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Abstract

We present that visual grounding and image captioning,
which perform as two mutually inverse processes, can be
bridged together for collaborative training by careful designs.
By consolidating this idea, we introduce CyCo, a cyclic-
consistent learning framework to ameliorate the independent
training pipelines of visual grounding and image captioning.
The proposed framework (1) allows the semi-weakly super-
vised training of visual grounding; (2) improves the perfor-
mance of fully supervised visual grounding; (3) yields a gen-
eral captioning model that can describe arbitrary image re-
gions. Extensive experiments show that our fully supervised
grounding model achieves state-of-the-art performance, and
the semi-weakly supervised one also exhibits competitive
performance compared to the fully supervised counterparts.
Our image captioning model has the capability to freely de-
scribe image regions and meanwhile shows impressive per-
formance on prevalent captioning benchmarks.

Introduction
The recent decades have witnessed the great success in
vision-language (VL) related fields. Based on the primary
target of bridging the modality gap between vision and lan-
guage, deep neural networks addressing VL tasks generally
share the pre-training objective, model structure, large-scale
training corpus, etc. However, by the time of downstream
fine-tuning, these tasks are typically individually tackled or
simply combined in a multi-task training paradigm.

In this work, we devote our efforts to two VL downstream
tasks including image captioning (Vinyals et al. 2015; An-
derson et al. 2018) and visual grounding (Mao et al. 2016;
Yu et al. 2016), and explore their inherent relationships to
enable effective joint training. To match the granularity of
visual parts in visual grounding, we first extend image cap-
tioning to a more general scenario, where the model is in-
tended to describe a given region. We define this generalized
task as regional image captioning, which is similar to dense
captioning task (Johnson, Karpathy, and Fei-Fei 2016) but is
free of the requirement of object detection. Particularly, the
conventional task definition of image captioning (Vinyals
et al. 2015) is a special case of regional image captioning
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Figure 1: The proposed framework jointly optimizes im-
age captioning and visual grounding models via cycle-
consistency learning. In (a), our method computes the re-
gion (box) consistency in the captioning-to-grounding opti-
mization cycle. In (b), our framework measures the caption
consistency in the grounding-to-captioning cyclic process.

that regards the whole image as a region. For visual ground-
ing, which is also known as referring expression comprehen-
sion (Mao et al. 2016; Yu et al. 2016) and phrase localiza-
tion (Kazemzadeh et al. 2014; Plummer et al. 2015) in the
literature, we maintain the original task target to localize the
corresponding region (generally denoted by a bounding box)
described by a given language expression.

Despite achieving inspiring progress, image captioning
and visual grounding still suffer from several limitations.
For visual grounding, this task simultaneously requires text
descriptions and accurate object bounding boxes for model
optimization. These fine-grained image-text-box triplets are
rather laborious to collect. How to optimize the grounding
model using limited data annotations has received consider-
able attention (Liu et al. 2021; Wang et al. 2021a). As for
image captioning, existing methods typically focus on de-
scribing the whole image. The capabilities of modeling re-
gion relationships and properly describing them are largely
overlooked in existing algorithms. We argue that a robust
image captioner should be qualified to freely describe the
image, from an arbitrary region to the whole image. Simi-
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lar to the grounding task, obtaining the regional captioning
ability also requires sufficient image-text-box data, increas-
ing the training cost.

In this paper, we introduce a joint learning framework,
namely CyCo, to ameliorate the training pipelines of image
captioning and visual grounding via cyclic consistency. Our
core motivation is that visual grounding and regional im-
age captioning can be regarded as an inverse process of each
other. Specifically, a visual grounding model takes an im-
age and a region-specific description as inputs to predict the
position of the corresponding bounding box, while regional
image captioning receives the location of a region to produce
a region-aware caption. When taking one’s output as the in-
put of the other, these two tasks naturally establish a cyclic
structure. As shown in Figure 1 (a), the generated bounding
box from the grounding model is expected to be consistent
with the input box of the regional image captioner. In this
process, the whole framework merely needs an initialized
bounding box for training. As depicted in Figure 1 (b), the
produced text description from the regional image captioner
is expected to be consistent with the input referring text of
the grounding model. As a result, the models in this cycle
are free of the bounding box annotations.

