
Omnidirectional Image Super-resolution via Bi-projection Fusion

Jiangang Wang1, Yuning Cui2, Yawen Li3, Wenqi Ren1*, Xiaochun Cao1

1Shenzhen Campus of Sun Yat-sen University
2Technical University of Munich

3Beijing University of Posts and Telecommunications
wangjg33@mail2.sysu.edu.cn, yuning.cui@in.tum.de

warmly0716@bupt.edu.cn, {renwq3, caoxiaochun}@mail.sysu.edu.cn

Abstract

With the rapid development of virtual reality, omnidirectional
images (ODIs) have attracted much attention from both the
industrial community and academia. However, due to storage
and transmission limitations, the resolution of current ODIs is
often insufficient to provide an immersive virtual reality ex-
perience. Previous approaches address this issue using con-
ventional 2D super-resolution techniques on equirectangular
projection without exploiting the unique geometric properties
of ODIs. In particular, the equirectangular projection (ERP)
provides a complete field-of-view but introduces significant
distortion, while the cubemap projection (CMP) can reduce
distortion yet has a limited field-of-view. In this paper, we
present a novel Bi-Projection Omnidirectional Image Super-
Resolution (BPOSR) network to take advantage of the ge-
ometric properties of the above two projections. Then, we
design two tailored attention methods for these projections:
Horizontal Striped Transformer Block (HSTB) for ERP and
Perspective Shift Transformer Block (PSTB) for CMP. Fur-
thermore, we propose a fusion module to make these projec-
tions complement each other. Extensive experiments demon-
strate that BPOSR achieves state-of-the-art performance on
omnidirectional image super-resolution. The code is available
at https://github.com/W-JG/BPOSR.

Introduction
In recent years, omnidirectional images (ODIs), also known
as 360° images or panoramic images, have gained significant
attention due to their unique immersive experience. When
viewed through headsets, ODIs provide a limited field-of-
view through a small viewport (Elbamby et al. 2018). To
accurately capture real-world details within this restricted
viewport, ODIs require high resolutions ranging from 8K
to 16K (Ai et al. 2022). Nonetheless, most existing ODIs
have inadequate resolution due to limitations in acquisition,
storage, and transmission.

As a typical low-level vision problem, super-resolution
aims to generate high-resolution images with essential edge
structures and texture details from low-resolution counter-
parts (Glasner, Bagon, and Irani 2009). Although conven-
tional 2D image super-resolution methods have made re-
markable advancements (Dong et al. 2014; Kim, Lee, and

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

21.5

22.0

22.5

23.0

23.5

24.0

24.5

25.0

0 2 4 6 8 10 12 14 16 18

W
S-

PS
N

R
 (d

B
)

The Number of Parameters (M)

BPOSR (Ours)
(161G)

360-SS
(148G)

MSRN
(294G)

RCAN
(602G)

LAU-Net (343G)

SRFormer (509G)

OSRT (434G)

SwinIR (484G)

ELAN (280G)

Figure 1: WS-PSNR vs. the number of parameters. The com-
parison is conducted on the ODI-SR test set with the ×8 up-
scaling factor. BPOSR achieves a better trade-off than other
algorithms.

Lee 2016; Zhang et al. 2018; Chen et al. 2021; Liang et al.
2021; Zhang et al. 2022), directly applying these 2D meth-
ods to ODIs super-resolution is infeasible and suboptimal.
This is due to the distortions and discontinuities that arise
from projecting a spherical panoramic image onto a 2D
plane (Deng et al. 2021). The different properties between
image domains increase the complexity of ODIs reconstruc-
tion. Therefore, developing novel super-resolution meth-
ods that consider the unique geometric properties of ODIs
is beneficial for high-quality omnidirectional image super-
resolution.

