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Abstract

Point cloud completion referring to completing 3D shapes
from partial 3D point clouds is a fundamental problem for
3D point cloud analysis tasks. Benefiting from the devel-
opment of deep neural networks, researches on point cloud
completion have made great progress in recent years. How-
ever, the explicit local region partition like kNNs involved in
existing methods makes them sensitive to the density distri-
bution of point clouds. Moreover, it serves limited receptive
fields that prevent capturing features from long-range context
information. To solve the problems, we leverage the cross-
attention and self-attention mechanisms to design novel neu-
ral network for point cloud completion with implicit local
region partition. Two basic units Geometric Details Percep-
tion (GDP) and Self-Feature Augment (SFA) are proposed
to establish the structural relationships directly among points
in a simple yet effective way via attention mechanism. Then
based on GDP and SFA, we construct a new framework with
popular encoder-decoder architecture for point cloud com-
pletion. The proposed framework, namely PointAttN, is sim-
ple, neat and effective, which can precisely capture the struc-
tural information of 3D shapes and predict complete point
clouds with detailed geometry. Experimental results demon-
strate that our PointAttN outperforms state-of-the-art meth-
ods on multiple challenging benchmarks. Code is available
at: https://github.com/ohhhyeahhh/PointAttN

Introduction
Point cloud completion is the task of estimating a complete
shape of an object from its incomplete observation. It plays
an important role in 3D computer vision since the raw data
captured by existing 3D sensors are usually incomplete and
sparse due to factors such as occlusion, limited sensor res-
olution and light reflection. The unordered and unstructured
point cloud data makes the task a challenging problem.

Benefiting from the recent advances of deep learning,
point cloud completion has achieved remarkable progress.
Current popular point cloud completion methods (Wang
et al. 2020; Wen et al. 2021b; Huang et al. 2021; Alliegro
et al. 2021; Wang et al. 2022b; Sun et al. 2022) mainly re-
volve around the design of an encoder-decoder architecture
for complete point clouds generation. The famous point fea-
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Figure 1: Visual comparisons of point cloud completion. Our
PointAttN can produce high-quality complete shape with ac-
curate geometric details.

ture extractor PointNet (Charles et al. 2017) and its variant
PointNet++ (Qi et al. 2017) are widely taken as the encoders
in the mainstream methods (Tchapmi et al. 2019; Huang
et al. 2020; Pan et al. 2021a; Xiang et al. 2021; Yu et al.
2021). Consequently, the idea of kNN (or its variant ball
query) is introduced to build the local spatial relationships
among points for local feature learning. The parameter of
kNN is fixed and set empirically induced by the density of
the point clouds. However, the densities of different point
clouds are different, and even within the same point cloud,
the points are not uniformly distributed in different local re-
gion. Thus, using the fixed parameter to process point clouds
is far from ideal, which makes it hard to depict a general
local geometric structure of points in local regions. In or-
der to learn the structural features and long-range corre-
lations among local regions, PointTr (Yu et al. 2021) pro-
poses to adopt Transformers (Vaswani et al. 2017) to build
an encoder-decoder architecture. SeedFormer (Zhou et al.
2022) further integrates seed features into the generation
process of PointTr with a new shape representation. Wang
et al.(Wang et al. 2022a) investigate grouping local features
to improve the performance of completion. FBNet (Yan et al.
2022) proposes to reuse the high-level information for low-
level feature learning via a feedback network, and lever-
ages a cross transformer to build the connections between
the present and subsequent features. SnowflakeNet (Xiang
et al. 2021) focuses on the decoding process and introduces
skip-transformer to integrate the spatial relationships across
different levels of decoding. The attention mechanism with
Transformer architecture in these methods has shown bene-
fits on capturing the structure features in point clouds. How-
ever, kNNs are still used in these methods to capture the
geometric relation in the point cloud.
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In this paper, we investigate eliminating the above-
mentioned issue of kNNs, and show that a properly de-
signed encoder-decoder architecture with only MLP and
attention mechanism can achieve leading performance in
point cloud completion. Different from existing methods
that adopt explicit local feature learner from local neigh-
borhoods to capture local geometry, the proposed frame-
work, termed PointAttN, focuses on capturing both local and
global geometric context in an implicit manner via the self-
attention and cross-attention mechanisms. PointAttN adopts
the encoder-decoder architecture to process the point com-
pletion task in a coarse-to-fine manner. It mainly consists of
three parts: a feature extractor module for local geometric
structure and global shape feature capturing, a seed gener-
ator module for coarse point cloud generation, and a point
generator module to produce the fine-grained point cloud.
To construct the three modules, we specifically design two
basic units, one is a geometric details perception unit (GDP)
and another is a self-feature augment unit (SFA). The GDP
unit adopts the cross-attention to establish the relationships
of points between the input point cloud feature and its down-
sampled point cloud feature, which allows each point feature
in the down-sampled point cloud to perceive the geomet-
ric detail features in the original point cloud. By eliminat-
ing the concept of explicit local feature region partition like
kNNs, GDP can adaptively capture the local geometry struc-
ture of the point cloud, which can alleviate the influence of
local point density and achieves more precise geometric de-
tails for reconstructing fine-grained point information. The
SFA unit establishes the relationship among points in its in-
put point cloud by introducing self-attention, which allows
each point feature in the cloud to augment its global percep-
tibility. By cascading SFAs in the coarse-to-fine decoding
process, we can progressively reveal the spatial structural
and context information of the 3D shape in each process-
ing step to produce more precise shape structure. Consider-
ing its ability of capturing global information, SFA can also
be adopted in the encoding step, which is used to enhance
the global structure perception ability of the feature model.
With such designs, the proposed framework PointAttN is
simple and neat, which only includes the down-sampling
operation of farthest point sampling (FPS), multilayer per-
ceptron (MLP) and attention layers. As shown in Figure 1,
our PointAttN can generate fine-grained shapes with precise
geometric details. In summary, our main contributions are:

