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Abstract

Document Image Enhancement (DIE) remains challenging
due to the prevalence of multiple degradations in docu-
ment images captured by cameras. In this paper, we re-
spond an interesting question: can the performance of pre-
trained models and downstream DIE models be improved
if they are bootstrapped using different degradation types
of the same semantic samples and their high-dimensional
features with ambiguous inter-class distance? To this end,
we propose an effective contrastive learning paradigm for
DIE — a Document image enhancement framework with
Normalization and Latent Contrast (DocNLC). While exist-
ing DIE methods focus on eliminating one type of degra-
dation, DocNLC considers the relationship between differ-
ent types of degradation while utilizing both direct and latent
contrasts to constrain content consistency, thus achieving a
unified treatment of multiple types of degradation. Specifi-
cally, we devise a latent contrastive learning module to en-
force explicit decorrelation of the normalized representations
of different degradation types and to minimize the redun-
dancy between them. Comprehensive experiments show that
our method outperforms state-of-the-art DIE models in both
pre-training and fine-tuning stages on four publicly available
independent datasets. In addition, we discuss the potential
benefits of DocNLC for downstream tasks. Our code is re-
leased at https://github.com/RylonW/DocNLC.

Introduction
Document preservation can be hampered by a variety of
degradations such as watermarks, blurring, noise, back-
grounds, ink bleed, and uneven ambient light (Lin, Chen,
and Chuang 2020; Anvari and Athitsos 2021). As a re-
sult, a number of deep learning-based correction methods
have been proposed for specific types of degradation, includ-
ing document watermark removal (Souibgui and Kessentini
2020) , blurring removal (Ljubenović and Figueiredo 2019;
Tran et al. 2021) , noise removal (Gangeh et al. 2021) , and
shadow removal (Lin, Chen, and Chuang 2020) . However,
most of them focus on a specific type of degradation and are
therefore less applicable in practice to other types of degra-
dation.
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Figure 1: The depiction of the document image degrada-
tion process provides a valuable guideline for our contrastive
learning design. According to data processing inequality
theory (Cover 1999), the amount of mutual information
I(x, ·) between a document image and the original sample
decreases over a series of editing, interaction, and collec-
tion processes. Therefore, it is crucial not to simply mix the
datasets, but to focus on exploring the relationships between
them.

The process of document image degradation can be di-
vided into three distinct phases: editing, interaction and col-
lection. In the editing phase, the background of the doc-
ument varies, depending on the material used to write or
print it. Also, the watermarks could be added. In the inter-
action phase, the document interacts with the environment
in which it is placed. The light in the physical environ-
ment and the moisture in the air will continue to interact
with the document entity, causing shadows, wrinkles and
corrosion (Ma et al. 2018; Das et al. 2019; Li et al. 2019;
Xie et al. 2020; Feng et al. 2021). In addition, human be-
haviour can exacerbate the degradation of the document im-
age, such as stamping images or making notes on the origi-
nal document. Finally, during the collection phase, motion
blurring in different directions can occur due to instabil-
ity in the shooting equipment. Thermal noise in the camera
electronics or multiple compressions and decompressions of
the image during storage and transmission can also intro-
duce noise, further degrading the quality of document im-
ages. The degradation of document images is therefore a
multi-stage process. This complex degradation process cre-
ates difficulties in reading documents and challenges in re-
covering document images. The simplest way to solve this
problem is to train specific networks for each type of degra-
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dation (He and Schomaker 2019; Ljubenović and Figueiredo
2019; Souibgui and Kessentini 2020; Lin, Chen, and Chuang
2020). Among the above methods, DE-GAN (Souibgui and
Kessentini 2020) is the most representative and complete
work, where separate GAN models with the same structure
are trained for binarization, watermarks and blurring, but
this leads to a significant increase in training time and model
parameters. The second solution is to train the network with
a mixture of data from different types of degradation to im-
prove its enhancement capability. However, the represen-
tation of different types of degradation varies, as does the
distance between each type of degradation and the original
sample. If the mixed data is used directly for training, the
relationship between the different types of degradation is ig-
nored, resulting in a poor model.