Several studies have attempted to address the task of
omnidirectional image super-resolution (ODISR), includ-
ing LAU-Net (Deng et al. 2021), 360-SS (Ozcinar, Rana,
and Smolic 2019), SphereSR (Yoon et al. 2022) and OSRT
(Yu et al. 2023). However, these studies mainly focus on
solving this task within the ERP domain without consider-
ing the various projection formats used in ODIs. The two
most commonly used ODIs projection formats are equirect-
angular projection (ERP) and cubemap projection (CMP).
Specifically, the ERP provides a wide global view but intro-
duces significant distortion, while the CMP has less distor-
tion but only provides a limited central view with discon-
tinuous boundaries (Ai et al. 2022). Inspired by this fact,
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we aim to fully exploit the geometric properties and com-
plementary information of these two projections to enhance
the performance of ODISR. To achieve this, we develop
the Bi-Projection Omnidirectional Image Super-Resolution
(BPOSR) network, which enables the simultaneous infor-
mation flow of ERP and CMP branches, and allows for the
interaction and fusion of diverse projection features.

Furthermore, we conduct a comprehensive investigation
into the geometric properties of ERP and CMP to better take
advantage of different projections. As illustrated in Figure 2
(a), we observe a unique property of ERP, namely horizontal
similarity, where objects at the same height in the real world
exhibit similar appearances and features, creating horizontal
similarity regions in the ERP. Moreover, as shown in Fig-
ure 2 (b), we also discover a characteristic of CMP, dubbed
perspective variability, where we obtain diverse information
under different perspectives when projecting and mapping
the rotated spherical panoramic image. Based on these ob-
servations, we introduce the Horizontal Striped Transformer
Block (HSTB) for ERP and the Perspective Shift Trans-
former Block (PSTB) for CMP to sufficiently leverage the
intrinsic properties of different projections. Finally, we de-
velop a block attention fusion module to facilitate infor-
mation interactions between features from diverse projec-
tions and depths by assigning varying attention weights to
them. As a result, the representation learning capability of
the network is enhanced. Equipped with the above designs,
the proposed BPOSR achieves state-of-the-art performance
with fewer parameters, as shown in Figure 1.

The main contributions of our work are summarized as
follows:

• We propose a Bi-Projection Omnidirectional Image
Super-Resolution (BPOSR) network that takes advantage
of both two omnidirectional projections, i.e., ERP and
CMP, to facilitate the interaction of information from
both projections.

• By analyzing the image geometric properties of ERP and
CMP, we introduce the Horizontal Striped Transformer
Block (HSTB) and the Perspective Shift Transformer
Block (PSTB) to utilize the inherent properties of both
projections.

• We introduce a Block Attention Fusion Module (BAFM)
to facilitate the fusion between features from different
projections and depths. Extensive experiments demon-
strate that the proposed network achieves state-of-the-art
performance for omnidirectional image super-resolution.

Related Work
Single Image Super-Resolution
With the rapid development of deep learning, convolu-
tional neural networks (CNNs) have dominated Single Im-
age Super-Resolution (SISR) for many years. Since SR-
CNN (Dong et al. 2014) first introduced CNN to SR, a large
number of CNN-based SR models have emerged. For in-
stance, VDSR (Kim, Lee, and Lee 2016) adopts a deeper
CNN-based architecture with residual learning to improve

(a) ERP Horizontal Similarity

(b)  CMP Perspective Variability

(3)(2)(1)

Figure 2: (a) ERP Horizontal Similarity. Upon dividing the
ERP into regions along the horizontal direction, multi-scale
similarities are observed within each region. (b) CMP Per-
spective Variability. Orange arrows represent spherical rota-
tion, and green arrows represent projections onto CMP. By
spherically rotating and projecting onto the CMP, the six sur-
faces of the CMP capture different information.

SR performance. RCAN (Zhang et al. 2018) utilizes a chan-
nel attention mechanism to adaptively modulate channels.
ShuffleMixer (Sun, Pan, and Tang 2022) explores the large
convolution and channel split-shuffle operation for SR. Re-
cently, inspired by the success of ViT (Dosovitskiy et al.
2021) in high-level vision tasks, IPT (Chen et al. 2021) intro-
duces Transformer into SISR, but it requires a large number
of parameters. SwinIR (Liang et al. 2021) applies the Swin
Transformer (Liu et al. 2021) framework to SR and achieves
extremely powerful performance. ELAN (Zhang et al. 2022)
simplifies the architecture of SwinIR (Liang et al. 2021) and
performs self-attention among different window sizes to col-
lect correlations between distant pixels. Despite the promis-
ing performance on 2D SR, these algorithms are inapplica-
ble to ODISR.