The proposed cycle-consistency learning framework en-
joys the following merits. (1) We bridge two independent
VL tasks in a unified framework. To this end, our method can
potentially absorb the training data from both tasks and share
the model parameters for collaborative training. (2) Thanks
to the joint training and online data augmentation (iterative
pseudo label generation) in the cyclic learning process, un-
der the same training data, our framework further improves
the performance of the supervised grounding model. (3) Af-
ter collaborative training, our framework yields a strong im-
age captioning model that can describe the visual contents
in different spatial levels, i.e., from a subregion to the global
image. (4) The proposed framework allows the semi-weakly
supervised training of the grounding model, which merely
needs limited fully-annotated images and many more im-
ages with only bounding box annotations or only language
expression labels for model training.

In summary, we make three-fold contributions:
• We present a novel cycle-consistency learning frame-

work to bridge two independent vision-language tasks
including image captioning and visual grounding.
• We design a simple regional image captioner and a

Transformer-based grounding model. We further orga-
nize them in a unified framework with weight-sharing
architecture for efficient end-to-end learning.
• Extensive experiments validate the effectiveness of our

proposed cycle-consistency learning framework.

Related Work
Vision-language Pre-training. Vision-language (VL) pre-
training algorithms (Radford et al. 2021; Li et al. 2020,
2022) aim to bridge the domain gap between vision and
language representations. The recent dual-encoder methods
such as CLIP (Radford et al. 2021) align the representations
using contrastive learning. Despite the outstanding perfor-
mance, their light interaction manner fails to deeply fuse VL

representations for generation tasks. In contrast, recent VL
pre-training approaches (Zhou et al. 2020; Li et al. 2020,
2021, 2022) adopt a relatively heavy Transformer architec-
ture (Vaswani et al. 2017) to achieve the deeper multi-modal
interaction. Inspired by the success of previous arts, we also
conduct the cross-modal pre-training to prompt the down-
stream VL tasks.
Visual Grounding. Traditional visual grounding methods
typically follow a two-stage pipeline, which generates plen-
tiful region proposals in the first stage and selects the most
matched one via language expression in the second stage
(Yang, Li, and Yu 2019; Liu et al. 2019). Recently, one-
stage visual grounding approaches gain increasing attention.
They generally embed the linguistic information into the
one-stage object detector (Yang et al. 2019) or model multi-
modal representations via Transformer (Deng et al. 2021,
2023) for efficient visual grounding.

Different from the above algorithms based on supervised
training, weakly supervised grounding models learn the
region-phrase correspondence with only language expres-
sions. These methods first obtain a set of ROIs (Region of
Interest) using object detectors, and then mine the corre-
spondence between ROIs and query expressions for model
training (Wang et al. 2021a; Liu et al. 2021). In this work,
we train the grounding model in a semi-weakly supervised
manner with the help of a captioning model. Our framework
is free of external object detectors for data pre-processing.
Image Captioning. Image captioning aims to generate a
human-readable sentence to describe the image contents.
Captioning algorithms (Huang et al. 2019; Anderson et al.
2018; Hu et al. 2021b) typically utilize the object detectors
to extract ROI features or simply exploit the grid features
for efficient visual representation modeling (Wang et al.
2021b; Li et al. 2022). After visual feature extraction, cap-
tioning models utilize a decoder such as Transformer to gen-
erate the sentence (Wang, Xu, and Sun 2022; Wang et al.
2023a,b). Previous algorithms exploit the region informa-
tion to facilitate the image captioning (Chen et al. 2020a;
Kinghorn, Zhang, and Shao 2018; Cornia, Baraldi, and Cuc-
chiara 2019), but they still focus on describing the global
image content. The dense captioner (Johnson, Karpathy, and
Fei-Fei 2016) mainly focuses on detecting and describing lo-
cal ROI regions. In contrast, our image captioner is designed
to freely describe both global and regional contexts.

