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Abstract

Despite recent progress in Multiple Object Tracking (MOT),
several obstacles such as occlusions, similar objects, and
complex scenes remain an open challenge. Meanwhile, a
systematic study of the cost-performance tradeoff for the
popular tracking-by-detection paradigm is still lacking. This
paper introduces SMILEtrack, an innovative object tracker
that effectively addresses these challenges by integrating
an efficient object detector with a Siamese network-based
Similarity Learning Module (SLM). The technical contri-
butions of SMILETrack are twofold. First, we propose
an SLM that calculates the appearance similarity between
two objects, overcoming the limitations of feature descrip-
tors in Separate Detection and Embedding (SDE) mod-
els. The SLM incorporates a Patch Self-Attention (PSA)
block inspired by the vision Transformer, which generates
reliable features for accurate similarity matching. Second,
we develop a Similarity Matching Cascade (SMC) mod-
ule with a novel GATE function for robust object match-
ing across consecutive video frames, further enhancing
MOT performance. Together, these innovations help SMILE-
Track achieve an improved trade-off between the cost (e.g.,
running speed) and performance (e.g., tracking accuracy)
over several existing state-of-the-art benchmarks, includ-
ing the popular BYTETrack method. SMILETrack outper-
forms BYTETrack by 0.4-0.8 MOTA and 2.1-2.2 HOTA
points on MOT17 and MOT20 datasets. Code is available at
https://github.com/pingyang1117/SMILEtrack Official.

Introduction
The task of Multiple Object Tracking (MOT) is to estimate
the trajectories of each target and associate them between
frames in video sequences. MOT has found widespread
applications in various fields, including computer interac-
tion (Wang, Wang, and Yuille 2013; Luo et al. 2017), smart
video analysis, and autonomous driving. Modern MOT sys-
tems (Bewley et al. 2016; Wang et al. 2020b) typically fol-
low the Tracking-By-Detection (TbD) paradigm, which in-
volves two separate steps of detection and tracking. The de-
tection step locates the object of interest in a single video
frame, while the tracking step links each detected object to
the existing tracks or creates new tracks if none are found.

*Corresponding author.
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Figure 1: Comparative analysis of HOTA-MOTA-FPS for
different trackers on the MOT17 test set. X-axis: FPS (run-
ning speed). Y-axis: HOTA. Circle radius: MOTA score.
SMILEtrack registers 80.7 MOTA and 65.0 HOTA at 37.5
FPS, exceeding all other trackers (see Table 1 for details).

Despite enormous efforts in MOT investigation, the task re-
mains challenging due to vague objects, occlusion, and com-
plex scenes in real-world applications.

In the Tracking-By-Detection (TbD) paradigm, two pri-
mary strategies prevail, namely Joint Detection and Embed-
ding (JDE) and Separate Detection and Embedding (SDE).
JDE methods (Wang et al. 2020b; Zhang et al. 2021c) com-
bine the detector and the embedding model into a single-
shot deep network that outputs the detection results and the
corresponding appearance embedding features in one infer-
ence. Alternatively, SDE methods (Bewley et al. 2016; Du
et al. 2023; Aharon, Orfaig, and Bobrovsky 2021) require a
detector and a re-identification model. The detector locates
all objects in a single frame via bounding boxes (Ren et al.
2016; Liu et al. 2016; Redmon et al. 2016; Redmon and
Farhadi 2017, 2018; Bochkovskiy, Wang, and Liao 2020;
Chen et al. 2021). The re-identification model then extracts
the embedding features of each object from its bounding
box, and these features are used to associate each bound-
ing box with one of the existing trajectories. Despite their
flexibility, the efficiency of SDE methods trails behind that
of JDE due to the necessity of two separate models. The
Tracking-by-Attention (TbA) paradigm (Zhang et al. 2021a;
Peng et al. 2021; Yang et al. 2021; Li et al. 2021) applies
attention to data associations and jointly performs tracking
and detection via Transformer (Vaswani et al. 2017b).
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Figure 2: The architecture of the proposed SMILEtracker. SMILEtracker is a Siamese network-like architecture that learns
the appearance features of two objects and calculates their similarity score. SMILEtracker consists of two modules: (i) object
detection and (ii) object association.

