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Abstract
Recently, self-supervised monocular depth estimation has
gained popularity with numerous applications in autonomous
driving and robotics. However, existing solutions primarily
seek to estimate depth from immediate visual features, and
struggle to recover fine-grained scene details. In this pa-
per, we introduce SQLdepth, a novel approach that can ef-
fectively learn fine-grained scene structure priors from ego-
motion. In SQLdepth, we propose a novel Self Query Layer
(SQL) to build a self-cost volume and infer depth from it,
rather than inferring depth from feature maps. We show that,
the self-cost volume is an effective inductive bias for ge-
ometry learning, which implicitly models the single-frame
scene geometry, with each slice of it indicating a relative dis-
tance map between points and objects in a latent space. Ex-
perimental results on KITTI and Cityscapes show that our
method attains remarkable state-of-the-art performance, and
showcases computational efficiency, reduced training com-
plexity, and the ability to recover fine-grained scene de-
tails. Moreover, the self-matching-oriented relative distance
querying in SQL improves the robustness and zero-shot
generalization capability of SQLdepth. Code is available at
https://github.com/hisfog/SfMNeXt-Impl.

1 Introduction
As one of the fundamental research topics in computer vi-
sion, monocular depth estimation (MDE) aims to predict the
corresponding depth of each pixel within a single image,
and is widely used in numerous applications, such as au-
tonomous driving, 3D reconstruction, augmented reality and
robotics. For the supervised solutions, depth sensors, such as
LiDAR and Kinect camera are used to collect the depth mea-
surements as ground truth. However, it is time-consuming
and expensive to collect large-scale depth measurements
from physical world. In addition, supervised depth estima-
tion cannot be well-optimized under the sparse supervision
and has limited generalization to unseen scenarios.

Lately, self-supervised solutions have gained popularity.
Existing efforts have concentrated on training with self-
distillation (Peng et al. 2021), leveraging depth hints (Wat-
son et al. 2019), and inferring with multi-frames (Watson
et al. 2021; Feng et al. 2022). However, they often fail to re-
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Figure 1: Visualized comparison on images from KITTI
dataset (Geiger et al. 2013). Existing self-supervised so-
lutions such as Monodepth2 (Godard et al. 2019) and
EPCDepth (Peng et al. 2021) show degraded performance
under the conditions of illumination change, or occlusion,
and fail to estimate the depth of thin or small objects.

cover fine-grained scene details, as shown in Figure 1. How
to learn the fine-grained scene structure priors effectively
and efficiently in self-supervised setting is still challenging.

We observe that the depth of a pixel is strongly corre-
lated with the depth of its adjacent pixels and related ob-
jects within the image. This suggests that a pixel’s depth
can be inferred from related contexts, which provide rela-
tive distance information. Therefore, in this paper, we aim
to explore whether relative distance information can serve
as an effective inductive bias, thereby improving the self-
supervised learning of monocular depth estimation.

To achieve this, we propose to build a novel self-cost vol-
ume using a Self Query Layer (SQL), with the aim of ac-
curately modeling the underlying geometry of the monoc-
ular scene. Specifically, we first model points and objects
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in a latent space. For each point (pixel), we employ a fully
convolutional U-Net with skip-connections to extract visual
features with high-frequency details. For objects, we utilize
a compact Vision Transformer (ViT) with large patch size
to extract coarse-grained object queries. Secondly, within a
novel Self Query Layer (SQL), we perform dot-product to
compare each pixel with each object to build the self-cost
volume. Finally, we propose a novel and effective decoding
approach specifically tailored for compressing the self-cost
volume to the final depth map.

Our discovery shows that, compared to directly estimat-
ing depth from visual feature maps, depth from a geometric
self-cost volume is significantly more effective and robust.
Visualization results further show that each slice in the self-
cost volume can serve as a relative distance map, accurately
modeling the scene geometry. Our main contributions are:

• Introducing SQLdepth, a novel self-supervised method
empowered by the Self Query Layer (SQL) to construct
a self-cost volume that effectively captures fine-grained
scene geometry of a single image.

• Demonstrating through comprehensive experiments on
KITTI and Cityscapes datasets that SQLdepth is simple
yet effective, and surpasses existing self-supervised alter-
natives in accuracy and efficiency.

