 0.927 1.779 0.263 0.946

Cross-view-AG+ — 1.765 0.279 0.882 1.489 0.342 0.981 1.836 0.256 0.883

LOCATE CVPR23 1.405 0.372 1.157 1.226 0.401 1.177 1.593 0.327 0.966

WSMA(Ours) This Work 1.335 0.382 1.220 1.176 0.416 1.247 1.465 0.358 1.012

Table 1: Comparisons with Other State-of-the-art Models (SPA (Pan et al. 2021), EIL (Mai, Yang, and Luo 2020), TS-CAM
(Gao et al. 2021b), Hotspots (Nagarajan, Feichtenhofer, and Grauman 2019), Cross-view-AG (Luo et al. 2022b), Cross-view-
AG+ (Luo et al. 2022a), LOCATE (Li et al. 2023)). ↑ indicates that a higher value is preferable, while ↓ indicates that a lower
value is preferable. The experimental results that are bold and underlined represent the state-of-the-art performance.

calculate two losses. Firstly, Ld, aims to minimize the dis-
tance between the features learned in the Egocentric branch
and the Exocentric branch. Accordingly, we select the corre-
sponding heatmap based on the affordance class label C and
calculate Ld as follows:

Ld =
∣∣∣∣Y C

g − Y C
x

∣∣∣∣ . (6)
The second loss, Ll rela, addresses the fact that distinct

classes in the affordance domain often exhibit overlapping
characteristics. For instance, when a person holds a cup to
drink water, both the ”hold” and ”drink with” actions are
relevant, illustrating what we term action correlation. Con-
sequently, we incorporate a loss term to transfer this action

correlation knowledge from the Exocentric branch to the
Egocentric branch.

Rego = flatten(Yg)× flatten(Y T
g ). (7)

Rego is the correlation matrix in the Egocentric branch.

Rexo = flatten(Yx)× flatten(Y T
x ). (8)

Rexo is the correlation matrix in the Exocentric branch.
Ll rela = Cosine(Rego, Rexo). (9)

During the training phase, the overall loss L is obtained as a
weighted sum of the four individual losses.
L = λclsLcls + λclipLclip + λdLd + λl relaLl rela. (10)
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Bego HOI-Transfer Pixel-Text Fusion
ADE20K-Unseen ADE20K-Seen HICO-IIF

KLD ↓ SIM ↑ NSS ↑ KLD ↓ SIM ↑ NSS ↑ KLD ↓ SIM ↑ NSS ↑

! % % 1.707 0.287 0.973 1.430 0.345 1.093 1.860 0.255 0.770

! ! % 1.471 0.330 1.180 1.297 0.375 1.178 1.785 0.286 0.650

! % ! 1.531 0.338 1.095 1.277 0.393 1.169 1.690 0.320 0.970

! ! ! 1.335 0.382 1.220 1.176 0.416 1.247 1.465 0.358 1.012

Table 2: Ablation Experiments of Different Modules ( Bego is the Egocentric branch)

λcls, λclip, λd, λl rela represent the weights corresponding
to the respective losses.

Finally, during the inference phase (Figure 4), we retain
only the Egocentric branch and the Text branch. We input
a single egocentric image and associate it with the affor-
dance label C. For instance, if you aim to determine the af-
fordance region of an object for the action ”catch”, you can
input the image of the object along with the corresponding
textual label ”catch”. Through the application of CAM, we
generate the corresponding heatmap H . To further enhance
the heatmap, we utilize the CAM Refined Module. In this
module, the network’s self-attention mechanism extracts the
attention matrix Q, which is then used to refine H .

H
′
= Mask ×Q×H +H, (11)

where H
′

represents the refined heatmap, and the Mask is

Mask =

{
1 if H > threshold
0 else

}
. (12)

We set a threshold to remove less crucial portions from
Q×H , thus focusing more on the important parts.

Experimental Results
Datasets and Evaluation Metrics
We use the Affordance Grounding Dataset (AGD20K) (Luo
et al. 2022b), which is a comprehensive dataset contain-
ing various viewpoints, specifically, 20,061 exocentric and
3,755 egocentric images. These images represent 36 unique
affordance categories. We conduct evaluations under two
distinct settings: ”Seen” and ”Unseen”. The ”Seen” setting
includes object categories from the training set in the test
set, whereas the ”Unseen” setting incorporates object cate-
gories that are not present in the training set. In addition to
AGD20K, we have assembled a new dataset, HICO-IIF, by
selecting specific subsets from the HICO-DET (Chao et al.
2018) and IIT-AFF (Nguyen et al. 2017) datasets. More de-
tails about these datasets are available in the Appendix.

To measure the alignment between experimental out-
comes and the ground truth, we use three metrics: Kullback-
Leibler Divergence (KLD), Similarity (SIM), and Normal-
ized Scanpath Saliency (NSS). The Appendix provides a
comprehensive overview of each metric.

Implementation Details
For the backbone of both the egocentric and exocentric
branches, we use the pre-trained DINO-ViT-S, keeping its

weights frozen during the training process. DINO-ViT-S is
pre-trained using unsupervised learning on the ImageNet
dataset (Deng et al. 2009). In the case of the exocentric
branch, we simultaneously process input from three exocen-
tric images. The text branch, on the other hand, employs
the pre-trained text encoder from the CLIP model as its
backbone network. We set the hyperparameters λcls, λclip,
λd, and λl rela to 1, 1, 0.5, and 0.5 respectively, while the
threshold is fixed at 0.2. Further details regarding parame-
ter configurations can be found in the Appendix.