The motivation behind this work is two-fold. One of the
long-standing problems in MOT is occlusion handling, and
the other is a principled solution to speed-accuracy trade-off.
Although the TbA method has impressive results on feature
attention, its exceptional feature attention results in a high
time complexity that reduces inference speed. In addition,
occlusions can cause tracked objects to pay less attention,
resulting in the failure of MOT. Meanwhile, TbD methods
such as ByteTrack (Zhang et al. 2021b) enjoy computational
efficiency, but their accuracy is not optimized. It is highly de-
sirable to develop a class of MOT methods that can strike an
improved trade-off between cost (e.g., running speed mea-
sured by FPS) and performance (e.g. tracking accuracy mea-
sured by MOTA (Bernardin and Stiefelhagen 2018)).

This paper proposes a novel object tracker, Similarity
Learning for Multiple Object Tracking (SMILEtrack),
which combines an object detector and a Similarity Learn-
ing Module (SLM) to address various challenges in MOT,
especially occlusion. Fig. 2 shows the architecture of our
SMILEtrack, which provides two major contributions to
achieving the State-of-the-Art (SoTA) MOT system: (1)
an efficient and lightweight self-attention mechanism that
learns the similarity between two candidate bounding boxes.
Although the SDE model can achieve high accuracy in ob-
ject tracking, most feature descriptors used in the model can-
not differentiate between objects with similar appearances.
To solve this problem, we propose a Siamese network-based
Similarity Learning Module (SLM) that can calculate the
similarity in appearance between two objects. Inspired by
the vision Transformer (Dosovitskiy et al. 2020), we intro-
duce a Patch Self-Attention (PSA) block in SLM to produce
reliable features for similarity matching. (2) a robust tracker
with a novel GATE function that can associate each candi-
date bounding box from video frames, leading to improved
MOT performance. To better handle occlusions, we create a
Similarity Matching Cascade (SMC) module that takes SLM
results and matches multiple objects robustly across frames.
The proposed network achieves SoTA performance on the
MOT17 and MOT20 datasets. Contributions of our work are
summarized as follows.
• We propose SMILETrack, a separate detection and track-

ing model, to track multiple objects in frames. SMILE-
Track can outperform BYTETrack (Zhang et al. 2021b)

by 0.4-0.8 MOTA points and over 2.0 HOTA points on the
MOT17 and MOT20 datasets; see to Fig. 1.

• We introduce a Siamese network-based Similarity Learn-
ing Module (SLM) to learn the similarity in appearance
between objects for tracking.

• A Patch Self-Attention (PSA) block is proposed that uses
a self-attention mechanism to produce reliable features for
similarity matching.

• We design a Similarity Matching Cascade (SMC) module
to match objects more reliably across frames, which im-
proves performance largely in the presence of occlusions.

Related Work
Tracking-by-Detection
The Tracking-by-Detection (TbD) method has become one
of the most popular approaches in the MOT framework. The
main tasks of the TbD method can be roughly divided into
two parts: object detection and object association.

Object Detection: Mainstream visual object detection
models fall into two categories, namely, the two-stage
(proposal-driven) and one-stage (direct) detectors. The two-
stage methods (Ren et al. 2016) offer high accuracy but
at the cost of speed. On the contrary, one-stage methods
are faster but less accurate. YOLO object detection mod-
els (Redmon et al. 2016; Redmon and Farhadi 2017, 2018;
Bochkovskiy, Wang, and Liao 2020) have been widely used
in multi-object tracking (MOT) applications due to their
speed and accuracy. However, these anchor-based detec-
tors introduce many hyperparameters and consume signifi-
cant time and memory during training. To mitigate these is-
sues, anchor-free detectors such as CenterNet (Zhou, Wang,
and Krähenbühl 2019), and YOLOX (Ge et al. 2021) have
emerged. Despite their improvements (Zhang et al. 2021b;
Aharon, Orfaig, and Bobrovsky 2021), these tracking de-
vices still struggle to accurately detect objects of varying
sizes. PRB-Net (Chen et al. 2021) is an effective object de-
tector for MOT tasks, addressing the limitations of anchor-
based and anchor-free detectors.