Recently, some methods (Wang et al. 2022; Yu et al. 2017)
jointly train the captioning and grounding models in a multi-
task fashion. Mao et al. (Mao et al. 2016) utilize the ground-
ing model as a verification module to push the generated re-
ferring expressions to be unambiguous. Different from pre-
vious arts, our method bridges the captioning and ground-
ing models in a cyclic framework and explores two different
cycle-consistency constraints for collaborative training.
Cycle-Consistency Learning. To bridge one modality or
domain to the other, cycle-consistency learning has been
explored extensively in visual object tracking (Wang et al.
2019; Wang, Jabri, and Efros 2019), machine translation (He
et al. 2016), unpaired image-to-image translation (Zhu et al.
2017), visual question answering (Shah et al. 2019), image
captioning (Guo et al. 2019), etc. Different from the previ-
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Figure 2: In (a), we exhibit the model architecture of our proposed joint training framework of visual grounding and regional
image captioning. Two models share a visual encoder (ViT) and leverage different Transformer blocks for individual tasks.
In (b), we show the cyclic consistency learning processes of our framework including a grounding-to-captioning cycle and a
captioning-to-grounding cycle.

ous arts that explore the consistency within a single modality
or a single task, we jointly optimize two VL tasks to form
different cycles. To our knowledge, the cyclic consistency
between image captioning and visual grounding has rarely
been touched in the literature. Further, we explore the poten-
tial of our framework in different training scenarios includ-
ing semi-weakly supervised and fully supervised training.

Methodology
Our method follows the pretrain-and-finetune paradigm.
At the pre-training stage, we leverage the widely-adopted
training objectives (i.e., image-text contrastive loss, match-
ing loss, and language modeling loss) to align and fuse
the visual and linguistic representations. At the fine-tuning
stage, both visual grounding and image captioning mod-
els reuse the pre-trained model architecture, while capitaliz-
ing on task-specific head networks. During fine-tuning, we
further develop the cycle-consistency learning framework
to jointly optimize the grounding and captioning models.
The detailed model architecture and our proposed cycle-
consistency learning framework are illustrated in Figure 2.

Revisiting Model Pre-training
Our pre-trained vision-language model follows the BLIP ap-
proach (Li et al. 2022). We briefly review its vision encoder,
image-grounded text encoder, and image-grounded text de-
coder, which are highly related to our downstream tasks.

Vision Encoder. We exploit the commonly used ViT-B/16
network (Dosovitskiy et al. 2020) as the vision encoder. ViT-
B/16 is composed of a stack of 12 Transformer encoder lay-
ers with 12 heads in each multi-head attention layer. Given
an image, we first split it into small patches with equally
16 × 16 size, and project them into feature vectors, which
are known as vision tokens. We denote the final encoded vi-
sion tokens as v.
Image-Grounded Text Encoder. In this block, we first ap-
pend a special [ENC] token at the beginning of the text se-
quence. Then the text tokens are converted to embeddings
via a word embedding layer. This text encoder leverages
the bi-directional self-attention to further encode the text
embeddings, and aggregate the visual information through
cross-attention with vision tokens for multi-modal fusion.

The output embedding of [ENC] contains the rich multi-
modal representation of the image-text pair, which is ex-
ploited to compute the image-text matching (ITM) loss.
Specifically, we add a binary classification head on top of
it to predict whether an image-text pair is matched.
Image-Grounded Text Decoder. This text decoder block is
similar to the above image-grounded text encoder, while re-
placing the bi-directional self-attention with the causal self-
attention to facilitate the text generation. A special [DEC]
token is used as the beginning signal of a sequence.

The image-grounded text decoder is optimized by the lan-
guage modeling (LM) loss, which maximizes the likelihood
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of the text in an autoregressive manner.

Cycle-Consistency Learning Framework
In this section, we first introduce how to transfer the pre-
trained model to downstream visual grounding and regional
image captioning tasks. Then, we exhibit how to jointly op-
timize them by virtue of the cyclic constraints.
Visual Grounding (VG). To facilitate the following intro-
duction of cycle-consistency learning, we depict the visual
grounding model in a holistic view, which takes the visual
features v and description tokens x as its inputs, and out-
puts a predicted bounding box bpred as follows.

bpred = ModelVG(v,x). (1)
In our framework, visual grounding model ModelVG(·, ·)
reuses the image-grounded text encoder block, which fuses
the visual and text features to predict the region localization.
Following the setting in the pre-training stage, we also add
a special [ENC] token at the beginning of the tokenized to-
kens. Then, the bi-directional self-attention encodes the text
tokens and cross-attention injects visual information into the
text tokens. After multi-layer visual-linguistic fusion via the
Transformer structure, the output embedding of the [ENC]
token contains rich cross-modal contexts, which is lever-
aged for bounding box regression via a regression head. The
regression head is a simple three-layer multi-layer percep-
tron (MLP) with ReLU activations between layers. The out-
put of the box regression head is the 4-dim box coordinates
bpred = (x, y, w, h).