Therefore, inspired by exposure normalization correction
(Huang et al. 2022) and contrastive learning for image en-
hancement (Liang et al. 2022), we propose a framework to
handle multiple types of document degradation in a uni-
fied way. There are numerous existing degraded document
datasets, but most of them contain only a single degradation
type. To accommodate our proposed framework, we merge
several publicly available datasets and artificially fill in the
missing types so that each original document sample has the
corresponding five degradation types: backgrounds, water-
marks, shadow, noise and blur. Following the basic princi-
ple of normalization followed by compensation, our degra-
dation normalization model starts with a rough alignment
of different document degradation features, followed by the
calculation of the normalization loss. However, normaliza-
tion inevitably loses some features during image reconstruc-
tion, so the compensation part integrates the features pre-
and post-normalization to ensure the integrity of the infor-
mation. In addition, since the pre-training is performed on
synthetic datasets, we fine-tune the model on real datasets
to improve the performance of the model on real degraded
document images. This strategy reduces the difficulty of re-
pairing different classes of document degradation and facil-
itates the formation of a network that can handle multiple
degradations in a balanced manner.

The main contributions of this work are summarized as
follows:

1. Unlike most existing DIE methods that train a specific
network for each type of degradation, DocNLC proposed in
this paper is the first unified document image enhancement
framework that deals with multiple types of degradation.
Through direct and latent contrastive learning, DocNLC can
extract the common features of different degradation types
and reduce their redundancy, so that document images of dif-
ferent degradation types can be uniformly restored to clean
images.

2. Existing contrastive learning frameworks increase the
inter-class distance, but the distance between different types
of degraded image features is ambiguous, leading to class
separation difficulties and low-quality image restoration. To
address this problem, we propose a different contrast learn-
ing paradigm that enhances explicit deconvolution between
different types of degraded representations. Using inter-class
relations, different types of degraded features are mapped

into degradation-independent representations.
3. Comprehensive experimental results on four publicly

available independent datasets show that DocNLC outper-
forms the state-of-the-art and demonstrate the generality and
effectiveness of the framework proposed in this paper.

Related Work
Document Imgae Enhancement
Initially, researchers considerd Document Image Enhance-
ment (DIE) as a binarization task and used sliding win-
dows and threshold segmentation strategies (Otsu 1979;
Sauvola and Pietikäinen 2000) to solve this problem. How-
ever, the introduction of U-Net (Ronneberger, Fischer, and
Brox 2015) sparked a huge research interest in this area.
DeepOtsu (He and Schomaker 2019) was the first paper
to combine thresholding with U-Net(Ronneberger, Fischer,
and Brox 2015). Subsequently, Kang et al. (Kang, Iwana,
and Uchida 2021) proposed a stack of pre-trained U-Net
modules from a data-driven perspective. In addition, genera-
tive adversarial network-based approaches (Zhao et al. 2019;
Souibgui and Kessentini 2020) have been that treat DIE as
an image generation task. These approaches employ a gen-
erator to produce an enhanced version of the document im-
age, while a discriminator is used to evaluate the quality of
binarization. More recently, attempts have been made to re-
late DIE to other tasks such as optical character recognition,
which requires access to an effective upstream representa-
tions. Consequently, Transformer-based techniques, such as
DocEnTr (Souibgui et al. 2022) and Text-DIAE (Souibgui
et al. 2023), have been proposed to recover the encoder rep-
resentation. However, while these methods appear to address
a range of degradation types, none of them have been thor-
oughly tested for cross-dataset performance. An exception
is BEDSR-Net (Lin, Chen, and Chuang 2020), which uses
U-Net and discriminators to specifically correct for shadows
in document images. Finally, Kligler et al. (Kligler, Katz,
and Tal 2018) presented a new interpretation of DIE, defin-
ing it as a 3D point visibility detection task. However, this
approach also fails to take into account the practical appli-
cation scenarios of DIE, which involves multiple types of
degradation.