Object Association: SORT (Bewley et al. 2016) is a sim-
ple effective tracking algorithm that uses Kalman filtering
and Hungarian matching for object association. It struggles
with challenges such as occlusions and fast-moving objects.
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DeepSORT (Wojke, Bewley, and Paulus 2017) alleviates oc-
clusion issues by incorporating CNN-based appearance fea-
tures; however, this compromises execution speed. To ad-
dress this efficiency issue, FairMOT (Zhang et al. 2021c)
employs an anchor-free method based on CenterNet (Zhou,
Wang, and Krähenbühl 2019), which significantly improves
the MOT performance on the MOT17 dataset. To improve
tracking efficiency, numerous MOT methods (Stadler and
Beyerer 2021, 2022) ignore the appearance features of ob-
jects, instead leveraging high-performance detectors and
motion cues. Despite achieving impressive results and fast
inference on MOTChallenge (Milan et al. 2016) bench-
marks, we posit that their performance is largely dependent
on the simplicity of the movement patterns of the dataset.
Omitting appearance features may compromise tracking ac-
curacy and robustness in densely populated scenes.

Tracking-by-Attention
Trackformer (Meinhardt et al. 2022) extends its success in
object detection to MOT by casting the task into a frame-
to-frame set prediction problem. Data association between
frames is calculated through attention, and a set of track pre-
dictions across frames is evolved using the encoder-decoder
architecture of Transformer. Similarly, TransTrack (Sun
et al. 2020) uses an attention-based query-key mechanism
to perform object detection and association in a single shot
based on Deformable DETR (Zhu et al. 2021). TransCen-
ter (Xu et al. 2021) is another Transformer-based archi-
tecture that uses image-related dense detection queries and
sparse tracking queries for MOT. However, all Transformer-
based schemes are computationally intensive, and thus not
suitable for real-time applications.

Methodology
We introduce Similarity Learning for Multiple Object
Tracking (SMILEtrack), a novel MOT architecture inte-
grating a detector (Chen et al. 2021) and a Similarity Learn-
ing Module (SLM). SMILEtrack comprises two modules, as
shown in Fig. 2: object detection and object association. The
former model was designed primarily to excel in localizing
large and small pedestrians, achieving both accuracy and ef-
ficiency, making it a superior choice over YOLOX (Ge et al.
2021). The technical contributions of this work are mainly in
the latter module, which consists of: (1) similarity calcula-
tion, where a novel similarity learning module (SLM) learns
the appropriate features and computes an appearance affinity
matrix using a Siamese network; and (2) object association,
where a Similarity Matching Cascade (SMC) module solves
the MOT linear assignment problem using the Hungarian al-
gorithm. Details are explained in the following sections.

Similarity Learning Module (SLM)
Object appearance information is essential for achieving ro-
bust tracking quality. Although SORT is a simple associa-
tion framework that can achieve high-speed inference time,
its similarity score does not consider object appearance in-
formation and cannot handle long-term occlusion or objects
with fast motion. DeepSORT (Wojke, Bewley, and Paulus

Figure 3: Appearance similarity between low-score detec-
tion at the current frame and tracks at the previous frame.

Figure 4: Different types of patch layout: configuration (E)
achieves the best performance because it can actively attend
to PSA-occluded parts when occlusion occurs.

2017) addresses this problem by using a pre-trained CNN
to compute bounding-box appearance descriptors. However,
this descriptor only considers the similarity between the
same objects, without considering the dissimilarity between
different objects in different frames. Here, we propose the
Similarity Learning Module (SLM) that leverages a Siamese
network architecture to learn more discriminative appear-
ance features and accurately track objects across frames.

Fig. 3 shows the SLM architecture. It takes the target and
query objects as input in the Siamese network. Both are di-
vided into several patches and then pass through the Patch
Self-Attention (PSA) block. Note that the height-width ra-
tio of all patches is not fixed (see Fig. 4). Since objects of in-
terest in the MOT17 and MOT20 datasets are assumed to be
pedestrians, we have found that configuration (E) achieves
the best performance. This can be explained away by ob-
serving that layout (E) exploits both prior knowledge about
walking pedestrians (i.e., the height-width ratio is approxi-
mately 2:1) and translation invariance (i.e., the center box is
a shifted version of four surrounding boxes).