In the model fine-tuning stage, we normalize the ground-
truth region bounding box by the scale of the image to
obtain bgt = (x̂, ŷ, ŵ, ĥ), and combine the generalized
IoU (GIoU) loss LGIoU(bpred, bgt) (Rezatofighi et al. 2019)
and smooth L1 loss Lsmooth-L1(bpred, bgt) to optimize the
grounding model.
Regional Image Captioning (IC). Similar to the visual
grounding, we also formulate the regional image captioning
model ModelIC(·, ·) as a black box, which takes image fea-
tures v and a specific region (denoted by the box coordinate
b) as inputs to predict the region-related language expression
xpred as follows.

xpred = ModelIC(v, b). (2)
This regional image captioner mainly reuses the image-

grounded text decoder in the pre-training stage to generate
the language expression. After model pre-training with lan-
guage modeling (LM) loss, the text decoder already has the
zero-shot captioning capability to some extent. Neverthe-
less, different from the classic image captioner, our model is
required to be region-aware. To this end, in the fine-tuning
stage, we project the box coordinate b to the regional em-
bedding via a fully-connected layer: ebox = FCbox(b). This
regional embedding is added to the vision tokens to obtain
the region-aware visual representations v?:

v? = v + ebox. (3)
Different from the bi-directional self-attention in vi-

sual grounding, the captioning model utilizes causal self-
attention to facilitate text generation. As shown in Fig-
ure 2 (a), a classification head upon Transformer is used

to generate tokens over the vocabulary. For a text sequence
x = {x1, x2, · · · , xn}, image captioner generates token xt
based on the previous tokens x<t in an auto-regressive fash-
ion. We train the captioning model using unidirectional lan-
guage modeling objective by maximizing the negative log-
likelihood of the text sequence: −

∑
t logPθ (xt|v?,x<t),

where θ denotes the trainable model parameters.
VG→ IC Cycle-Consistency Learning. As shown in Eq. 1
and Eq. 2, visual grounding and regional image captioning
perform as the inverse process of each other. Consequently,
we can organize them in a cyclic framework for joint op-
timization using consistency constraints. In the fine-tuning
stage, inspired by BLIP (Li et al. 2022), grounding and
captioning branches share the model parameters of cross-
attention and feed-forward network (FFN) in their Trans-
former architectures to tightly bridge two individual tasks.
This weight-sharing mechanism not only improves train-
ing efficiency but also enjoys multi-task learning for mutual
prompting.

We first start the cycle-consistency learning from visual
grounding (VG) to image captioning (IC), and leverage the
training objective of image captioning to optimize two tasks.
This process merely needs the language expression xinit
and visual features v as the inputs, without requiring any
bounding box labels as follows.

VG: bpred = ModelVG(v,xinit), (4)
IC: xpred = ModelIC(v, bpred), (5)

Loss: LVG→IC = LXE(x̃init, x̃pred), (6)

where LXE(·, ·) denotes the cross-entropy loss, x̃init repre-
sents the one-hot vocabulary distribution of the input ex-
pression xinit, xpred denotes the predicted text sequence
and x̃pred is the corresponding token prediction probabil-
ity. In this cycle-consistency learning process, we first utilize
the grounding model ModelVG(·, ·) to generate the bound-
ing box coordinate bpred, which serves as the pseudo label
of captioning model ModelIC(·, ·). Then we can utilize the
initial language expression xinit as the supervision signal of
the generated caption xpred to form the cyclic supervision
constraint. In this way, we can optimize the model without
providing any bounding box annotations.
IC→ VG Cycle-Consistency Learning. We can also build
the cycle-consistency learning from image captioning (IC)
to visual grounding (VG). This cycle merely requires the vi-
sual feature and an initial bounding box binit as the inputs:

IC: xpred = ModelIC(v, binit), (7)
VG: bpred = ModelVG(v,xpred), (8)

Loss: LIC→VG = LGIoU+L1(binit, bpred), (9)

where LGIoU+L1(·, ·) denotes the combination of generalized
IoU loss (Rezatofighi et al. 2019) and smooth L1 loss. Ide-
ally, the generated bounding box bpred should be consistent
with the initial bounding box binit. To this end, we can op-
timize the whole network via the visual grounding loss.