• We propose a novel framework PointAttN for point cloud
completion. As far as we know, PointAttN is the first
time to eliminate the explicit local region operations such
as kNNs in Transformer-based methods. It alleviates the
influence of data density distribution and achieves high-
quality complete shapes with precise geometrical details.

• We propose two basic and essential units GDP and SFA
for constructing the framework. They establish the rela-
tionships among points in a very simple yet effective way
via attention mechanism. Moreover, the proposed units
and modules can be easily incorporated into other net-
works to enhance the capability of feature representation
and fine-grained shape generation for completion.

• Without bells and whistles, the proposed method
achieves leading performance for point cloud comple-
tion on challenging benchmarks such as Completion3D,
PCN, ShapeNet-55/34 and KITTI.

Related Work
The objective of point cloud completion is to forecast the
complete shape of a 3D object from a partial point cloud.
Current methodologies, predicated on deep neural networks,
solve this task through an encoder-decoder architecture.
However, an inherent challenge lies in capturing the intricate
topological details in these unordered point clouds. Pioneer-
ing works (Dai, Qi, and Nießner 2017; Groueix et al. 2018;
Stutz and Geiger 2018; Thomas et al. 2019; Wang, Ang, and
Hee Lee 2021) map the point cloud to a voxel grid, and then
use 3D convolution to extract features. GRNet (Xie et al.
2020) further proposes a gridding reverse module to map
voxels and complete the point cloud in voxel mesh. How-
ever, due to the cubic nature of the voxel mesh, features of
the point cloud surface cannot be properly represented.

With the success of PointNet (Charles et al. 2017) that di-
rectly processes 3D coordinates, many researchers leverage
it as the feature encoder and pay special attention on the de-
coding process to produce complete point clouds (Tchapmi
et al. 2019; Huang et al. 2020; Sipiran et al. 2022). How-
ever, since PointNet directly processes all the points with
max pooling to obtain global features, the local structures
among points are not learned by the network, which lead
to the loss of shape details during decoding. To solve the
problem, NSFA (Zhang, Yan, and Xiao 2020) proposes to
explore the functionality of multi-scale features from differ-
ent layers to enhance the performance. CRN (Wang, Ang,
and Lee 2020) proposes a cascaded refinement network to
synthesize the detailed object shapes by considering both
the local details of partial input with the global shape in-
formation together. Inspired by the different receptive fields
across multiple levels of CNNs, PointNet++ (Qi et al. 2017)
proposes to process a set of points sampled in a metric space
in a hierarchical fashion, where the ball query (an invari-
ant of kNN) is used to guarantee local neighborhoods. By
leveraging its success representation of local shape features,
recent works with encoder-decoder architecture that adopt
PointNet++ to construct feature extractors have shown great
progress in point cloud completion (Pan et al. 2021a; Wen
et al. 2020; Xiang et al. 2021; Zhu et al. 2023). However, the
prefixed partition of local regions involved by kNNs make
these methods sensitive to the density of point clouds. More-
over, the involved limited receptive fields prevent the feature
extractor from achieving better local and global structural
information of the point cloud.