Patch Self-Attention (PSA) Block To produce a reliable
appearance feature, a superior feature representation is es-
sential. Inspired by the Vision Transformer (VIT) (Dosovit-
skiy et al. 2020), each SLM input is divided into separate
patches. Then, all the patches and their positions are embed-
ded together and fed into a backbone to extract rich feature
vectors. Then, three fully connected networks are adopted to
convert the deep visual features of all patches to three sets
of compact features, i.e., query, key, and value. Based on
the features from the query and key sets, various attentions
among different combinations can be calculated and used to
weight the features from the value set of each patch to form
a feature vector to represent an object more accurately. The
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Figure 5: The Patch Self-Attention (PSA) architecture.

detailed architecture of the PSA block is shown in Fig. 5.

The Q-K-V Attention Since input objects are of different
sizes, we resize them to a fixed size W × H where W and
H are, respectively, set to 80 and 224 in this paper. Assume
that an object A is divided into NP patches {Pi}i=1,...,NP

.
Each patch Pi has a fixed size WP × HP . Then, we use a
row-major scanning order to convert each Pi to a column
vector. Then, an object can be represented as a sequence of
Np feature vectors: (P1, ..., Pi, ..., PNp), Pi ∈ RDp , where
Dp = Wp × Hp. Before feature extraction, the values of
pixels in Pi are normalized to [0, 1]. Since there are ge-
ometrical relations between the patches in A, their repre-
sentation should be modified to preserve position-dependent
properties. For the ith patch Pi, its position embedding vec-
tor Ei is specified by the standard transformer (Vaswani
et al. 2017a). It follows that an object A is embedded as
A = (A1, ..., Ai, ..., ANP

), where Ai = Pi + Ei and
A ∈ RDp×NP . For each Ai, we adopt the CSP-Net frame-
work (Wang et al. 2020a) as the backbone to convert it into
a feature matrix Fi. Fi includes df row vectors and C col-
umn vectors; that is, Fi ∈ Rdf×C , where C is the number
of feature channels and df is the size of the last layer of the
feature pyramid created by CSP-Net (Wang et al. 2020a).

Let WQ, WK , and W V be three learned linear trans-
forms that map Fi to the query Qi, the key Ki, and the value
Vi, respectively. Assume that WK and WQ have the same
number of column vectors, i.e., dk. Also, there are dv col-
umn vectors in W V . Then WQ ∈ RC×dk , WK ∈ RC×dk ,
and W V ∈ RC×dv . With WQ, WK , and W V , we can
obtain Qi, Ki, and Vi by the following equations:

Qi = FiWQ,Ki = FiWK ,Vi = FiW V , (1)

where Qi ∈ Rdf×dk , Ki ∈ Rdf×dk , and Vi ∈ Rdf×dv .
Before matching, the norms of Qi, Ki, and Vi will be nor-
malized to be one; that is, ||Qi||=1, ||Ki||=1, and ||Vi||=1.

Let ⊗ denote the Hadamard product and Sum(M) be an
element-wise sum on a matrix M . For Ai, its attention αi,j

to Aj can be calculated according to the following equation:

αi,j =
Sum(Qi ⊗Kj)

Np∑
j=1

Sum(Qi ⊗Kj)

. (2)

Figure 6: The Similarity Matching Cascade (SMC) pipeline.

With αi,j , Ai is converted to a feature vector V̄ i as fol-

lows: V̄ i =
Np∑
j=1

αi,jV j . After concatenating all V̄ i, a

new feature vector V̄ A is created from A for object track-
ing: V̄ A

= (V̄ 1, ..., V̄ i, ..., V̄ NP
). In Fig. 5, after the PSA

block, V̄ A is converted to a new feature vector ZA by us-
ing a fully-connected network. Then, given two objects A
and B, with SLM, their similarity score can be measured by
calculating the cosine similarity between ZA and ZB .

Similarity Matching Cascade (SMC) for Tracking
Object association is the crucial step after similarity calcu-
lation for MOT. A well-designed association strategy can
have a significant impact on tracking results such as HOTA
(Luiten et al. 2021). In the literature, ByteTrack (Zhang et al.
2021b) is a simple yet effective method of association with
objects, where detected boxes are classified by their confi-
dence scores from high to low, and the best match in history
is found based on the IOU criterion. Although ByteTrack
achieves SoTA performance in some MOT evaluations (i.e.,
simple motion patterns), relying solely on the IOU distance
for data association can result in frequent ID switches when
visually similar targets approach each other (e.g., one oc-
cludes the other). To address this issue, we designed the
SMC association method as shown in Fig. 6 that integrates
the advantages of ByteTrack to achieve an improved trade-
off between speed and accuracy.