• Highlighting SQLdepth’s improved generalization. This
is demonstrated by applying a KITTI pre-trained model
to other datasets, such as zero-shot transfer to Make3D.

2 Related Work
2.1 Supervised Depth Estimation
Eigen et al. (Eigen, Puhrsch, and Fergus 2014) was the
first to propose a framework consisting of a multiscale con-
volutional neural network to directly predict depth from
an RGB image under the supervision of a scale-invariant
loss function. Since then, numerous solutions have been
proposed. Generally, those methods formulated the depth
estimation task as either a per-pixel regression problem
(Eigen, Puhrsch, and Fergus 2014; Huynh et al. 2020; Ran-
ftl, Bochkovskiy, and Koltun 2021), or a per-pixel classifi-
cation problem (Fu et al. 2018; Diaz and Marathe 2019).

The regression based methods can predict continuous
depths, but are hard to optimize. The classification based
methods can only predict discrete depths, but are easier to
optimize. To combine the strengths of regression and classi-
fication tasks, studies in (Bhat, Alhashim, and Wonka 2021;
Johnston and Carneiro 2020) reformulated depth estimation
as a per-pixel classification-regression task. In this formula-
tion, they proposed to first regress a set of depth bins and
then perform per-pixel classification to assign each pixel to
the depth bins. The ultimate depth was derived through a lin-
ear combination of bin centers, weighted by the probability
logits. This approach has attained remarkable improvement
in precision.

2.2 Self-supervised Depth Estimation
In the absence of ground truth, self-supervised methods are
usually trained by either making use of the temporal scene

consistency in monocular videos (Zhou et al. 2017a; Godard
et al. 2019), or left-right scene consistency in stereo image
pairs (Godard, Mac Aodha, and Brostow 2017).
Monocular Training. In monocular training, supervision
information comes from the consistency between the syn-
thesis scene view from referenced frame and the scene view
of source frame. SfMLearner (Zhou et al. 2017a) jointly
trained a DepthNet and a separate PoseNet under the super-
vision of a photometric loss. Following this classical joint-
training pipeline, many advances were proposed to improve
the learning process, e.g. more robust image reconstruction
loss (Gordon et al. 2019), feature-metric reconstruction loss
(Shu et al. 2020; Zhan et al. 2018), leveraging auxiliary in-
formation (Watson et al. 2019; Klodt and Vedaldi 2018),
dealing with moving objects that break the static scene as-
sumption (Feng et al. 2022; Gordon et al. 2019; Bian et al.
2019; Klingner et al. 2020; Li et al. 2020), and introduc-
ing extra constraints, such as scene flow (Jiang and Oku-
tomi 2023), optical flow (Ranjan et al. 2019), semantics
(Guizilini et al. 2020b; Chen et al. 2019), epipolar con-
straints (Chen, Schmid, and Sminchisescu 2019). Recently,
lightweight neural architectures (Zhang et al. 2023) and or-
thogonal planes (Wang, Yu, and Gao 2023) were proposed.
Stereo Training. Stereo training requires stereo image pairs
or synchronized stereo videos. In the setting of stereo train-
ing, the relative camera pose is known, and we only need to
predict the disparity (or depth) map. Garg et al. (Garg et al.
2016) was the first to introduce photometric consistency loss
between stereo pairs for self-supervised stereo training. Fol-
lowing this, a series of improvements were proposed, includ-
ing left-right consistency (Godard, Mac Aodha, and Bros-
tow 2017), and integrating monocular depth estimation via
siamese neural architecture (Zhou and Dong 2023), predict-
ing continuous disparity values (Garg et al. 2020). Stereo
training has been further extended with semi-supervised
data (Kuznietsov, Stuckler, and Leibe 2017; Luo et al.
2018), auxiliary information (Watson et al. 2019), and self-
distillation training (Peng et al. 2021; Guo et al. 2018; Pilzer
et al. 2019). Generally, stereo views are unaffected by mov-
ing objects, therefore, they can provide accurate supervision
and be utilized to obtain the absolute depth scale.