Compared with the limited receptive fields of CNNs,
Transformer (Vaswani et al. 2017) characterized by the at-
tention mechanism shows its advantages in long-range in-
teraction capturing (Dosovitskiy et al. 2020; Carion et al.
2020; Guo et al. 2021a; Zhang et al. 2022). Inspired by their
success, researchers try to introduce the transformer frame-
work into point cloud analysis tasks (Guo et al. 2021b; Pan
et al. 2021b; Wen et al. 2020; Zhao et al. 2021; Yan et al.
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Figure 2: The overall framework of our PointAttN. Here © denotes a concatenation operation. For easy understanding, we take
2048 as the number of input partial points to draw the illustration. Point clouds with other number of partial points can also be
processed by retraining the model.

2022). Observing that the extracted features from PointNet
neglect the geometric relationship within the point clouds
due to the max-pooling operation, PCTMA-Net (Lin et al.
2021) stacks a number of Transformer encoders after Point-
Net to capture the local context within a point cloud and
exploits its local geometric details. PMP-Net++ (Wen et al.
2022) incorporates PointNet++ with Transformer to enhance
the learned point features for point cloud completion. SA-
Net (Wen et al. 2020) introduces the skip-attention mecha-
nism to fuse local region features from encoder into point
features of decoder, which enables more detailed geome-
try information preserving for decoding. On the other hand,
SnowflakeNet(Xiang et al. 2021) and PointTr(Yu et al. 2021)
pay special attention on the decoding process via Trans-
former architectures. FBNet (Yan et al. 2022) proposes a
feedback network to refine completion shapes across time
steps and leverage the cross-transformer to build the con-
nections between the present and subsequent features. Wang
et al. (Wang et al. 2022a) investigate grouping local fea-
tures via point feature matching, neighbor-pooling and up-
sampling to improve the completion performance. To im-
prove the ability of detail preservation and recovery, Seed-
Former (Zhou et al. 2022) proposes a new shape represen-
tation algorithm Patch Seeds to integrate seed features into
the generation process of PointTr. These methods have high-
lighted the potential of transformers in accomplishing point
cloud completion. However, due to memory constraints or
explicit local partition demand, kNNs are still employed
within these methods. In this work, we propose that the need
of kNNs can be obviated by a strategically designed frame-
work, which optimally leverages the strengths of both self-
attention and cross-attention mechanisms. Concurrently, we
demonstrate that a much simpler architecture can achieve

superior performance compared to state-of-the-art methods
for point cloud completion.

Proposed Method
The overall framework of the proposed PointAttN is illus-
trated in Figure 2. The framework adopts a popular encoder-
decoder architecture for point cloud completion. It mainly
consists of three modules, a feature extractor for shape fea-
ture encoding, a seed generator and a point generator for
coarse-to-fine generation of the complete shape. Two ba-
sic units, namely Geometric Details Perception (GDP) and
Self-Feature Augment (SFA), are essentially designed to
construct the three modules. GDP and SFA are built upon
the core concept of Transformer (Vaswani et al. 2017), i.e.,
incorporating multi-head cross-attention and self-attention
mechanisms, yet the encoder-decoder structure of Trans-
former is not adopted in the design. In the following, we
first introduce the two basic units and then describe the three
modules based on them in details.