Quantitative and Qualitative Comparisons
We benchmark our method against three weakly super-
vised object localization models and four cutting-edge af-
fordance grounding models. The results of these models
are tabulated in Table 1. Notably, our proposed method,
WSMA, outperforms all other compared methods. Specif-
ically, when juxtaposed with the current leading affordance
grounding model, LOCATE, WSMA demonstrates superior
performance across all three metrics. These experimental re-
sults underscore the potency of our approach in transferring
learned knowledge from exocentric images and text to ego-
centric images, consequently improving heatmap accuracy.

Furthermore, to provide a more detailed visual analysis of
the differences among various model results, we conducted
a qualitative comparison. As illustrated in Figure 6, it can be
inferred that under the ”Unseen” setting, WSMA achieves
improved precision in localization by effectively mitigating
environmental influences. For instance, under the ”throw”
label, WSMA accurately pinpoints the region of the basket-
ball, whereas other models exhibit varying degrees of sensi-
tivity to environmental factors introduced by individuals in
the scene. Similarly, across the other two datasets, WSMA
consistently yields results that closely align with the ground
truth, outmatching other models in comparison.

Ablation Study
To validate the efficacy of the proposed modules, we con-
ducted comprehensive ablation experiments, with results
summarized in Table 2. Methods relying solely on the Ego-
centric branch exhibited the lowest performance. Analyz-
ing the three evaluation metrics revealed that integrating the
HOI-Transfer Module or the Pixel-Text Fusion Module led
to varying degrees of improvement. Ultimately, the com-
bined integration of both modules achieved the highest per-
formance. This accomplishment can be attributed to the effi-
cient extraction of knowledge from exocentric images and
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Figure 7: Ablation Experiments’ Visualization. MHOI is the HOI-Transfer Module. MPT is the Pixel-Text Fusion Module.

Ld Lg rela Ll rela

ADE20K-Unseen ADE20K-Seen HICO-IIF
KLD ↓ SIM ↑ NSS ↑ KLD ↓ SIM ↑ NSS ↑ KLD ↓ SIM ↑ NSS ↑

% % % 1.531 0.338 1.095 1.277 0.393 1.169 1.690 0.320 0.970

! % % 1.512 0.340 1.103 1.248 0.398 1.216 1.594 0.328 1.022

! ! % 1.499 0.339 1.144 1.255 0.399 1.205 1.624 0.329 0.997

! % ! 1.335 0.382 1.220 1.176 0.416 1.247 1.465 0.358 1.012

Table 3: Ablation Experiments of Two Losses in the HOI-Transfer Module.

textual data through these two modules, followed by the
seamless transfer of this knowledge to egocentric images.
As a consequence, exceptional results have been attained.

Visual comparisons are presented in Figure 7. When com-
pared to using only the Egocentric branch, the inclusion of
the HOI-Transfer Module enhances the accuracy of identi-
fying approximate affordance region locations. For exam-
ple, by incorporating the HOI-Transfer Module, more pre-
cise attention can be directed towards the head of the tooth-
brush. Moreover, Figure 7 demonstrates the beneficial effect
of the Pixel-Text Fusion Module in localizing affordance re-
gions, effectively eliminating interference from other parts
and achieving precise localization.

Furthermore, we conducted ablation experiments on two
loss functions within the HOI-Transfer Module (see Ta-
ble 3). We examined the impact of including or excluding
Ld in the experiments. Additionally, regarding the HOI cor-
relation loss, we compared the efficacy of two distinct loss
functions, namely Lg rela and Ll rela, with the latter already
introduced in the methodology section. Lg rela was intro-
duced in a prior work (Luo et al. 2022b), where it calculates
action relevance using classification scores. Analyzing Ta-
ble 3, we observe that the experimental results are superior
when incorporating Ld. When Lg rela is added in addition
to Ld, the three evaluation metrics do not simultaneously
achieve superior results. However, if we replace Lg rela with
Ll rela, all three evaluation metrics significantly outperform

the results without its inclusion. Notably, Ll rela (Figure 5)
first identifies the heatmaps for each category before per-
forming correlation calculations. This suggests that the su-
perior performance of Ll rela is attributed to the heatmaps
containing more informative and valuable information com-
pared to simple classification scores.

Conclusion

This work introduces a novel weakly supervised multimodal
framework, WSMA, for localizing affordance regions. The
main idea is to learn affordance knowledge from both exo-
centric images and affordance text. The framework utilizes
the HOI-Transfer Module to extract affordance knowledge
from exocentric images, while the Pixel-Text Fusion Mod-
ule integrates knowledge from text into egocentric images.
During testing, the framework takes only the egocentric im-
age and its corresponding affordance text to determine ob-
ject affordance regions. WSMA demonstrates superior per-
formance compared to state-of-the-art methods.

However, our work still has limitations due to the lack of
complex interaction images in existing public datasets. For
instance, there may be situations where an image contains
multiple objects of different categories but with the same af-
fordance label. To address these challenges, we plan to im-
prove datasets and tackle the challenges arising from such
complex interactions.
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