However, existing methods often fall short in recover-
ing scene details, and struggle to effectively learn fine-
grained scene structure priors. These approaches typically
either estimate depth from immediate visual feature maps
or from Transformer-enhanced high-level visual representa-
tions (Zhao et al. 2022). They overlook the importance of
pixel-level geometric cues that might be beneficial to model
performance as well as generalization capability. This is at-
tributed to the intrinsic geometry understanding nature of
monocular depth estimation.

3 Problem Setup
The goal of self-supervised monocular depth estimation is
to predict the depth map from a single RGB image without
ground truth, which can also be viewed as learning structure
from motion (SfM). As illustrated in Figure 2, given a sin-
gle source image It as input, first, the DepthNet predicts its
corresponding depth map Dt. And the PoseNet takes both
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Figure 2: Framework Overview: (1) DepthNet: A fully convolutional encoder-decoder is used to extract immediate visual
features of frame It. Then these visual features are passed into a Self Query Layer (See Figure 3 for more details) to obtain the
depth map Dt of current frame. (2) PoseNet: Relative pose between the current frame It and the reference frame It′ is predicted
with a PoseNet. This relative pose is only needed for training. (3) Differentiable warpping: Following many previous works,
we perform differentiable warpping (Jaderberg et al. 2015) to reconstruct frame It, using Dt, Tt′→t and It′ . The loss function
is built upon the differences of the warpped image It′→t and current frame It.

source image and reference image (It, It′ ) as input and pre-
dicts the relative pose Tt→t′ between the source image It
and reference image It′ . Finally, the predicted depth Dt and
relative pose Tt→t′ are used to perform view synthesis by
Eq. 1.

It′→t = It′ ⟨proj (Dt, Tt→t′ ,K)⟩ (1)

where ⟨⟩ is the sampling operator and proj returns the 2D
coordinates of the depths in Dt when reprojected into the
camera view of It′ . At training time, both the DepthNet and
PoseNet are optimized jointly by minimizing the photomet-
ric reconstruction loss, which is widely used in prior works
(Garg et al. 2016; Zhou et al. 2017a,b). For each pixel, we
optimize the photometric loss Lphoto for the best matching
across reference views, by selecting the per-pixel minimum
over the photometric error pe, as defined in Eq. 2, where
t′ ∈ {t − 1, t + 1}. More details about pe are provided in
Section 4.3.

Lphoto = min
t′

pe (It, It′→t) (2)

4 Method
In this section, we elaborate the design details of the two
core components of SQLdepth: the fully convolutional U-
Net for extracting immediate visual representations, and the
Self Query Layer (SQL) for effective depth estimation.

4.1 Extract Immediate Visual Representations
Given an input RGB image of shape R3×H×W , the convolu-
tional U-Net first extracts image features and decodes with
upsampling them into high resolution immediate features S
of shape RC×h×w. Considering of the hardware limitation,
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Figure 3: Details of DepthNet with the Self Query Layer.

we set h = H
2 and w = W

2 . Benefiting from the encoder-
decoder architecture with skip connections, we can extract
visual representations with fine-grained visual cues.

4.2 Self Query Layer
Building a self-cost volume V. Exploring geometric cues,
such as relative distance cues, is a key factor in achieving
accurate monocular depth estimation. But how to obtain the
relative distance remains unclear. Drawing inspiration from
prior works, where a cost volume is built upon two different
images to capture cross image geometric cues for other geo-
metric tasks (e.g. MVS (Watson et al. 2021) and optical flow
(Teed and Deng 2020)), we can build a cost volume upon an
image and itself, and call it as a self-cost volume, to cap-
ture the relative distance between points and points. How-
ever, the time complexity of this procedure is O(h2 × w2),
which makes it infeasible to build the self-cost volume di-
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rectly upon the high resolution feature map S.
Coarse-grained queries Q. Instead of calculating the rel-
ative distance between points and points, we show that it
is more advantageous and computationally efficient to com-
pute it between points and objects. To achieve this, we in-
troduce the coarse-grained queries to represent objects in
the image. We split the feature map S into large patches,
and utilize a transformer to enhance the patch embeddings,
enabling them to represent objects in the image implicitly.
Afterwards, we use these coarse-grained object queries to
perform per-pixel relative distance querying (dot product)
to get the relative distance representations. Specifically, we
start by applying a convolution with a p×p kernel and stride
of p (e.g., p = 16) to S, yielding a feature map F of shape
C × h