Geometric Details Perception
Establishing local spatial relationship among unordered
points for feature learning is a critical and fundamental chal-
lenge in point cloud completion. Current kNNs-based local
shape models are influenced by density variation and of-
fer limited receptive fields, hindering precise capture of the
point cloud’s structural information. To address the issues,
we use a cross-attention mechanism, establishing relation-
ships between the original and down-sampled point clouds.
Figure 3 illustrates the cross-attention map, indicating each
down-sampled point’s corresponding local region in the in-
put cloud. The operation offers an implicit local region par-
tition manner, which provides an adaptable receptive field
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Figure 3: Cross-attention map between an input point cloud
(Row A) and its down-sampled point cloud (Row Y). The
heatmap in Row A shows attention weights of an indexed
point in Row Y ( the point representing in red).

compared to explicit kNNs partition. Based on it, we design
the Geometric Details Perception (GDP) unit to adaptively
aggregate information from unordered points, which can ef-
fectively model the point cloud’s geometric features.

Figure 4: The detailed structure of GDP (left) and SFA
(right). Here © denotes a concatenation operation.

The structure of GDP is illustrated in the left of Figure 4.
GDP receives an input (X, d), where X is a matrix of size
n×c and each row of X can be considered as a feature vector
corresponding to a point, d is the down-sampling ratio. By
applying an FPS operation (Qi et al. 2017), we can get a
down-sampled point cloud feature matrix Y of size n/d× c.
Then we leverage the multi-head cross-attention in the form
of residual to learn the feature matrix F :

F = Norm(Q+MultiHead(Q,K, V )),

Q = YWQ,K = XWKV , V = XWKV ,
(1)

where MultiHead(·) is performed similarly to (Vaswani
et al. 2017), WQ ∈ Rc×c and WKV ∈ Rc×c are linear
transformation matrices. Through this operation, each point
in Y can adaptively aggregate features from X , encompass-
ing similarity in shape and proximity in distance, thus the
local geometric structure can be perceived in the model.

In order to enhance the fitting ability of the model, we
use a feed forward network (FFN) (Vaswani et al. 2017) to
further update F . The output of GDP can be formulated as

GDP (X, d) = Concat(F + FFN(X), Y ), (2)

where Concat(·) denotes a concatenation operation.

Self-Feature Augment
While GDP enables perception of local geometric details,
we then need to address another issue for predicting the
complete point cloud, that is, revealing the global shape in-
formation of 3D objects from incomplete point clouds. As
illustrated in Figure 5, the self-attention mechanism demon-
strates its global context association ability among points.
We leverage it to establish global spatial relationships of
points and design a Self-Feature Augment (SFA) unit to in-
fer the complete geometry of 3D shapes.

Figure 5: Self-attention map superimposed on the input
point cloud. The heatmap in Row A shows attention weights
of an indexed point in Row X (the point representing in red).
Self-attention emphasizes the global context association re-
lationship.

The structure of SFA is shown in the right of Figure 4.
SFA receives an input (X,u), where X is a matrix of n× c,
u is an up-sampling ratio. SFA integrates the information
from different points of X by applying the multi-head self-
attention in the form of residual:

F = Norm(Q+MultiHead(Q,K, V )),

Q = XWQu,K = XWKV u, V = XWKV u,
(3)

where WQu ∈ Rc×uc and WKV u ∈ Rc×uc are linear trans-
formation matrices. The dimension of point features is in-
creased by u times after the linear transformation operation.

Similar to GDP, an FFN is also ultilized here, thus the
output of SFA can be computed as

SFA(X,u) = F + FFN(X). (4)

Accordingly, the output of SFA is a matrix of size n× uc.
Considering its ability of capturing global context infor-

mation, SFA can also be employed for feature extraction to
enhance the model’s feature representation ability.

PointAttN for Point Cloud Completion
Our PointAttN framework leverages the widely-used
encoder-decoder architecture for point cloud completion.
The encoder, serving as Feature Extractor, is constructed
upon both GDP and SFA units to capture precise geomet-
ric information of 3D shapes. Meanwhile, the decoder mod-
ules, including Seed Generator and Point Generator are con-
structed upon cascade SFAs to produce complete point cloud
in a coarse-to-fine decoding manner.
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Feature Extractor. The feature extractor (FE) takes the
partial point cloud as input to generate a shape code that
captures both local geometry details and global context of
the object for the following coarse-to-fine shape decoding.
As shown in the lower left of Figure 2, a multi-layer per-
ceptron (MLP) translates the unordered points into feature
vectors. Then by alternately stacking three GDP and three
SFA units, both local geometry and global shape information
can be progressively embedded during the down-sampling
process. GDP units, with a down-sampling ratio of 4, 2, 2,
adaptively aggregate local geometry details from the par-
tial point cloud. Concurrently, SFA post each GDP unit en-
hances the global information perception. The up-sampling
ratio of each SFA is set to 1 to maintain the same feature di-
mensions. After the stacked units, we use an MLP followed
by a max pooling operation to produce the shape code.