Omnidirectional Image Super-Resolution
Several studies have explored the potential of deep learn-
ing for ODISR by fine-tuning traditional 2D planar image
SR models. 360-SS (Ozcinar, Rana, and Smolic 2019) in-
troduces a spherical loss function in the traditional 2D SR
model, which is weighted according to the spherical geo-
metric position of each pixel. Nishiyama et al. (Nishiyama,
Ikehata, and Aizawa 2021) utilize 2D SR models to ad-
dress ODISR by adding distortion maps as input to handle
different distortions. LAU-Net (Deng et al. 2021) presents
a latitude adaptive upscaling network towards the non-
uniformaly distributed pixel density of ERP ODI. SphereSR
(Yoon et al. 2022) utilizes icosahedral spherical data to ex-
tract features and uses a spherical local implicit image func-
tion to generate HR. Furthermore, OSRT (Yu et al. 2023)
introduces deformable convolutions to learn the distortion
of ERP. However, the above mentioned approaches mainly
address ODISR using ERP, which introduces significant dis-
tortion. In this paper, we perform high-quality reconstruc-
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tion by taking advantage of both ERP and CMP.

ODIs Analysis
For transmission convenience, the spherical panoramic pro-
jection is often transformed onto a 2D plane. In this part, we
introduce the two widely used projections, i.e., equirectan-
gular projection (ERP) and cubemap projection (CMP), as
well as our observations, based on which we establish our
network.

Equirectangular Projection
ERP uniformly samples the sphere with longitude and lati-
tude. Assuming the longitude and latitude are ϕ and θ, re-
spectively, we have (ϕ, θ) ∈ [−π, π]×

[
−π

2 ,
π
2

]
(Wang et al.

2023). The angular position (ϕ, θ) can be converted to a co-
ordinate Qs = (qxs , q

y
s , q

z
s ) on a standard sphere by:

qxs = sin (ϕ) cos (θ) ,

qys = sin (θ) , (1)
qzs = cos (ϕ) cos (θ) .

As shown in Figure 3 (a), ERP projects a sphere onto a
single surface, thus obtaining a wide field of view. How-
ever, due to the uniform spacing and parallel characteristics
of latitude lines across the projection, the ERP introduces
significant distortions, particularly near the poles. As the
latitude lines converge towards the poles, the distortion be-
comes more pronounced, resulting in elongated shapes and
stretching of the image.

ERP Horizontal Similarity. Through our observations,
we investigate the inherent property of horizontal similarity
within ERP. In the real world, objects at the same height ex-
hibit similar appearance and characteristics due to their rel-
ative positions. ERP can capture comprehensive positional
information by providing a full 360° view of the real world
environment. Consequently, the relative positional relation-
ship of objects in the real world is stored in ERP. As shown
in Figure 2 (a), multi-scale similarities are prevalent in the
horizontal regions of the ERP image. Therefore, the conven-
tional global-scale isotropic attention mechanism becomes
redundant for processing ERP image features. Instead, we
propose a more suitable approach for ERP, which involves
utilizing the horizontal window to model intra-image depen-
dencies. Furthermore, by combining local perception and
contextual information within these horizontal windows, we
can introduce a limited spatial range to reduce the complex-
ity of attention. It turns out that this approach is highly ben-
eficial for ERP to enhance the capture of localized structures
and complex image features.

Cubemap Projection
CMP projects a sphere onto the six surfaces of a cube. The
resulting six surfaces are specific perspective images, corre-
sponding to viewing directions: front, back, left, right, up,
and down. The size of each surface is r × r and the fo-
cal length is r

2 , where r is the radius of the source sphere.
The front surface keeps the same coordinate system as the
sphere, while the others are obtained by rotating the sphere

(a) ERP

(b)  CMP

Figure 3: (a) ERP projects a sphere onto a single surface, re-
sulting in a wide field of view but with distortion at high and
low latitudes. (b) CMP projects a sphere onto a cube with
six surfaces, which reduces distortion but results in discon-
tinuities between the individual surfaces.

90° or 180° around a specific axis (Wang et al. 2023). Specif-
ically, Ri denotes the rotation matrix that transforms from
the coordinate system of the i-th surface to the spherical
coordinate system. Then we can project the pixel Pc =
(pxc , p

y
c , p

z
c) as

Qs = s ·Ri · Pc, (2)

where pxc , p
y
c ∈ [0, r], pzc = r

2 , and the factor s = r
|pc| .