p × w
p . Next, we reshape F to RC×N and add posi-

tional embeddings, where N = h∗w
p2 denotes the number

of patches. Subsequently, these patch embeddings are input
into a compact transformer comprising 4 layers, producing a
set of coarse-grained queries Q of shape RC×Q, where Q is
a hyperparameter and Q ≤ N . Finally, these coarse-grained
queries are applied to the per-pixel immediate visual rep-
resentations in S to build the self-cost volume V of shape
h× w ×Q. where Vi,j,k is calculated as Eq. 3.

Vi,j,k = QT
i · Sj,k (3)

Depth bins estimation with the self-cost volume. Prior
works (Bhat, Alhashim, and Wonka 2021; Li et al. 2022)
show that depth bins are useful for estimating continuous
depth. Bhat et. al (Bhat, Alhashim, and Wonka 2021) em-
ployed a brute force regression method to calculate depth
bins from a token extracted by a Vision Transformer (Doso-
vitskiy et al. 2020), and utilized a chamfer loss as super-
vision. However, this brute force approach fails in self-
supervised setting (see ablation in Table 6). Therefore, we
rethink the essence of depth bins: Depth bins essentially rep-
resent the distribution of depth, that is, the countings of dif-
ferent depth values. Therefore, we propose to estimate depth
bins b by counting the latent depths in the self-cost vol-
ume. Since we perform in a latent depth space, we can view
the counting process as a information aggregation process,
and use two basic operations for information aggregation:
softmax and weighted sum to achieve the counting opera-
tion. Specifically, for every plane (slice) in the self-cost vol-
ume V, we first apply a pixel-wise softmax to convert the
volume-plane into a pixel-wise probabilistic map. Then we
perform a weighted sum of per-pixel visual representations
in S using this map. After this procedure, we get Q vec-
tors of dimension C, representing Q depth countings in Q
planes. Finally we concat them and feed it into a MLP to
regress the depth bins b as shown in Eq. 4.

b = MLP

 Q⊕
i=1

(h,w)∑
(j,k)=(1,1)

softmax(Vi)j,k · Sj,k

 (4)

Probabilistic combination. We compress the self-cost vol-
ume V to get the final depth map, using the depth bins b we
extracted. Firstly, in order to match the dimension of depth

bins b of shape D, we apply a 1× 1 convolution to the self-
cost volume V to obtain a D-planes volume. Secondly, we
apply a plane-wise softmax operation to convert the volume
into plane-wise probabilistic maps as shown in Eq. 5.

pi,j,k = softmax(V )i,j,k, 1 ≤ i ≤ Q (5)
Finally, for each pixel, the depth is calculated by aggregating
the centers of bins using a probabilistic linear combination
(Bhat, Alhashim, and Wonka 2021) as shown in Eq. 6:

d̃ =
N∑
i=1

c (bi) pi,j,k, 1 ≤ j ≤ h, 1 ≤ k ≤ w (6)

where c (bi) is the center depth of the ith bin and it is deter-
mined by Eq 7.

c (bi) = dmin + (dmax − dmin)

bi/2 +
i−1∑
j=1

bj

 (7)

4.3 Loss Functions
Objective Functions. Following (Godard, Mac Aodha, and
Brostow 2017; Godard et al. 2019), we use the standard pho-
tometric error pe combined by the L1 and SSIM (Wang et al.
2004) as the main objective, as denoted in Eq. 8.

pe (Ia, Ib) =
α

2
(1− SSIM (Ia, Ib)) + (1− α) ∥Ia − Ib∥1

(8)
In order to regularize the depths in textureless regions, we
use edge-aware smooth loss as regularization, as follows:

Ls = |∂xd∗t | e−|∂xIt| + |∂yd∗t | e−|∂yIt| (9)
Masking Strategy. In real-world scenarios, a stationary
camera or moving objects will break down the assumptions
of a moving camera and a static scene, and hurt the training
process of self-supervised depth estimation. To address this
issue, several prior studies integrated motion mask to deal
with moving objects with the help of a scene specific in-
stance segmentation model (especially in Cityscapes). This
approach, however, is not applicable to all scenarios. To keep
scalable, we do not use motion masks to deal with moving
objects. We only use auto-masking strategy in (Godard et al.
2019) to filter out stationary pixels and low-texture regions
that remain with the same appearance between two frames
in a sequence. The mask µ is computed in Eq. 10, where []
is the Iverson bracket.