Seed Generator. The seed generator (SG) aims to produce
a sparse yet complete point cloud. As shown in the lower
middle of Figure 2, the shape code is first decoded into a
feature matrix via an MLP and reshape operation, with each
matrix row representing a feature vector of a point. After ex-
tending point feature dimensions by another MLP, three SFA
units are cascaded to enhance the feature ability of perceiv-
ing the target shape structure. Sparse points are produced
by splitting point features through reshape and MLP, which
transforms feature vectors into 3D coordinates. These points
are merged with the input partial point cloud and undergo
down-sampling via an FPS operation to yield a sparse point
cloud, which is served as the seed for the point generator
module.

Point Generator. The point generator (PG) module uses
the shape code and the seed point cloud to generate a fine-
grained point cloud. As shown in the lower right of Figure 2,
the seed point cloud and shape code are separately processed
through MLP to yield two point feature matrices F1 and F2

(matching F1’s row count through self-copy), which are then
integrated through point-wise concatenation. By that, each
point feature in the integrated matrix maintains both local
geometric details and global shape structure of the target. In
the next, three cascading SFA units incrementally up-sample
the point features, which are then split through reshaping
and concatenated with F1 (again matching row counts via
self-copy). Dense points are generated by transforming the
concatenated features into 3D coordinates via MLP. During
implement, two PG modules are cascaded to construct the
fine decoding network.

Training Loss. During training, we utilize Chamfer dis-
tance (CD) as the metric distance of point cloud to formu-
late the loss function. Suppose the seed point cloud, the out-
put point clouds of the two cascaded point generators are
denoted as P0, P1, P2, respectively. Meanwhile, the groud-
truth point cloud is down-sampled through FPS to obtain
three sub-clouds S0, S1, S2, which respectively share the
same density of P0, P1 and P2. Then the loss of the model
can be defined as follows:

L =
2∑

i=0

λidCD(Pi,Si). (5)

where dCD is the Chamfer distance loss. In the implementa-
tion, each λi is set as 1.

Experiments
Dataset and Implementation Details
To evaluate the effectiveness of our PointAttN, we conduct
comprehensive experiments on multiple challenging bench-
marks, including Completion3D (Tchapmi et al. 2019), PCN
(Yuan et al. 2018), ShapeNet-55/34(Yu et al. 2021) and
KITTI (Geiger et al. 2013). For fair comparison, we fol-
low the common protocols of each dataset for training and
testing. The proposed framework is implemented in Python
with PyTorch and trained on 4 NVIDIA 2080Ti GPUs. Mod-
els are trained with Adam optimizer by totally 400 epochs,
while the learning rate is initialized to 1E-4 and decayed by
0.7 every 40 epochs. The batch size is set to 32.

Comparisons on Different Datasets
Completion3D. To align with previous works, we use the
specified training set of Completion3D to train the model
and take the L2 Chamfer distance (CD) as the metric. The
results are shown in Table 1. Our PointAttN ranks first and
surpasses the second-ranked method SnowflakeNet (Xiang
et al. 2021) by a large reduction of 12.8% (6.63 vs. 7.60, the
following data percentages are calculated in the same way)
in terms of average CD. Compared with methods like VRC-
Net (Pan et al. 2021a) and SnowflakeNet (Xiang et al. 2021)
that also adopt the same coarse-to-fine decoding strategy,
our PointAttN achieves significant improvement, which ow-
ing to the proposed GDP and SFA units that help to capture
both local and global geometry information of the shape.