Let O denote the set of objects detected by the PRB-Net
from the current frame. All objects Oi in O are sorted ac-
cording to their detection scores in descending order (the
median detection score is µ). Subsequently, all objects Oi in
O are divided into two sets: OH and OL-based threshold-
ing. Any object in O with a detection score higher than the
threshold µ is placed in OH . If its detection score is lower
than µ but higher than 0.1, it belongs to OL. We treat an
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Figure 7: Appearance similarity between low-score detec-
tion at the current frame and tracks at the previous frame.
Five tracklets compute a similarity score with the low-score
detection using SLM. The most similar tracklet is selected,
as indicated by the orange arrow in the figure.

object as background or noise if its detection score is be-
low 0.1. Two different association strategies are employed
to match elements in OH and OL, respectively.

Let T represent the track list stored in the previous frame.
Before matching, each track in T predicts its new position
in the current frame using a Kalman filter. Moreover, Ti(k)
denotes the kth fragment or tracklet of the ith track in T ,
where Ti(last) refers to the last fragment of Ti. Furthermore,
we use SH

iou(i, j) and SH
app(i, j) to denote the IOU simi-

larity matrix and the appearance similarity matrix, respec-
tively, between Ti(last) and the jth object Oj in OH . The
value of SH

app(i, j) is obtained using the SLM method as
follows: SH

app(i, j) = SLM(Ti(last), Oj). By integrating
SH
iou(i, j) and SH

app(i, j) together, the similarity between Ti
and the jth object Oj in OH is calculated as follows:

SH(i, j) = SH
iou(i, j) + SH

app(i, j). (3)

Fig. 7 shows an example to calculate appearance similar-
ity by the multi-templated SLM. Let SL

iou(i, j) be the IOU
similarity matrix between Ti(last) and the j-th object Oj in
OL. Similar to Eq. (3), the integrated similarity between Ti
and the j-th object Oj in OL is calculated as:

SL(i, j) = SL
iou(i, j) + SL

app(i, j). (4)

Using SH(i, j) and SL(i, j), we initially associate the ob-
jects in OH with tracklets in Ti. However, due to occlusions
or blur, some tracklets in OH remain unmatched. To ad-
dress this issue, we subsequently associate the objects in OL

with these unmatched tracklets, leading to State-of-The-Art
(SoTA) MOT performance. The details of the SMC module
are described below:
Stage I: During the first stage of association, our focus is on
finding matches between OH and T . We employ the Hun-
garian algorithm to perform linear assignment using the sim-
ilarity matrix SH(i, j). The unmatched objects of OH and
the unmatched tracks of T are then placed in OH

Remain and
T H
Remain, respectively.

Stage II: In the second matching stage, we match the objects
in OL to the tracklets in T H

Remain. We complete the linear

(a)

(b)

Figure 8: The use of a GATE function can better handle the
occlusion and ID-switch problems in MOT. (a) Results of
MOT without using the GATE function. When the two tar-
gets are getting closer and the IOU score is higher than the
appearance score, an ID-switch problem happens. (b) Re-
sults of MOT using the GATE function.

assignment by the Hungarian algorithm with the similarity
matrix SL. The unmatched objects in OL and the unmatched
tracks in T H

Remain are placed in OL
Remain and T L

Remain.

The SMC GATE Function
To calculate the similarity score, most MOT methods use
a weighted sum to combine the IOU and the appearance in-
formation to improve the accuracy of data association. How-
ever, this method can cause problems when the IOU score is
significantly higher than the appearance similarity score be-
tween two distinct pedestrians, as they may only overlap, but
are not the same. This paper introduces a GATE function in
the SMC module to reject a target if its appearance similarity
score is low, even when it comes with a high IOU score.

Due to occlusions or lighting changes, objects in
OH

Remain with higher scores may not be matched in the cur-
rent frames, but their correspondences may potentially be
found in future frames. If a target in OH

Remain passes the
GATE function check, the SMC module will generate a new
tracklet and add it to T for further matching. The GATE
function uses a threshold τ to select objects from OH

Remain
if their detection scores are higher than τ and include them in
T as new tracks for further association. Objects in OH

Remain
with detection scores lower than τ , as well as those in
OL

Remain, are considered background and filtered out. It is
important to note that tracks in T L

Remain are deleted if they
remain unmatched for more than 30 frames. This GATE
function is a novel addition not present in ByteTrack (Zhang
et al. 2021b), and it aims to re-select potential tracks from
OH

Remain to handle challenging scenarios involving severe
occlusions. Without this GATE function, ByteTrack cannot
determine whether the objects to be matched are seriously
occluded or not. Fig. 8 and Table 3 shows the advantage of
the GATE function.