Model Training
Both visual grounding and regional image captioning mod-
els require the image-text-box triplets for training. Labeling
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such well-annotated data is rather time-consuming. How-
ever, the aforementioned two learning cycles enable us to
optimize the models in a semi-weakly supervised manner,
where either the ground-truth language expression or bound-
ing box can be omitted. Besides, based on the same data,
we observe that adding cycle-consistency constraints to the
classic fully supervised training paradigm can further boost
the performance, which shows our cycle-consistency learn-
ing framework can better exploit the training data.
Fully Supervised Training. In the supervised training, ex-
cept for the individual training objectives for grounding and
captioning models, we also add the cycle-consistency losses
(i.e., LVG→IC and LIC→VG) to regularize the models.

The effectiveness of our framework can be explained in
an online data augmentation view. It is well recognized that
a picture is worth thousands of words. The proposed cycle-
consistency learning framework can be regarded as an in-
cremental training process that iteratively predicts pseudo
labels to augment the training data (e.g., diverse referring
expressions for a region), and thus further boosts the perfor-
mance of supervised training.
Semi-weakly Supervised Training. We also validate the
potential of our framework by conducting semi-weakly su-
pervised training, where only limited fully-annotated images
(with both referring expression and bounding box) are avail-
able. In the experiments, we empirically set the percentage
of fully-annotated data as 20%, and the rest 80% images are
annotated with only language expressions or only bounding
boxes. For fully-annotated images, we compute the standard
fully-supervised losses for the 20% image-text-box data. As
for the partially labeled data, we compute the IC → VG
consistency loss for box-only images, and compute the VG
→ IC consistency loss for text-only images. All the losses
are gathered as the total loss of a batch of training samples.
By virtue of VG → IC and IC → VG, the grounding and
captioning models mutually annotate the weakly-annotated
data for collaborative training. Note that the captioning and
grounding models share the same visual encoder (ViT) and
most blocks (cross-attention and FFN) of their Transformer
blocks. To this end, they both benefit from the VG→ IC and
IC→ VG cycle-consistency training.

Experiments
Datasets and Metrics
Pre-training Data. In the pre-training stage, we collect the
image-text pairs from Visual Genome (Krishna et al. 2017),
COCO (Lin et al. 2014), SBU (Ordonez, Kulkarni, and Berg
2011), Conceptual 3M (Sharma et al. 2018), and a filtered
version of LAION (115M images) (Schuhmann et al. 2021).
RefCOCO, RefCOCO+, and RefCOCOg. We evaluate
the visual grounding performance on three prevalent bench-
marks including RefCOCO (Yu et al. 2016), RefCOCO+
(Yu et al. 2016), and RefCOCOg (Mao et al. 2016). Fol-
lowing the official setting, RefCOCO and RefCOCO+ are
split into the train set, validation set, testA set, and testB set.
RefCOCOg includes the train set, validation set, and test set.

We consider a referring expression grounded correctly
when its predicted region has at least 0.5 Intersection-over-

Union (IoU) with the ground-truth box. We measure the vi-
sual grounding performance in terms of top-1 accuracy.
COCO Caption. We evaluate the image captioning perfor-
mance on the COCO Karpathy split dataset (Lin et al. 2014;
Karpathy and Fei-Fei 2015). To evaluate the performance,
we leverage standard metrics in the captioning task includ-
ing BLEU@4 (Papineni et al. 2002), METEOR (Banerjee
and Lavie 2005), CIDEr (Vedantam, Lawrence Zitnick, and
Parikh 2015), and SPICE (Anderson et al. 2016).

Implementation Details
In our framework, the image encoder is initialized from ViT-
B/16 pre-trained on the ImageNet (Dosovitskiy et al. 2020),
and the text encoders of both visual grounding and image
captioning branches are initialized from the official BERT-
base (Devlin et al. 2018). In the pre-training stage, the model
is trained on 32 V100 GPUs for 20 epochs using a batch
size of 2880. We use AdamW optimizer (Loshchilov and
Hutter 2017) with a weight decay of 0.05. The learning rate
is warmed-up to 3×10−4 and decayed linearly with a rate of
0.85. We take random image crops of resolution 224 × 224
during pre-training.