Methods Avg Plane Cabinet Car Chair Lamp
GRNet(eccv20) 10.64 6.13 16.90 8.27 12.23 10.22
SoftPool++(ijcv22) 9.36 4.59 15.82 6.78 11.41 8.82
SCRN(tpami21) 9.13 3.35 12.81 7.78 9.88 10.12
VRC-Net(cvpr21) 8.12 3.94 10.93 6.44 9.32 8.32
PMP-Net++(tpami22) 7.97 3.25 12.25 7.62 8.71 7.64
SnowflakeNet(iccv21) 7.60 3.48 11.09 6.90 8.75 8.42
PointAttN 6.63 3.28 10.77 6.13 7.14 5.92

Table 1: Point cloud completion results on Completion3D in
terms of CD-L2 (lower is better). “Avg” denotes the average
CD on all 8 categories of Competion3D. Only five categories
are shown due to width limitation.

PCN. For a fair comparison, we follow the same split set-
tings with PCN(Yuan et al. 2018) during experiments and
take the L1 Chamfer Distance as the metric. The quantitative
comparisons with the state-of-the-art methods are shown in
Table 2. Our method ranks second only a bit behind the first
ranked SeedFormer (Zhou et al. 2022) in terms of average
CD, yet it outperforms SeedFormer on multiple categories
like Cabinet and Car. Notably, it surpasses Transformer-
based methods such as FBNet (Yan et al. 2022), Snowflak-
eNet (Xiang et al. 2021) and PointTr (Yu et al. 2021). The
comparison demonstrates the effectiveness of our kNN-free
attention-based framework in producing complete shapes.
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A comparison of visualization results is shown in Fig-
ure 6, listing four cases with varying un-uniform density
distributions. Compared with Transformer-based methods
SnowflakeNet (Xiang et al. 2021) and SeedFormer (Yu et al.
2021) that still adopt explicit kNNs, our PointAttN achieves
much more precise geometric structures and fine-grained de-
tails, as demonstrated in the completion of lamp poles that
have extreme density changes. It is owing to that our kNN-
free framework alleviate the sensitivity to the density distri-
bution of point cloud. Moreover, by eliminating the limited
receptive field of explicit local partition, our method better
perceives both geometric details and global shape structures
during the process.

Methods Avg Plane Cabinet Car Chair Lamp
GRNet(eccv20) 8.83 6.45 10.37 9.45 9.41 7.96
PointTr(iccv21) 8.38 4.75 10.47 8.68 9.39 7.75
SCRN(tpami21) 8.29 4.80 9.94 9.31 8.78 8.66
PMP-Net++(tpami22) 7.56 4.39 9.96 8.53 8.09 6.06
SnowflakeNet(iccv21) 7.21 4.29 9.16 8.08 7.89 6.07
GTNet(ijcv23) 7.15 4.17 9.33 8.38 7.66 5.49
FBNet(eccv22) 6.94 3.99 9.05 7.90 7.38 5.82
SeedFormer(eccv22) 6.74 3.85 9.05 8.06 7.06 5.21
PointAttN 6.84 3.88 9.01 7.60 7.28 5.97

Table 2: Point cloud completion results on PCN in terms of
CD-L1 (lower is better). “Avg” denotes the average CD on
all 8 categories of PCN. Only five categories are shown due
to width limitation. The best results are highlighted in bold.

Figure 6: Visual comparisons on PCN. Our method shows its
superiority on handling un-uniform density in point clouds,
achieving more accurate and fine-grained completions.

ShapeNet-55/34. To evaluate the completion performance
under different poses and the generality to unseen classes,
we conduct experiments on the ShapeNet-55/34 bench-
marks. During experiments, we follow the training and eval-
uation settings of PointTr(Yu et al. 2021). The results are
shown in Table 3, with CD-S, CD-M and CD-H indicating
the CD results for Simple, Moderate and Hard levels of in-
completeness, respectively. As shown in the first four rows
of Table 3, our PointAttN can effectively handles diverse
viewpoints. Compared with state-of-the-art methods like
PointTr and SeedFormer, it achieves reductions of at least
6%, 14.28%, and 27.35% in CD-L2 across the simple, mod-
erate and hard completion levels. Besides, our method also
achieve robust performance on unseen classes. As shown in

the last four rows of Table 3, it ranks second that only a
bit lower to SeedFormer. However, for the hard level (CD-
H) completion task (75% missing points), our method sur-
passes SeedFormer by 5.11% reduction in CD-L2, which
demonstrates the generality of the proposed method to un-
seen classes and hard level in-completions.