Experimental Results
Implementation Details. Our experiments were conducted
on MOT17 and MOT20 benchmarks (Milan et al. 2016),
with additional training on datasets (Schöps et al. 2017;

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5744



Method MOTA ↑ IDF1 ↑ HOTA ↑ FN ↓ FP ↓ IDs ↓ MT ↑ ML ↓ FPS ↑
Tube TK (Pang et al. 2020) 63.0 58.6 48.0 177,483 27,060 4,137 31.2% 19.9% 3.0
MOTR (Zeng et al. 2021) 65.1 66.4 - 149,307 45,486 2,049 33.0% 25.2% -

CTracker (Peng et al. 2020) 66.6 57.4 - 160,491 22,284 5,529 - - -
CenterTrack (Zhou, Koltun, and Krähenbühl 2020) 67.8 64.7 52.2 160,332 18,498 3,039 34.6% 24.6% 17.5

QuasiDense (Pang et al. 2021) 68.7 66.3 53.9 146,643 26,589 3,378 40.6% 29.1% 20.3
TraDes (Wu et al. 2021) 69.1 63.9 - 150,060 20,892 3,555 - - -

MAT (Li, Tokmakov, and Gaidon 2021) 69.5 63.1 53.8 138,741 30,660 2,844 43.8% 18.9% 9.0
SOTMOT (Zheng et al. 2021) 71.0 71.9 - 118,983 39,537 5,184 42.7% 15.3% 16.0

GSDT (Wang, Kitani, and Weng 2021) 73.2 66.5 - 120,666 26,397 3,891 - - -
FairMOT (Zhang et al. 2021c) 73.7 72.3 59.3 117,477 27,507 3,303 43.2% 17.3% 25.9
RelationTrack (Yu et al. 2021) 73.8 74.7 - 118,623 27,999 1,374 - - -

PermaTrackPr (Tokmakov et al. 2021) 73.8 68.9 - 115,104 28,998 3,699 - - -
CSTrack (Liang et al. 2021) 74.9 72.6 59.3 114,303 23,847 3,567 41.5% 17.5% 15.8
TransTrack (Sun et al. 2020) 75.2 63.5 54.1 86,442 50,157 3,603 55.3% 10.2% 10.0

SiamMOT (Wang et al. 2021b) 76.3 72.3 - - - - - - -
TransCenter (Xu et al. 2021) 76.4 65.4 - 89,712 37,005 6,402 51.7% 11.6% -

CorrTracker (Wang et al. 2021a) 76.5 73.6 60.7 99,510 29,808 3,369 47.6% 12.7% 15.6
TransMOT (Liu et al. 2021) 76.7 75.1 - 93,150 36,231 2,346 - - -
ReMOT (Zhang et al. 2020) 77.0 72.0 - 93,612 33,204 2,853 - - -
OCSORT (Cao et al. 2022) 78.0 77.5 - 107,055 15,129 1,950 - - -

MAATrack (Stadler and Beyerer 2022) 79.4 75.9 62.0 77,661 37,320 1,452 - - -
StrongSORT++ (Du et al. 2023) 79.6 79.5 64.4 86,205 27,876 1,194 53.6% 13.9% 7.1
ByteTrack (Zhang et al. 2021b) 80.3 77.3 63.1 83,721 25,491 2,196 53.2% 14.5% 29.6

BoT-SORT (Aharon, Orfaig, and Bobrovsky 2021) 80.6 79.5 64.6 85,398 22,524 1,257 - - 6.6
SMILEtrack w/o Re-ID (Ours) 80.7 80.1 65.0 81,792 23,187 1,251 54.7% 14.2% 37.5

BoT-SORT-R (Aharon, Orfaig, and Bobrovsky 2021) 80.5 80.2 65.0 86,037 22,521 1,212 - - 4.5
SMILEtrack (Ours) 81.1 80.5 65.3 79,428 22,963 1,246 56.3% 14.7% 5.6

Table 1: Comparison against the SoTA MOT methods on the MOT17 (Milan et al. 2016) test set.