µ =
[
min
t′

pe (It, It′→t) < min
t′

pe (It, It′)
]

(10)

Final Training Loss. We combine the edge-aware smooth
loss, photometric loss in Eq. 2 and auto-mask µ as the final
training loss, as shown in Eq. 11.

L = µLphoto + λLs (11)

5 Experiments
We evaluate SQLdepth on three datasets including KITTI,
Cityscapes and Make3D, and quantify the model perfor-
mance in terms of 7 widely used metrics from (Eigen and
Fergus 2015). In addition, we investigate the generalization
of our model by zero-shot evaluating or fine-tuning on un-
seen datasets with KITTI-pretrained weights.
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Method Train Test AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253
64
0
×

19
2

PackNet-SfM (Guizilini et al. 2020a) M 1 0.111 0.785 4.601 0.189 0.878 0.960 0.982
HR-Depth (Lyu et al. 2021) MS 1 0.107 0.785 4.612 0.185 0.887 0.962 0.982
Monodepth2 (34M) (Godard et al. 2019) MS 1 0.106 0.818 4.750 0.196 0.874 0.957 0.979
DynamicDepth (Feng et al. 2022) M 2 0.096 0.720 4.458 0.175 0.897 0.964 0.984
ManyDepth (MR, 36M) (Watson et al. 2021) M 2* 0.090 0.713 4.261 0.170 0.914 0.966 0.983
SQLdepth (Efficient-b5, 34M) M 1 0.094 0.697 4.320 0.172 0.904 0.967 0.984
SQLdepth (ResNet-50, 31M) M 1 0.091 0.713 4.204 0.169 0.914 0.968 0.984
SQLdepth (ResNet-50, 31M) MS 1 0.088 0.697 4.175 0.167 0.919 0.969 0.984

10
24

×
32
0

Monodepth2 (34M) (Godard et al. 2019) MS 1 0.106 0.806 4.630 0.193 0.876 0.958 0.980
HR-Depth (Lyu et al. 2021) MS 1 0.101 0.716 4.395 0.179 0.899 0.966 0.983
DIFFNet (Zhou, Greenwood, and Taylor 2021) M 1 0.097 0.722 4.345 0.174 0.907 0.967 0.984
Depth Hints (Watson et al. 2019) S 1 0.096 0.710 4.393 0.185 0.890 0.962 0.981
CADepth-Net (Yan et al. 2021) MS 1 0.096 0.694 4.264 0.173 0.908 0.968 0.984
EPCDepth (ResNet-50) (Peng et al. 2021) S+D 1 0.091 0.646 4.207 0.176 0.901 0.966 0.983
ManyDepth (Res-50, 37M) (Watson et al. 2021) M 2* 0.087 0.685 4.142 0.167 0.920 0.968 0.983
SQLdepth (Efficient-b5, 37M) M 1 0.087 0.649 4.149 0.165 0.918 0.969 0.984
SQLdepth (ResNet-50, 37M) M 1 0.087 0.659 4.096 0.165 0.920 0.970 0.984
SQLdepth (ResNet-50, 37M) MS 1 0.082 0.607 3.914 0.160 0.928 0.972 0.985

Table 1: Performance comparison on KITTI eigen benchmark (Geiger et al. 2013). In the Train column, S: stereo training, M:
monocular training, MS: stereo and monocular training, D: self-distillation training, In the Test column, 1: one single frame as
input, 2: two frames (the previous and current) as input, *: TTR (Test-Time Refinement) used by ManyDepth (Watson et al.
2021). The best results are in bold, and second best are underlined. The #param is highlighted in italic. All self-supervised
methods use median-scaling in (Eigen and Fergus 2015) to estimate the absolute depth scale.