Evaluation GRNetPointTrSeedFormerGTNet PointAttN

55 CD-S 1.35 0.58 0.50 0.45 0.47
CD-M 1.71 0.88 0.77 0.66 0.66

categories CD-H 2.85 1.79 1.49 1.30 1.17
Avg 1.97 1.09 0.92 0.80 0.77

34 seen CD-S 1.26 0.76 0.48 0.51 0.51
CD-M 1.39 1.05 0.70 0.73 0.70

categories CD-H 2.57 1.88 1.30 1.40 1.23
Avg 1.74 1.23 0.83 0.88 0.81

21 unseen CD-S 1.85 1.04 0.61 0.78 0.76
CD-M 2.25 1.67 1.07 1.22 1.15

categories CD-H 4.87 3.44 2.35 2.56 2.23
Avg 2.99 2.05 1.34 1.52 1.38

Table 3: Point cloud completion results on ShapeNet-55/34
in terms of CD-L2. The best results are highlighted in bold.

KITTI. To further evaluate the effectiveness of our
PointAttN, we show its performance in real-world scenar-
ios on the KITTI dataset. Following the experimental set-
tings of existing works (Yu et al. 2021; Xie et al. 2020),
we fine-tune our model ( prertrained on the PCN dataset)
on ShapeNetCars (Yuan et al. 2018) and report the results
in terms of MMD and Fidelity metrics, as shown in Ta-
ble 4. PointTr (Yu et al. 2021) preserves all the input points
in the completed point cloud, leading to a Fidelity score
of 0.00. Both SnowflakeNet (Xiang et al. 2021) and Seed-
Former (Zhou et al. 2022) utilize the partial matching loss
from (Wen et al. 2021a) to maintain the shape structure of
the input point cloud, resulting in Fidelity scores of 0.110
and 0.151, respectively. Beyond that, our method achieves
the best completion results on KITTI. Compare with state-
of-the-art Transformer-based methods, our PointAttN sur-
passes SeedFormer by 2.33% and PointTr by 4.18% reduc-
tions on MMD. Compared with GRNet (Xie et al. 2020), our
PointAttN surpasses it by 11.27% and 17.65% reductions
on MMD and Fidelity, respectively. While the benchmarks
of KITTI are real scans with highly non-uniform distribu-
tion, the substantial improvement in both MMD and Fidelity
demonstrates the robustness of our PointAttN against point
cloud density variation.

Figure 7 presents visual comparisons against GRNet and
PointTr across five hard cases. PointAttN successfully re-
covers a complete car point cloud in case A and smoothly
produces detailed components in case D. In case E, only
PointAttN accurately recreates the car’s rear view mirrors.
Analyzing cases A, B, and D, PointAttN proves its superior-
ity in maintaining car contours. It also delivers more precise
results than the kNN-based PointTr, achieving fine-grained
details like windows, mirrors, and tires. It is attributed to the
adaptive local receptive fields and the global associative ca-
pability of the proposed GDP and SFA units, which enables
PointAttN to perform accurate 3D object completion.
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*1000 SnowflakeNet GRNet PointTr SeedFormer PointAttN
Fidelity 0.110 0.816 0.000 0.151 0.672
MMD 0.907 0.568 0.526 0.516 0.504

Table 4: Point cloud completion results on KITTI in terms of
MMD and Fidelity. The best results are highlighted in bold.

Figure 7: Visual comparisons on the KITTI dataset. Our
PointAttN can produce fine-grained results with much more
accurate details (e.g. windows, rear view mirrors and tires).

Ablation Studies
To evaluate the effectiveness of the proposed units and
framework for completion, we construct detailed abla-
tion studies of each part in PointAttN on the Comple-
tion3D dataset. Five network variations are designed: (1)
FE w/o GDP : to verify the effectiveness of our GDP for
feature extraction, we replace all the GDP units in the FE
module with FPS, and set the up-sampling ratio u of SFAs
in FE to 2 for model structure preservation; (2) FE w/o SFA :
to verify the effectiveness of our SFA for feature extraction,
we remove all the SFA units in FE and keep other structures
unchanged; (3) FE+FoldingNet : to verify the effectiveness
of the designed FE module, we use it to replace the back-
bone of FoldingNet (Yang et al. 2018); (4) FE+SG+SPD :
to verify the effectiveness of the designed FE and SG mod-
ules, we replace the PG module with the SPD decoder in
SnowflakeNet (Xiang et al. 2021); (5) PN+SG+PG : to ver-
ify the effectiveness of the designed SG and PG modules,
we replace the FE module with PointNet++ (Qi et al. 2017).