Dollár et al. 2009; Milan et al. 2016; Zhang, Benenson,
and Schiele 2017; Shao et al. 2018; Ess et al. 2008; Xiao
et al. 2017; Zheng et al. 2017). For re-ID models, datasets
providing both bounding box location and identity infor-
mation, such as CalTech (Dollár et al. 2009), PRW (Zheng
et al. 2017), and CUHK-SYSU (Xiao et al. 2017), were
used. Evaluation metrics (Milan et al. 2016) included
MOTA (Bernardin and Stiefelhagen 2018), IDF1 (Ristani
et al. 2016), and HOTA (Luiten et al. 2021), highlighting de-
tection performance and identity matching. Our detector was
initialized on the COCO dataset (Lin et al. 2014) and fine-
tuned on MOT datasets, employing data augmentation and
an SGD optimizer with cosine annealing. The SMC module
introduced a GATE function to manage new tracklets, with
key parameters assessed in an ablation study. Additional de-
tails regarding the effects of track buffer, template lengths,
and patch layout can be found in the supplementary.

Evaluation Results
Table 1 presents the evaluation comparisons of our SMILE-
track with State-of-The-Art (SoTA) tracking models on the
MOT17 test set, following the evaluation of the MOTChal-
lenge (Milan et al. 2016). All evaluation results were ob-
tained using the official MOTChallenge evaluation website.
SMILEtrack outperforms all SoTA methods in several met-
rics, namely MOTA, IDF1, HOTA, FN, and MT, respec-
tively. Note that the MOT community pays particular atten-
tion to the compound metrics MOTA and IDF1. Addition-
ally, in the MOT17 dataset, SMILEtrack is the only method

to achieve an IDF1 score higher than 80. ByteTrack (Zhang
et al. 2021b) shows high efficiency among SoTA methods,
but also exhibits higher false positive and false negative
rates. On the other hand, StrongSORT++ (Du et al. 2023)
achieves the lowest false negatives but with significantly
higher false positives.

Our SMILEtrack is the only one method that achieves a
score higher than 80 in the IDF1 metric on the MOT17.
ByteTrack is the most efficient among all the SoTA meth-
ods but with higher IDs and FN. StrongSORT++ obtains the
lowest IDs but with a much higher FN. Table 2 presents com-
parisons of our SMILEtrack with the SoTA methods on the
MOT20 test set. SMILEtrack surpasses all SoTA methods
in the MOTA, IDF1, HOTA, and FN metrics on MOT20.
ByteTrack remains the most efficient MOT method, while
StrongSORT++ achieves the lowest false positives, but still
with a much higher FN.

Ablation Studies

Effects of Patch Layouts Different patch arrangements
will affect the performance of SLM. Therefore, the first ab-
lation study aims to investigate the effects of different patch
layouts on SLM performance improvements. Fig. 4 shows
different types of patch layouts. Table 4 shows the effects of
different patch layouts on performance improvements eval-
uated on the MOT17 val set (Milan et al. 2016). As shown
in Fig. 4, the type-E patch layout outperforms others with
respect to the metrics MOTA, IDF1, and IDs. This paper
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Method MOTA ↑ IDF1 ↑ HOTA ↑ FN ↓ FP ↓ IDs ↓ FPS ↑
FairMOT (Zhang et al. 2021c) 61.8 67.3 54.6 103,440 88,901 5,243 13.2
CSTrack (Liang et al. 2021) 66.6 68.6 54.0 144,358 25,404 3,196 4.5
TransTrack (Sun et al. 2020) 65.0 59.4 48.5 150,197 27,197 3,608 7.2
TransCenter (Xu et al. 2021) 61.9 50.4 - 146,347 45,895 4,653 1.0

CorrTracker (Wang et al. 2021a) 65.2 69.1 - 95,855 79,429 5,183 8.5
GSDT (Wang, Kitani, and Weng 2021) 67.1 67.5 53.6 135,409 31,913 3,131 0.9

SiamMOT (Wang et al. 2021b) 67.1 69.1 - - - - 4.3
RelationTrack (Yu et al. 2021) 67.2 70.5 56.5 104,597 61,134 4,243 2.7
SOTMOT (Zheng et al. 2021) 68.6 71.4 - 101,154 57,064 4,209 8.5