Method Train Test AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

64
0
×

19
2

Monodepth2 (34M) (Godard et al. 2019) MS 1 0.080 0.466 3.681 0.127 0.926 0.985 0.995
DynamicDepth (Feng et al. 2022) M 2 0.068 0.362 3.454 0.111 0.943 0.991 0.998
ManyDepth (MR, 36M) (Watson et al. 2021) M 2* 0.058 0.334 3.137 0.101 0.958 0.991 0.997
SQLdepth (Efficient-b5, 34M) M 1 0.066 0.356 3.344 0.107 0.947 0.989 0.997
SQLdepth (ResNet-50, 31M) M 1 0.061 0.317 3.055 0.100 0.957 0.992 0.997
SQLdepth (ResNet-50, 31M) MS 1 0.054 0.276 2.819 0.092 0.964 0.993 0.998

10
24

×
32
0

Monodepth2 (34M) (Godard et al. 2019) MS 1 0.091 0.531 3.742 0.135 0.916 0.984 0.995
CADepth-Net (Yan et al. 2021) MS 1 0.070 0.346 3.168 0.109 0.945 0.991 0.997
ManyDepth (Res-50, 37M) (Watson et al. 2021) M 2* 0.055 0.305 2.945 0.094 0.963 0.992 0.997
SQLdepth (Efficient-b5, 37M) M 1 0.058 0.287 3.039 0.096 0.959 0.992 0.998
SQLdepth (ResNet-50, 37M) M 1 0.058 0.289 2.925 0.095 0.962 0.993 0.998
SQLdepth (ResNet-50, 37M) MS 1 0.052 0.223 2.550 0.084 0.971 0.995 0.998

Table 2: Performance comparison using KITTI improved ground truth from (Uhrig et al. 2017).

5.1 Datasets and Experimental Protocol
KITTI (Geiger et al. 2013) is a dataset that provides
stereo image sequences, which is commonly used for self-
supervised monocular depth estimation. We use Eigen test
split with 697 images for testing (raw ground-truth), and
we also provide results using improved ground-truth (Uhrig
et al. 2017). We train SQLdepth from scratch on KITTI un-
der the simplest setting: auto-masking (Godard et al. 2019)
only, no auxiliary information, and no self-distillation. For
testing, we also keep the simplest setting: only one single
frame as input, while the other methods may use multiple
frames and test-time refinement to improve accuracy.
Cityscapes (Cordts et al. 2016) is a challenging dataset
which contains numerous moving objects. In order to eval-
uate the generalization of SQLdepth, we fine-tune (self-
supervised) and perform zero-shot evaluation on Cityscapes
using the KITTI-pretrained model. Note that we do not use
motion mask while most of the other baselines do. We use
the data preprocessing scripts from (Zhou et al. 2017a) as
others baselines do, and preprocess the image sequences into

triples. In addition, we also train SQLdepth from scratch on
Cityscapes under the same setting with other baselines.
Make3D (Saxena, Sun, and Ng 2008) To evaluate the gen-
eralization ability of SQLdepth on unseen images, we use
the KITTI-pretrained SQLdepth to perform zero-shot evalu-
ation on the Make3D dataset, and provide additional depth
map visualizations.

5.2 Implementation Details
Our method is implemented using Pytorch framework
(Paszke et al. 2019). The model is trained on 3 NVIDIA
V100 GPUs, with a batch size of 16. Following the settings
from (Godard et al. 2019), we use color and flip augmenta-
tions on images during training. We jointly train both Depth-
Net and PoseNet with the Adam Optimizer (Kingma and Ba
2014) with β1 = 0.9, β2 = 0.999. The initial learning rate
is set to 1e− 4 and decays to 1e− 5 after 15 epochs. We set
the SSIM weight to α = 0.85 and smooth loss term weight
to λ = 1e − 3. We use the ResNet-50 (He et al. 2016) with
ImageNet (Russakovsky et al. 2015) pretrained weights as
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Method Train Test AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253
41
6
×
12
8