Contrastive Learning
In recent years, contrastive learning (CL) has become a
prominent approach for learning invariant representations
by focusing on feature differences. The prevailing meth-
ods in this field mainly rely on the use of negative sam-
ples(Oord, Li, and Vinyals 2018; He et al. 2020; Chen et al.
2020). However, these negative sample-based methods have
strict requirements on the number of negative samples per
batch, resulting in an increased storage burden. To overcome
this limitation, several alternative contrastive methods have
been proposed. Instead of relying on weight sharing between
branches, output quantization, stop gradient, memory banks,
and other complex techniques, these methods take a dif-
ferent perspective, using explicit decorrelation as a means
of learning representations(Grill et al. 2020; Zbontar et al.
2021; Zhang et al. 2021; Bardes, Ponce, and LeCun 2022).
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By simplifying the CL strategy, these methods eliminate the
need for cumbersome techniques and make the learning pro-
cess more streamlined and efficient. In addition, certain ap-
proaches address the challenge from a more novel perspec-
tive, such as SFA (Yifei et al. 2023), which rebalances the
partial contribution on the feature spectrum to improve the
quality of representations, thus providing a unique solution
to this problem.

Methodology
Motivation and Overview
As shown in Figure 1, correcting different levels of degrada-
tion has different visual characteristics, making it very diffi-
cult for the network to distinguish between foreground and
background for various degradation types. In addition, train-
ing on mixed datasets not only increases the training time,
but also promotes superficial memory, leading to unbalanced
network performance across different datasets and degrada-
tion types. Therefore, this paper proposes to deal with multi-
ple degradation types under a unified framework (DocNLC)
that exploits the relationship between different degradations
and learns content-invariant degradation representations us-
ing direct and latent contrastive learning methods.

Figure 2 shows the architecture of DocNLC. It consists
of three main components: the degradation normalization
and compensation module (DNC), the restoration module,
and the latent contrastive module. When a degraded docu-
ment is input, the DNC module is applied first. The com-
pensated output is sent to the subsequent restoration mod-
ule, while the normalized output is passed to the latent con-
trastive module. Importantly, the latent contrastive module
is only used during training and does not introduce any ad-
ditional parameters into the final network.

In terms of task modules, we use two widely-used net-
works: the restoration module is similar to the UNet ar-
chitecture and is responsible for pixel-level correction and
remapping. On the other hand, the latent contrastive mod-
ule draws inspiration from the Barlow Twins (Zbontar et al.
2021) framework. We adopt two separate streams to address
the dual aspects of the latent contrastive module - contrastive
learning and content preservation.

Degradation Normalization and Compensation
Figure 3 shows the architecture of the DNC module. The
normalization part aims to map various degraded document
image features into a feature-invariant space, while the com-
pensation part integrating the unprocessed features to com-
pensate for the lack of discriminative information in the im-
age caused by normalization.

Normalization Module The features are first roughly
aligned using instance normalization. Assuming that the in-
put feature x , we perform instance normalization(Huang
and Belongie 2017) using Eq. (1):

N = IN(x) = γ
x− µ(x)

σ(x)
+ β (1)

where µ() and σ() denote the mean and standard deviation
computed across spatial dimensions for each channel and
each sample, γ and β are learnable parameters.

By integrating instance normalization within the model
architecture, the input feature statistics can be efficiently
normalized. Different degradations are aligned using in-
stance normalization, thus reducing their representation dis-
crepancies. The output of the normalization part is fed to
the projector head as shown in Fig.2. The normalization part
effectively close the distance between the degradation fea-
tures, so that the gap between the new feature maps pro-
cessed by the projector is not too large to be optimized.