In the fine-tuning stage, we train the model using a small
learning rate of 1×10−5 and linearly decay it. The addition-
ally added blocks that are not included in the pre-training
stage (i.e., box regression head and box project layer) are
randomly initialized. For fair comparisons, following (Deng
et al. 2021; Li et al. 2022), the input image resolutions are set
to 640× 640 and 384× 384 when evaluating grounding and
captioning tasks, respectively. When combining different
datasets, we carefully check the train/test sets to avoid im-
age overlap. The captioning model adopts the beam search
strategy (beam size = 3) in all experiments. The proposed
cycle-consistency model is fine-tuned for 20 epochs.

In the following experiments, our Cycle-Consistency
learning of captioning and grounding framework is denoted
as CyCo.

Ablation Study
Semi-weakly Supervised Training. Thanks to the cycle-
consistency design, our approach is able to train the ground-
ing model using weakly labeled data. As shown in Table 1
(top), the grounding performance is poor when only 20%
training data is available. The performance gap between the
models trained using 20% data and 100% data is consid-
erable, e.g., 13.4% gap on RefCOCOg test set. In “pseudo
label” setting in Table 1, we train a grounding/captioning
model using the 20% fully-annotated data and leverage this
model to label the rest 80% images. Then, all the 100% data
are used to train the model, whose performance can be im-
proved but is still unsatisfactory. Further, by annotating the
rest 80% training data in an online manner using our CyCo
framework, the performance gap is significantly reduced. Fi-
nally, our semi-weakly supervised CyCo model only has a
minor gap in comparison to the fully-supervised model.

In Table 1 (bottom), we further ablative the regional im-
age captioning task, which requires the model to describe
a specific region. Using only 20% full-annotated data, our

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

5539



Ablation Study of Visual Grounding
Training Data RefCOCO RefCOCOg

20% data 80% data val testA testB val test
Fully-anno 7 82.07 87.33 73.20 68.08 66.65
Fully-anno Pseudo labels 84.13 88.36 76.58 74.64 75.10
Fully-anno Weakly (CyCo) 86.73 90.27 81.87 76.85 77.81
Fully-anno Fully-anno 88.73 91.07 84.27 80.23 80.06

Ablation Study of Regional Image Captioning
Training Data RefCOCO testA RefCOCO testB

20% data 80% data M C M C
Fully-anno 7 29.6 77.5 34.0 131.8
Fully-anno Pseudo labels 31.3 87.4 35.2 143.5
Fully-anno Weakly (CyCo) 33.7 98.5 36.6 151.6
Fully-anno Fully-anno 34.8 104.2 37.9 156.6

Table 1: Comparison results of semi-weakly supervised and
fully supervised models. Top: comparison of visual ground-
ing performance in terms of top-1 accuracy. Bottom: com-
parison of regional image captioning performance in ME-
TEOR (M) and CIDEr (C).

Supervised Cycle RefCOCO RefCOCO+ RefCOCOg
testA testB testA testB val test

X 91.07 84.27 84.40 68.20 80.23 80.06
X X 91.87 85.33 87.07 69.87 81.31 81.04

Table 2: Performance study by adding cycle-consistency
learning to the naive supervised VG model. Our “super-
vised+cycle” utilizes the same training splits but adds cycle-
consistency losses as the additional regularizations, which
steadily improves the results.

semi-weakly supervised captioning model significantly re-
duces the performance gap in comparison to the supervised
counterparts. Our CyCo framework has the potential of ab-
sorbing more weakly-labeled data such as object detection
images with only box labels or image-text pairs with only
caption annotations to further improve the performance.
Fully Supervised Training. We further combine this cycle-
consistency learning pipeline with the standard supervised
learning. In each training iteration, we not only use the
ground-truth labels to supervise the grounding model, but
also utilize the VG→ IC and IC→ VG cycles to regularize
the training. As shown in Table 2, based on the same training
data, adding cycle-consistency learning to the classic super-
vised learning can further boost performance. This reveals
that our framework can better exploit the training data by
online data augmentation.
Adding More Training Data For VG. Since the proposed
framework jointly optimizes visual grounding and image
captioning within a unified framework, we can merge the
datasets of both tasks for optimization. As shown in Table 3,
adding captioning data further improves the visual ground-
ing results. Note that COCO Karpathy split lacks the re-
gion/box annotation, which can be regarded as the weakly-
labeled data compared to the image-text-box triplet. These
results justify the potential of our framework of absorbing
more cheap data to achieve superior performance.