In all experiments, we replace only the relevant parts,
keeping all other settings unchanged. Table 5 shows the ab-
lation results. By comparing PointAttN with FE w/o GDP,
it can be found that the use of GDP reduces the average
CD by 10.6% (6.63 vs. 7.42), which verifies its importance
for feature extraction. The comparison of PointAttN with
FE w/o SFA shows that SFA also improves the performance
by enhancing the global information in feature extraction.
FE+FoldingNet reduces the average CD by 56.6% (8.28
vs. 19.07) when compared to the baseline FoldingNet. Such
a large improvement demonstrates the effectiveness of our
feature extractor for point cloud completion. FE+SG+SPD
achieves a 3.8% lower average CD (7.31 vs. 7.60) than the
baseline SnowflakeNet. Compared with SA-Net (Wen et al.
2020) that uses PointNet++ as the backbone, PN+SG+PG
reduces the average CD by 35.6% (7.23 vs. 11.22), demon-

strating the capability of our decoding modules designed
with SFAs. Moreover, each variation, when compared with
PointAttN, indicates the unique contribution of each corre-
sponding part to performance improvement, proving that the
framework is neatly designed.

Evaluation Avg Plane Cabinet Car Chair Lamp
FE w/o GDP 7.42 2.99 13.03 6.46 7.51 6.61
FE w/o SFA 6.81 3.43 11.62 6.79 7.11 6.32
FE+FoldingNet 8.28 3.33 11.54 7.5 8.62 8.4
FE+SG+SPD 7.31 3.19 11.49 7.26 7.78 7.13
PN+SG+PG 7.23 3.44 11.5 6.3 7.54 6.74
SA-Net 11.22 5.27 14.45 7.78 13.67 13.53
FoldingNet 19.07 12.83 23.01 14.88 25.69 21.79
SnowflakeNet 7.60 3.48 11.09 6.90 8.75 8.42
PointAttN 6.63 3.28 10.77 6.13 7.14 5.92

Table 5: Ablation studies on the Completion3D dataset. Here
SA-Net, FoldingNet and SnowflakeNet are listed as base-
lines for intuitive comparison (lower value is better).

Complexity Analysis
To evaluate the efficiency of the proposed method, we per-
form extensive experimental comparisons of model perfor-
mance, computational cost, memory usage and parameters
on the PCN dataset. The results are shown in Table 6, which
demonstrate that our PointAttN can achieve a good balance
between the performance and the model cost. For model
parameters, our method has only 3M more than Snowflak-
eNet(Xiang et al. 2021) but much fewer than the other meth-
ods. Besides the substantial performance improvement, our
method still maintains a comparable high speed of 21.41 ms
for inference time. Compared with the kNN-based methods,
the memory usage of PointAttN is comparable to Snowflak-
eNet and only a quarter of PointTr(Yu et al. 2021), which
requires huge memory for position embedding operations.

Evaluation Avg(CD) Params(M) Times(ms) VRAM(G)
GRNet 8.83 76.708 10.35 2.354
SnowflakeNet 7.21 19.318 13.45 1.886
PointTr 8.38 31.242 17.95 7.911
PointAttN 6.84 22.308 21.41 2.046

Table 6: Model complexity analysis on the PCN dataset.

Conclusions
In this paper, we present a novel encoder-decoder frame-
work, namely PointAttN, for point cloud completion. By
fully employing cross-attention and self-attention mecha-
nisms, our method have eliminated the need for explicit lo-
cal region division like kNNs and directly established local-
and long-range structural relationships of unordered points
to perceive the geometry details and global context of 3D
point clouds. The framework is neatly designed without any
complicated operations. Extensive comparisons and ablation
studies are conducted to demonstrate the superiority of our
proposed PointAttN, which outperforms the state-of-the-art
methods on many challenging benchmarks.
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