Compensation Module Normalization process inevitably
removes information, resulting in insufficient information
for image reconstruction. To overcome this drawback, we
add a compensation part to integrate the initial features not
processed by the normalization component to ensure the
completeness of the information that can be sent to the sub-
sequent restoration module. Specifically, we implement the
compensation in both spatial and channel dimensions, which
helps to guide the integration of missing information in the
initial features. This idea was inspired by SENet (Hu, Shen,
and Sun 2018).

Contrastive Degradation Representation
DocNLC addresses a general document restoration problem,
rather than a specific type of degradation problem. This re-
quires a large amount of diverse data to be used during train-
ing. However, naively feeding the data to the network with-
out exploiting the inter-class relationships is suboptimal. We
propose a contrastive learning framework that links multiple
degradation types and enhances the network’s generalization
ability. Contrary to existing CL frameworks(e.g. Sim-CLR)
that emphasize negative samples and aim to create a linearly
separable space for different image categories, we argue that
this is not suitable for our task. Since real degraded doc-
ument images contain multiple degradation types, enforc-
ing large distance between categories (different degradation
types) may degrade the restoration quality. What’s more, un-
like existing symmetric CL frameworks, DocNLC assigns
different importance to the primary and other modalities, re-
sulting in an asymmetric contrastive form. This is shown in
the bottom left of Figure 2. To this end, we adopt a dif-
ferent CL paradigm that enforces explicit decorrelation of
the representations. Before explaining our contrastive algo-
rithm, we define the input of the primary modality as xm

and the inputs of other modalities as xm1, xm2, etc. Simi-
larly, their representation for latent contrast are defined as
rm, rm1, rm2, etc. The complete pytorch-style pseudo-code
for our constrastive learning strategy is shown in Algorithm
1.

Latent Contrastive Constraint We aim to project the
normalized features (Ioffe and Szegedy 2015) into another
dimension and compute the correlation matrix with maxi-
mum invariance and minimum redundancy. Unlike Barlow
Twins, we do not need to increase the feature dimensions af-
ter normalization, but reduce them to speed up the computa-
tion. Our method reduces the feature dimensions in both the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5565



Figure 2: The overall architecture of DocNLC. In the training phase, the latent contrastive module plays a vital role in parameter
tuning. The computation of the cross-correlation matrix in the Barlow module helps a lot in obtaining the latent contrastive loss
value. In the test phase, the degraded image is simply passed through the enhancement network to obtain the recovered image.
In addition, the two subplots at the bottom right of the figure divide the invariant and redundant components of the matrix. The
aim is to maximize the invariant component while minimizing the redundant component to zero.

Figure 3: The architecture of DNC (Degradation Normaliza-
tion and Compensation) module.

channel and spatial dimensions in the projecor section. The
reduction is done in a specific order, first the channel dimen-
sions and then the spatial dimensions. This design choice is
in line with the UNet’s philosophy, as its aim is to minimize
information loss at this stage, so as not to interfere with sub-
sequent loss calculations. Wi refers to the parameters of the
convolutional layer used to reduce the channel dimension.
We repeat this dimension reduction process twice in the re-
duction module, which can be expressed as:

Pi = pool(relu(Wi ∗ bn(·)), i = 1, 2 (2)

We refer to the invariance term of the two latent rep-
resentations as I(rm, rm1) and the redundancy term as
R(rm, rm1). Their visual schematic is shown in the bottom
right of Figure 2, and a more detailed computational proce-
dure is described in Algorithm 1. The latent contrast loss is
defined as follows:

LLcon = max{I(rm, rm1)}+min{R(rm, rm1)}
= Σi(1− Ci,i)

2 + λΣiΣj ̸=iC
2
i,j

(3)

where λ is a positive constant used to weight the importance
of the first and second terms of the loss, and C is the cross-
correlation matrix computed between the normalized out-
puts of the two samples. We keep λ the same as in Barlow

Twins.