Struct2Depth2 (Casser et al. 2019b) MMask, C 1 0.145 1.737 7.280 0.205 0.813 0.942 0.976
Monodepth2 (Godard et al. 2019) –, C 1 0.129 1.569 6.876 0.187 0.849 0.957 0.983
Videos in the Wild (Gordon et al. 2019) MMask, C 1 0.127 1.330 6.960 0.195 0.830 0.947 0.981
SQLdepth (Zero-shot) –, K 1 0.125 1.347 7.398 0.194 0.834 0.951 0.985
Li et al. (Li et al. 2020) MMask, C 1 0.119 1.290 6.980 0.190 0.846 0.952 0.982
Lee et al. (Lee et al. 2021b) MMask, C 1 0.116 1.213 6.695 0.186 0.852 0.951 0.982
ManyDepth (Watson et al. 2021) MMask, C 2 0.114 1.193 6.223 0.170 0.875 0.967 0.989
InstaDM (Lee et al. 2021a) MMask, C 1 0.111 1.158 6.437 0.182 0.868 0.961 0.983
SQLdepth (From scratch) MMask, C 1 0.110 1.130 6.264 0.165 0.881 0.971 0.991
SQLdepth (Fine-tuned) –, K→C 1 0.106 1.173 6.237 0.163 0.888 0.972 0.990

Table 3: Performance comparison on Cityscapes dataset (Cordts et al. 2016). We present results of zero-shot, fine-tuning (self-
supervised) and training from scratch on Cityscapes. All the other baselines are trained from scratch on Cityscapes. K: KITTI,
C: Cityscapes, K→C: pretrained on KITTI and fine-tuned on Cityscapes. MMask: use motion mask, –: no motion mask.

backbone, as the other baselines do. We also provide results
of ImageNet pretrained Efficient-net-b5 (Tan and Le 2019)
backbone, which has similar params with ResNet-50.

5.3 KITTI Results

As shown in Table 1, following prior studies, we conduct
experiments under two resolutions: the top half for input
image resolution of 640 × 192, while the bottom half for
high resolution of 1024 × 320. We observe that SQLdepth
outperforms all existing self-supervised methods by signifi-
cant margins, and also outperforms counterparts trained with
self distillation, or use multi-frames for testing. We con-
duct a comparative study with Monodepth2 (Godard et al.
2019) and EPCDepth (Peng et al. 2021). As shown in Fig-
ure 1, SQLdepth produces impressive depth maps with sharp
boundaries, especially for fine-grained scene details, such
as traffic signs and pedestrians. Due to the low quality of
ground truth in KITTI, we also provide evaluation results
with KITTI improved ground-truth in Table 2. Compared
with ManyDepth (Watson et al. 2021), which uses multi-
ple frames for testing, SQLdepth still presents better results
across all metrics, and achieves a 5.5% error reduction in
terms of AbsRel in 1024×320 resolution, and 6.9% error
reduction in 640×192 resolution. In addition, We provide
visualizations in Figure 4 to show the effectiveness of depth
from a self-cost volume. As for efficiency comparison, de-
tails are present in Figure 6.

5.4 Cityscapes Results

In order to evaluate the generalization of SQLdepth, we
present results of zero-shot evaluation, fine-tuning (self-
supervised), and training from scratch on Cityscapes. We
used the KITTI pre-trained model for zero-shot evaluation
and fine-tuning. The results are reported in Table 3. We have
to emphasize that although most of the baselines use motion
mask to deal with moving objects, SQLdepth still presents
superior performance without motion mask, and only re-
quires 2 epochs of self-supervised fine-tuning to achieve the
best. The zero-shot evaluation result in Table 3 shows com-
petitive performance. In addition, the result of training from
scratch also shows SOTA performance.

Figure 4: Visualization of planes in the self-cost volume. It’s
noteworthy that each slice of the self-cost volume maintains
clear scene structures. This demonstrates that the self-cost
volume essentially serves as a beneficial inductive bias that
captures useful geometrical cues for depth estimation.

5.5 Make3D Results
To further evaluate the generalization capacity of SQLdepth,
we conducted zero-shot transfer experiments where the pre-
trained model on KITTI is directly applied to Make3D (Sax-
ena, Sun, and Ng 2008) dataset. Following the same evalu-
ation setting in (Godard, Mac Aodha, and Brostow 2017),
we tested on a center crop of 2× 1 ratio. As shown in Table
4 and Figure 5, SQLdepth shows superior performance on
the unseen images. This demonstrates the improved gener-
alization capability of SQLdepth, which is attributed to the
effectiveness of self-matching-oriented SQL.