Ground Data Caption Data RefCOCO RefCOCOg
val testA testB val test

X 89.47 91.87 85.33 81.31 81.04
X X 89.78 92.05 85.63 82.24 82.20

Table 3: Performance study by adding more training data.
Adding weakly labeled images (e.g., COCO-caption without
box annotations) improves the grounding performance.

Training Data RefCOCOg COCO-caption
B@4 / CIDEr B@4 / CIDEr

BLIP only COCO 24.1 / 74.6 39.7 / 133.3
BLIP COCO & RefCOCOg 30.8 / 96.2 38.4 / 130.2
CyCo COCO & RefCOCOg 36.6 / 128.5 40.6 / 133.9

Table 4: Performance study on image captioning. Compared
to our baseline, CyCo can better leverage the datasets from
different domains (COCO-caption and RefCOCOg).

Adding More Training Data For IC. In Table 4, we ex-
hibit the image captioning potentials of our CyCo compared
to the baseline BLIP. Without the design of regional embed-
ding, BLIP is not aware of the local region. To this end, com-
bining both COCO-caption and RefCOCOg datasets fails to
improve its performance. In contrast, our model can freely
switch between the local and global captions (Figure 3) and
absorb more (fully- or partially-annotated) data to further
boost the performance.

State-of-the-art Comparison
Evaluation on RefCOCO/RefCOCO+/RefCOCOg. Ta-
ble 5 reports the comparison results of state-of-the-art
methods on the RefCOCO, RefCOCO+, and RefCOCOg
datasets. As ablated in Table 3, adding more captioning data
can steadily boost the grounding performance. For fairness,
when fine-tuning the visual grounding model, we only use
the standard training splits of the above benchmarks without
involving other training data. Thanks to the vision-language
pre-training, our approach significantly outperforms the
classic grounding methods without pre-training. We also in-
clude some representative pre-training-based approaches in-
cluding UNITER, VILLA, ERNIE-ViL, and BLIP to justify
the superior performance of our approach. For example, our
method surpasses VILLA and ERNIE-ViL on the RefCOCO
and RefCOCO+. On the RefCOCOg dataset with longer ex-
pressions, our method also exhibits satisfactory results. In
Table 5, we also present some high-performance methods
(e.g., MDETR, OFA, and FIBER) that additionally leverage
the expensive image-text-box data for pre-training. Besides,
FIBER adopts a strong visual backbone and higher image
resolution (e.g., 800×1, 333), exhibiting the leading perfor-
mance. We can also improve our performance by adopting a
stronger backbone and higher image resolution, which leave
as our future work.

Furthermore, our framework enables model training using
partially labeled data. In the semi-weakly supervised setting
(e.g., 20% fully-annotated data and 80% weakly-annotated
data), it is worth noting that our method also steadily out-
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Method Backbone Supervised Data RefCOCO RefCOCO+ RefCOCOg
I-T I-T-B val testA testB val testA testB val test

w/o Pre-training
MCN (Luo et al. 2020) DarkNet-53 X 80.08 82.29 74.98 67.16 72.86 57.31 66.46 66.01
QRNet (Ye et al. 2022) Swin-S X 84.01 85.85 82.34 72.94 76.17 63.81 73.03 72.52
VLTVG (Yang et al. 2022) ResNet-101 X 84.77 87.24 80.49 74.19 78.93 65.17 76.04 74.18
VG-LAW (Su et al. 2023) ViT-B X 86.62 89.32 83.16 76.37 81.04 67.50 76.90 76.96
TransVG++ (Deng et al. 2023) ViT-B X 86.28 88.37 80.97 75.39 80.45 66.28 76.18 76.30
Img-Text Pre-training
UNITER-B (Chen et al. 2020b) ResNet-101 X X 81.24 86.48 73.94 75.31 81.30 65.58 74.31 74.51
VILLA-B (Gan et al. 2020) ResNet-101 X X 81.65 87.40 74.48 76.05 81.65 65.70 75.90 75.93
ERNIE-ViL-B (Yu et al. 2020) ResNet-101 X X - - - 74.02 80.33 67.74 - -
BLIP-B? (Li et al. 2022) ViT-B X X 88.73 91.07 84.27 79.53 84.40 68.20 80.23 80.06
Img-Text-Box Pre-training
MDETR (Kamath et al. 2021) ResNet-101 X X X 86.75 89.58 81.41 79.52 84.09 70.62 81.64 83.31
OFA-L (Wang et al. 2022) BART-L X X X 90.05 92.93 85.26 84.49 90.10 77.77 84.54 85.20
FIBER-B (Dou et al. 2022) Swin-B X X X 90.68 92.59 87.26 85.74 90.13 79.38 87.11 87.32
CyCo (semi-weakly) ViT-B 7 X 86.73 90.27 81.87 72.53 82.00 61.33 76.85 77.81
CyCo (fully supervised) ViT-B X X 89.47 91.87 85.33 80.40 87.07 69.87 81.31 81.04