Ci,j =
Σbr

m
b,ir

m1
b,j√

Σb(rmb,i)
2
√
Σb(rm1

b,j )
2

(4)

The latent contrast loss consists of two terms, the in-
variance term and the redundancy reduction term. The in-
variance term, by enforcing the diagonal elements of the
cross-correlation matrix to be 1, makes the embedding ro-
bust to distortions. The redundancy reduction term, on the
other hand, by enforcing the off-diagonal elements of the
cross-correlation matrix to be 0, decorrelates the different
dimensions of the embedding. This decorrelation ensures
that the sample information conveyed by the output is non-
redundant.

Loss Function Formulation
Our model uses a different set of losses at each stage. Dur-
ing pre-training, we use four different losses, LMSE , LBCE ,
LDcon and LLcon. Two of the loss functions, LMSE and
LBCE are used for pure image restoration. The former is
calculated using mean square error and the latter uses bi-
nary cross entropy. The inclusion of loss function LBCE

aims to enhance the clarity of character boundaries. LDcon

and LLcon losses are used to supervise different contrastive
learning in direct (pixel level) and latent space, respectively.
Thus, the total loss function for the pre-training model is:

Ltotal = LMSE + λ1LBCE + LDcon + λ2LLcon (5)

In terms of LMSE , we set its coefficient to 1 since it is sim-
ilar in magnitude to LDcon. Regarding λ1, we set its value
to 5 based on hyper-parameter experiments, since our model
achieves optimal performance with this settings. LLcon, on
the other hand, is calculated over the whole feature dimen-
sion and possesses a significantly larger value compared to
other elements of the loss function. Therefore, we set λ2 to
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Algorithm 1: PyTorch-style pseudocode for Con-
trastive Degradation Representation
# net: enhancement net
# proj: project head
# lambda: weight on off-diagonal terms
# N: batch size
# D: dimensionality of the embeddings
# mm: matrix-matrix multiplication
# eye: identity matrix

for x in loader:
# initialize contrastive loss
Dcon, Lcon = 0, 0

for z in degradations:
# compute embeddings
e x, n x = proj(Norm(x)), net(x)
e z, n z = proj(Norm(z)), net(z)

# normalize along the batch
e x norm = (e x - e x.mean(0)) /
e x.std(0)
e z norm = (e z - e z.mean(0)) /
e z.std(0)

# cross-correlation matrix
c = mm(e x norm.T, e z norm) / N

# loss
# direct contrastive loss
Dcon.append(mse(n x, n z))
# latent contrastive loss
c diff = (c - eye(D)).pow(2)
off diagnal(c diff).mul(lambda)
Lcon.append(c diff.sum())

loss = loss restoration + Dcon + Lcon
loss.backward()
optimizer.step()

1/100 to ensure improved performance and maintain bal-
ance between different loss elements.

In the fine-tuning phase, we only use LMSE . Our model
has learned good representations of degraded document im-
ages, so we can adopt a simpler form of loss function.

Experiments
Datasets
Our experiments are trained and evaluated on a variety of
degraded document datasets. These datasets cover a wide
range of document types such as handwritten, printed, an-
cient, and modern documents. The data setup differs in the
pre-training and fine-tuning phases. To prevent the model
from simply memorizing the data rather than learning from
it, we generated a large number of degraded samples for
model pre-training using ground truth data from the DIBCO
2008-2019 dataset series. To maintain fairness in the across-
dataset test, images from the test set are excluded from
the pre-training dataset. Specifically, the training, validation,
and test sets consist of 10,937, 100, and 60 pairs of high-
resolution complete document images, respectively. During
the fine-tuning phase, the model will be fine-tuned using all
real data from the DIBCO 2008-2019 dataset series (DIBCO

series for short) except the test data, so the amount of train-
ing data in each testset is not fixed. Please refer to the sup-
plementary material for more details.