MAATrack (Stadler and Beyerer 2022) 73.9 71.2 57.3 108,744 24,942 1,331 14.7
StrongSORT++ (Du et al. 2023) 73.8 77.0 62.6 117,920 16,632 770 -

OCSORT (Cao et al. 2022) 75.7 76.3 62.4 105,894 19,067 942 -
TransMOT (Liu et al. 2021) 77.5 75.2 - 80,788 34,201 1615 -

ByteTrack (Zhang et al. 2021b) 77.8 75.2 61.3 87,594 26,249 1,223 17.5
BoT-SORT (Aharon, Orfaig, and Bobrovsky 2021) 77.7 76.3 62.6 86,037 22,521 1,212 6.6

SMILEtrack w/o Re-ID (Ours) 78.0 76.3 63.0 86,112 23,246 1,208 22.9

BoT-SORT-R (Aharon, Orfaig, and Bobrovsky 2021) 77.8 77.5 63.3 88,863 24,638 1,257 2.4
SMILEtrack(Ours) 78.2 77.5 63.4 85,548 24,554 1,318 7.2

Table 2: Comparison against the SoTA methods on the MOT20 (Dendorfer et al. 2020) test set.

Method Detector SLM SMC GF MOTA ↑ IDF1 ↑ IDs ↓ FPS ↑
ByteTrack YOLOX 74.1 77.0 803 9.7
SMILEtrack YOLOX ✓ 76.2 78.4 647 8.1
SMILEtrack YOLOX ✓ ✓ 76.9 79.1 594 8.0
SMILEtrack YOLOX ✓ ✓ ✓ 77.5 79.9 554 7.5
SMILEtrack PRB-Net 75.3 77.5 856 10.2
SMILEtrack PRB-Net ✓ 77.6 79.3 601 8.5
SMILEtrack PRB-Net ✓ ✓ 78.2 80.2 543 8.2
SMILEtrack PRB-Net ✓ ✓ ✓ 78.6 80.8 509 7.8

Table 3: Ablation analysis of SLM, SMC, and GATE Function (GF) on the MOT17 validation set, compared to the leading
ByteTrack (Zhang et al. 2021b) that utilizes the YOLOX (Ge et al. 2021) detector. The FPS encompasses detection, NMS,
re-identification, and data association, excluding image acquisition and video encoding/decoding processes.

Method A B C D E F G H
MOTA↑ 76.0 76.1 76.2 76.4 76.4 76.3 76.4 76.4
IDF1↑ 77.4 77.6 77.7 77.9 78.4 78.2 78.4 78.3
IDs↓ 732 705 681 654 624 645 633 630

Table 4: Effects of patch layouts on performance improve-
ment evaluated on the MOT17 val set.

adopts the type-E patch layout for all performance evalua-
tion and comparison.

Re-Identification Strategies. Traditional methods pri-
marily rely on IOU to calculate similarity scores (Zhang
et al. 2021b). These methods often fail to track rapidly mov-
ing objects effectively due to the lack of appearance match-
ing, leading to an increase in identity switches. As shown
in Table 3, SMILEtrack with PRB-Net (Chen et al. 2021)
outperforms ByteTrack with YOLOX (Ge et al. 2021) in
terms of all metrics and efficiency because ByteTrack en-
counters issues regarding re-identification. Noteably, when

ByteTrack is incorporated with our methods, such as the
SLM, SMC, and GATE functions, its accuracy improves
substantially to the level comparable to SMILEtrack, which
justifies the effectiveness of SLM, SMC, and GATE.

Conclusion

In this paper, we propose SMILEtrack, a Siamese network-
like architecture that effectively learns object appearance
features for single-camera multiple-object tracking. We in-
troduce the Similarity Matching Cascade (SMC) for bound-
ing box association in each frame, and our experiments
demonstrate that SMILEtrack achieves high-performance
scores in terms of MOTA, IDF1, IDs, and FPS on the
MOT17 and MOT20 datasets.

Future work. As SMILEtrack is a Separate Detection
and Embedding (SDE) method, it has a slower runtime com-
pared to Joint Detection and Embedding (JDE) methods. In
the future, we plan to explore approaches that can improve
the efficiency versus accuracy trade-off in MOT tasks.
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