Table 5: Comparisons with state-of-the-art methods on RefCOCO, RefCOCO+, and RefCOCOg in terms of top-1 accuracy
(%). The BLIP-B? denotes our implemented BLIP-B model on the visual grounding task, which is not included in the original
BLIP framework (Li et al. 2022). In the pre-training stage, we only use the image-text (I-T) pairs without any image-text-box
(I-T-B) triplets. We report the performance of our semi-weakly supervised model as well as the supervised model.

Method Cross-Entropy
B@4 M C S

w/o Pre-training
AoANet (Huang et al. 2019) 37.2 28.4 119.8 21.3
X-LAN (Pan et al. 2020) 38.2 28.8 122.0 21.9
w/ Pre-training
Oscar-B (Li et al. 2020) 36.5 30.3 123.7 23.1
VinVL-B (Zhang et al. 2021) 38.2 30.3 129.3 23.6
LEMON-B (Hu et al. 2021a) 40.3 30.2 133.3 23.3
BLIP-B (Li et al. 2022) 39.7 - 133.3 23.3
SimVLM-B (Wang et al. 2021b) 39.0 32.9 134.8 24.0
CyCo (Ours) 40.6 31.2 133.9 24.4

Table 6: Performance comparisons on the COCO-caption
Karpathy test split, where B@4, M, C, S denote BLEU@4,
METEOR, CIDEr, and SPICE scores, respectively.

performs the previous fully supervised counterparts such as
UNITER and VILLA on the RefCOCO and RefCOCOg.
Evaluation on COCO Caption. Mainstream image cap-
tioning methods focus on describing the global image con-
text. However, optimizing the proposed framework only on
the grounding dataset will overlook the captioning capabil-
ity of the global content. To this end, we merge two datasets
including COCO Karpathy train split and RefCOCOg train
split to jointly optimize our cycle-consistency framework.
We define the referred region of COCO-caption dataset as
the whole image. After joint training, we assess the global
captioning performance on the COCO Karpathy test split.

In Table 6, compared with the state-of-the-art captioning
methods with pre-training such as Oscar and VinVL, our
method shows better results. Our method is even comparable
with the recent SimVLM trained with 1.8 billion image-text
pairs, which is 10× larger than ours. The proposed method

Local Caption: a green 

plant in a brown pot

Global Caption:  a living 

room filled with furniture 

and a flat screen tv

Local Caption: the half of 

a banana on the left side 

of the plate

Global Caption:  a white 

plate topped with food on 

top of a wooden table 

Local Caption: the giraffe 

on the far left

Global Caption:  a group 

of giraffe standing next 

to each other

Figure 3: Our captioner can describe both the local (red re-
gion) and global (blue region) contexts.

slightly outperforms our baseline BLIP.
It is worth noting that our captioner focuses on a more

challenging scenario and can describe arbitrary image re-
gions, which is infeasible for all the comparison methods.
Figure 3 showcases some examples. When describing a spe-
cific region, our captioner captures its relationship with sur-
rounding objects to avoid ambiguous expressions. When de-
scribing the global image content, the proposed method per-
forms in a similar way as the general image captioners.

Conclusion
In this paper, we bridge two vision-language tasks including
visual grounding and regional image captioning in a cyclic
training pipeline. By cycle-consistency constraints, the pro-
posed framework can exploit the weakly-annotated data for
model training and augment the training samples to further
boost the fully supervised training. Extensive experiments
on image captioning and visual grounding datasets verify
the effectiveness of our framework.
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