Implementation Details
We train our networks using small image patches randomly
sampled from the document images. The base patch size is
set to 256×256. So for images with heights less than 256, we
resize them to 384 instead. We also use augmentation meth-
ods (flipping and rotation) to create more complex training
samples. In flipping, we flip patches vertically or horizon-
tally at a 50% ratio. When rotating, we rotate patches by
180 degrees with a 50% ratio.

Our training batch size is set to 16 throughout the train-
ing process. In the pre-training phase, the learning rate is
initially set to 1e-4 and the number of training iterations is
60000. The system runs on an Ubuntu server platform with
two GPUs (NVIDIA GeForce RTX 2080 Ti with 11G mem-
ory).

Quantitative Results
For test images, we use four publicly available datasets
of independently degraded document images from previous
DIBCO competition series. We evaluate not only the genere-
lization ability of the pre-trained models, but also their fine-
tuning performance.

Unified Pre-training Results In the pre-training phase,
the baseline method is set to be the official Unet. We
adopt the augmented ground truth images as pre-training
resources, while the test sets are arbitrary. On the same
pre-training and test datasets, we compare the proposed
method with three representative heterogeneous state-of-
the-art methods, including; a Transformer-based method
DocEnTr (Souibgui et al. 2022), a GAN-based method DE-
GAN (Souibgui and Kessentini 2020) and a Unet-based
method BCDU-Net (Azad et al. 2019), which uses the same
backbone enhancement network as ours.

We adopt PSNR (Huynh-Thu and Ghanbari 2008) and
SSIM (Wang et al. 2004) as the basic evaluation metrics for
image quality assessment to evaluate the image restoration
effect: the higher the PSNR and SSIM, the more natural the
signal-to-noise ratio and structural similarity, and the better
the perception. The PSNR and SSIM results on four datasets
are shown in Table 1. In terms of PSNR and SSIM, DocNLC
wins across the board, with the best average performance
across all four datasets. We attribute the good generalization
ability of the network to the robust degradation representa-
tions learned by the direct contrastive loss and latent con-
trastive module. More importantly, DocNLC has the least
increase in parameters compared to the baseline model.

Fine-tuning Results Although DocNLC shows good gen-
eralization performance for the four testsets in the pre-
training phase, previous representative models mostly pro-
vide their fine-tuned results. Therefore, we conduct addi-
tional experiments to prove that the prior knowledge learned
by DocNLC in the pre-training phase can improve its fine-
tuned results. For a complete evaluation of the reference
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Method DIBCO11 DIBCO12 DIBCO17 DIBCO18 Average #Param

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

U-net (MICCAI 2015) 13.54 0.83 15.40 0.89 12.42 0.82 13.86 0.85 13.81 0.85 29.60

BCDUnet (ICCV 2019) 15.89 0.88 17.06 0.92 15.15 0.86 16.01 0.89 16.03 0.89 80.24
DE-GAN (TPAMI 2020) 13.36 0.81 16.42 0.89 13.94 0.82 12.12 0.79 13.96 0.83 118.39
DocEnTr (ICPR 2022) 15.11 0.85 15.71 0.89 14.72 0.85 15.04 0.86 15.16 0.86 276.4

DocNLC(Ours) 16.42 0.89 19.36 0.94 16.59 0.88 16.31 0.90 17.17 0.90 29.84

Table 1: Quantitative comparison of the generalization ability of different pre-trained methods in terms of PSNR and SSIM.

(a) Shadow (b) Ours (c) Background (d) Ours (e) Watermark (f) Ours (g) Noise

Figure 4: Visualisation of background, shadow, watermark and noise removal. Document images with shadows, backgrounds
and watermarks are shown in (a), (c) and (e). The results after enhancement by pre-trained DocNLC are shown in (b), (d) and
(f). In addition, (g) shows the original and the processed image with noise.

image quality, we still use the PSNR and SSIM metrics to
quantitatively compare the performance of different meth-
ods.