Method AbsRel SqRel RMSE
Zhou (Zhou et al. 2017b) 0.383 5.321 10.470
DDVO (Wang et al. 2017) 0.387 4.720 8.090
MD2 (Godard et al. 2019) 0.322 3.589 7.417
CADepthNet (Yan et al. 2021) 0.312 3.086 7.066
SQLdepth (Ours) 0.285 2.202 5.582

Table 4: Make3D results.

5.6 Ablation Study
In this section, we conduct ablation studies to investigate
the effects of designs in SQLdepth, including coarse-grained
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Figure 5: Qualitative results on Make3D (Zero-shot).

queries, plane-wise depth counting, and probabilistic combi-
nation, respectively.
Benefits of the SQL layer. As shown in Table 5, SQLdepth
without SQL layer shows a massive performance downgrade
with a 17.54% decrease from 0.091 to 0.114 in terms of Ab-
sRel. This demonstrates the effectiveness of the SQL layer.

Ablation AbsRel ↓ SqRel ↓ RMSE ↓
No queries 0.114 0.805 4.816
Learned queries (static) 0.102 0.738 4.512
Fine-grained queries 0.094 0.727 4.437
Coarse-grained queries 0.091 0.713 4.204

Table 5: Ablation study for SQL and coarse-grained queries.

Benefits of coarse-grained queries. To investigate the ef-
fectiveness of coarse-grained queries, we compare it with
two variants of queries: learned queries (static) and fine-
grained queries. Learned queries are learnable vectors (Car-
ion et al. 2020) during training and then frozen for testing.
Fine-grained queries are generated from patch embeddings
at runtime, but with smaller patch size (e.g. 4×4). The re-
sults are summarized in Table 5. We find that runtime queries
(fine-grained queries or coarse-grained queries) are better
than static queries. This is due to that static queries are not
able to adaptively represent the context in different images.
For runtime queries, we notice that coarse-grained queries
produce better results than fine-grained queries. This is due
to that coarse-grained queries are able to capture the contexts
within a larger receptive field.

Ablation AbsRel ↓ SqRel ↓ RMSE ↓
Fixed bins (uniform) 0.114 0.894 4.659
Bins regression (AdaBins) 0.112 0.874 4.534
Bins from counting 0.087 0.659 4.096

Table 6: Ablation of different design choices for depth bins.

Benefits of estimating depth bins via counting. As shown
in Table 6, we replace depth bins with fixed bins or depth
bins directly regressed from a token extracted by a Trans-
former, as AdaBins (Bhat, Alhashim, and Wonka 2021) did.
Compared with both variants, our proposed depth count-
ing approach leads to better results. This is because that the
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Figure 6: We compare AbsRel against Giga Multiply-Add
Caculation per Second (GMACs) on the KITTI Eigen test
set. Our model is efficient and also accurate at the same time.

depth counting can effectively make use of the latent depths
in the self-cost volume.
Benefits of probabilistic combination. As shown in Ta-
ble 7, we replace the probabilistic combination with either
global average pooling or Conv1×1. We observe that both
of them lead to a substantial performance drop. The poten-
tial reason could be that probabilistic combination can adap-
tively fuse all relative depth estimations provided by differ-
ent contexts in the image.

Ablation AbsRel ↓ SqRel ↓ RMSE ↓
Global average pooling 0.115 0.926 4.832
Conv1×1 as combination 0.106 0.826 4.592
Probabilistic combination 0.087 0.659 4.096

Table 7: Ablation study of different combination strategies.

6 Conclusion
In this paper, we have revisited the problem of self-
supervised monocular depth estimation. We introduce a sim-
ple yet effective method, SQLdepth, in which we build a
self-cost volume by coarse-grained queries, extract depth
bins using plane-wise depth counting, and estimate depth
map using probabilistic combination. SQLdepth attains re-
markable SOTA results on KITTI, Cityscapes and Make3D
datasets. Furthermore, we demonstrate the improved gener-
alization capability of our model.
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