For fair evaluation on the DIBCO series, we mark the en-
tire DIBCO datasets as Dfull and the dataset for the year we
want to test as T , so the training set in this case is Dfull−T .
”D” in Table 2 has the same meaning as Dfull − T . If the
number of training data sets is less than Dfull−T , we mark
this as D−. If it is more than that, it is marked as D+. As
shown in Table 2, DocNLC achieves the SOTA PSNR and
SSIM in three out of four test sets and performs well overall.
As for the performance on DIBCO2018, we attribute them
to the different data distribution compared to other years. In
particular, the text colour in DIBCO2018 is more similar to
the background colour making the text areas difficult to sep-
arate.

Qualitative Results
In order to assess the generalization capabilities of our
model over different degraded documents, Fig. 4 illustrates
the effect of different degraded document images before and
after enhancement. Figure 4 contains four pairs of images,
from left to right: an image with a background and its en-
hancement effect, an image with a shadow and its enhance-
ment effect, an image with a watermark and its enhance-
ment effect, and an image with noise and its enhancement
effect. These examples demonstrate that our model can effi-
ciently process a single shading layer, successfully remove
the coloured watermarks and recover the foreground char-
acters from noisy backgrounds. The readability of the docu-
ment image is significantly improved after the enhancement
process.

Ablation Study
Loss Function Analysis We perform ablation studies on
various loss functions to verify their validity. Note that since
both direct and latent contrastive loss are assisted compo-
nents, we do not report the performance when they are used
alone. The image restoration loss LMSE and LBCE are the
primary loss functions, so we give the results when these
two losses are used alone. As shown in Table 3, using the
LBCE loss improves the PSNR and SSIM results compared
to the LMSE , which means better image restoration. This
may be due to the fact that when using the LBCE , document
image enhancement is treated as a two-class segmentation
task, which is more difficult and the model is less prone to
overfitting. Table 3 shows the PSNR and SSIM results for
different losses on four test sets. More visulization results
are shown in Figure 5.

The contrastive learning losses LDcon and LLcon play a
significant role in improving the document image quality.
The direct contrastive loss LDcon mainly focuses on reduc-
ing the differences in mean square values between image
pixels, while the latent contrastive loss LLcon greatly im-
proves the quality of the image as perceived by the human
eye. Compared to the results in the last row of Table 3, the
absence of any of the contrastive losses leads to a sharp drop
in the model’s performance on multiple test sets.

Primary Modality Ablation Results Table 4 shows that
training with ”background” as the primary modality gives
the best results. Intuitively, this is because ”background” oc-
curs in the first stage of document degradation, when the
mutual information difference between the degraded map
and the ground truth is at a minimum with respect to the
ground truth itself, and thus the model recovers higher qual-
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Method Training Datasets PSNR

Pretrain Finetune DIBCO11 DIBCO12 DIBCO17 DIBCO18

Rule Otsu (Otsu 1979) ✗ ✗ 15.7 15.03 14.25 9.74
Based Sauvola (Sauvola and Pietikäinen 2000) ✗ ✗ 15.6 16.71 14.25 13.78

Deep Competition Winner (Pratikakis et al. 2018) - - 16.1 21.80 18.28 19.11
Model Cascaded cGan (Zhao et al. 2019) ✗ D- 20.30 21.91 17.83 18.37

DeepOtsu (He and Schomaker 2019) ✗ D+ 19.9 - - -
DE-GAN (Souibgui and Kessentini 2020) ✗ D- - - 18.74 16.16

CMU-Net (Kang, Iwana, and Uchida 2021) COCO-Text D 19.9 21.37 15.85 19.39
DocEnTr(Souibgui et al. 2022) ✗ D+ 20.81 22.29 19.11 20.18

Text-DIAE (Souibgui et al. 2023) unknown unknown 21.29 23.66 19.64 19.95

Ours DocNLC(Pre-training) Aug ✗ 16.42 19.36 16.59 17.17
DocNLC(Fine-tuning) Aug D 22.15 23.91 20.24 18.23

Table 2: Comparison of PSNR and SSIM performance of different methods on four DIBCO datasets after fine-tuning. D+:
DIBCO supersets, D: full set of DIBCO, D-: DIBCO subset

LMSE LBCE LDcon LLcon
DIBCO2011 DIBCO2012 DIBCO2017 DIBCO2018 Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

✓ 13.74 0.80 15.40 0.87 12.78 0.82 14.42 0.85 14.10 0.84
✓ 13.75 0.85 15.69 0.90 13.27 0.85 13.87 0.87 14.15 0.87
✓ ✓ ✓ 15.17 0.89 17.89 0.93 15.94 0.89 16.14 0.90 16.29 0.90

✓ ✓ ✓ 16.07 0.83 18.07 0.91 16.33 0.84 16.54 0.86 16.75 0.86
✓ ✓ ✓ 13.97 0.85 16.49 0.91 13.20 0.84 14.60 0.88 14.57 0.87
✓ ✓ ✓ 15.82 0.86 18.37 0.92 16.41 0.88 16.64 0.88 16.81 0.89
✓ ✓ ✓ ✓ 16.42 0.89 19.36 0.94 16.59 0.88 16.31 0.90 17.17 0.90

Table 3: Results of loss function ablation

(a) Original (b) LRes (c) ×LDcon (d) ×LLcon

(e) ×LBCE (f) ×LMSE (g) total loss (h) GT

Figure 5: Ablation visualization of different loss function
components. LRes represents for LMSE and LBCE . These
visualizations align well with the quantitative results pre-
sented in Table 3.

ity document images from this type of degradation. A high
quality benchmark can only induce other types of degrada-
tion to approach it, and a counter-example can be found in
the case where ”blur” is used as the primary modality. Blur
itself occurs at the last stage of image degradation with the
least amount of mutual information, so the quality of the
recovered images when it is used as the primary modality

Primary Modality PSNR SSIM

Blur 13.08 0.82
Noise 16.14 0.82

Watermark 15.80 0.86
Shadow 16.06 0.87

Background 16.31 0.90

Table 4: Comparison of results for different types of degra-
dation as ”primary modality”.

is not as high as when the other types of degradation are
used as the primary modality at the beginning of the train-
ing period, and therefore cannot serve as a good basis for
comparison. The poor performance of using ”blur” as the
primary modality coincides with the theory of inequality in
data processing. Now, our answer to the question posed at
the beginning is that samples of different degradation types
and their high-dimensional features can improve the perfor-
mance of the DIE model, but the primary modality should
be judiciously chosen with higher mutual information with
the ground truth.

Although both ”blur” and ”noise” occur in the final stage,
”blur” directly destroys the boundaries of the characters.
Therefore, taking ’noise’ as the main modality gives better
performance. The poor performance for blurred document
images is one of the limitations of our work. More details
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can be found in the supplementary material. All experiments
are tested on the DIBCO2018 dataset.

Conclusion and Limitation
In this paper, we present a document image enhancement
framework with normalized and contrasted degraded repre-
sentations (DocNLC). Our framework focuses on establish-
ing consistency between degradation representations by ex-
changing degradation information both directly and in latent
space. Furthermore, we incorporate a fine-tuning strategy
to improve the network’s performance on specific datasets.
Comprehensive experiments on four DIBCO datasets, com-
monly used to evaluate state-of-the-art models, demonstrate
the superiority of our proposed method. However, it is
worth noting that our method performs poorly when dealing
with heavily blurred document images or those with multi-
layered shadows. Under such circumstances, the model re-
sults in inconsistent character colours in the corrected im-
ages. This aspect presents an interesting avenue for future
investigation.
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