As shown in Figure 3 (b), compared with ERP, CMP ex-
hibits a substantial reduction in image distortion. However,
it introduces the discontinuity issue by disrupting the conti-
nuity of objects at the boundaries between different faces.

CMP Perspective Variability. The CMP projects the
sphere onto six planes, each of which can obtain informa-
tion about the sphere from different perspectives. As shown
in Figure 2 (b), when the sphere is rotated and projected
onto the CMP, the viewing angles of the six planes undergo
changes. Based on this observation, we propose the perspec-
tive variability of CMP. The addition of new perspectives re-
sults in an augmented availability of information. By shift-
ing perspectives on CMP, we effectively enhance the the fea-
ture representation of CMP and address the inherent limita-
tions of image discontinuities in CMP.

Methodology
Overall Architecture

The overall architecture of the proposed network is illus-
trated in Figure 4, which mainly consists of three branches:
ERP Branch, CMP Branch, and Fusion Branch.

Given a low-resolution input I lrERP , we firstly transform
it into the CMP form I lrCMP , and then use 3×3 convolutions
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Figure 4: The overall diagram illustrates the architecture of BPOSR, which comprises three branches: ERP Branch, CMP
Branch, and Fusion branch. In ERP Branch, HSTB employs horizontal striped self-attention to model the features of ERP. In
CMP Branch, PSTB utilizes the PSL to obtain additional perspectives, enabling enhanced CMP features. In Fusion Branch,
BAFM fuses features from diverse projections and depths.

to separately extract shallow features for two projections as:

I lrCMP = E2C(I lrERP ), (3)

F 0
ERP = W 1

3×3(I
lr
ERP ), (4)

F 0
CMP = W 2

3×3(I
lr
CMP ), (5)

where E2C(·) represents the projection from ERP to CMP,
and W3×3 denotes a 3× 3 convolution. Next, we extract the
deep features of ERP and CMP branches as:

F i
ERP = HSABi(F

i−1
ERP ), (6)

F i
CMP = PSABi(F

i−1
CMP ), (7)

where i ∈ [1,K] is the index of resulting features, and
HSAB(·) and PSAB(·) are the Horizontal Striped Trans-
former Block and Perspective Shift Transformer Block, re-
spectively. To promote information interactions and feature
fusion between two projections, we propose a feature inter-
action fusion block, which firstly generates the fused fea-
tures using F i

ERP and F i
CMP , and then imposes resulting

features on source features. This process can be formally
expressed as:

F i
FUS = W fus

1×1(cat(F
i
ERP , F

i
CMP )), (8)

F i
ERP = W erp

1×1(cat(F
i
ERP , F

i
FUS)), (9)

F i
CMP = E2C(W cmp

1×1 (cat(C2E(F
i
CMP ), F

i
FUS))), (10)

where cat is the concatenate operation, and W1×1 denotes a
1× 1 convolution.

Finally, in order to integrate the features from different
branches and different depths, we develop a block attention
fusion module (BAFM) to yield the final features Ff as:

Ff = BAFM(cat(F 1
FUS , ..., F

K−1
FUS ,

FK
ERP ,C2E(F

K
CMP ))), (11)

(a) Square Windows (b) Horizontal Striped Windows

Figure 5: Different self-attention windows: (a) Square Win-
dows (b) Horizontal Striped Windows. As can be seen, Hor-
izontal Striped Windows are more effective in capturing the
similarity within ERP compared to Square Windows.

where cat is the concatenate operation. Finally, the high-
resolution is reconstructed via the upsampling module with
a single 3 × 3 convolution and pixel shuffle operation (Shi
et al. 2016) Fup as:

IsrERP = Fup(Ff + F 0
ERP +C2E(F 0

CMP )). (12)

We then delineate the core components of our network, i.e.,
HSTB, PSTB, and BAFM.

Horizontal Striped Transformer Block (HSTB)
HSTB is designed by exploiting the horizontal similarity of
ERP, which consists of numerous Horizontal Swin Trans-
former Layer (HSTL) and a convolutional layer, as shown
in Figure 4 (a). In contrast to vanilla SwinIR square win-
dows (Liang et al. 2021), we divide the input features into
horizontal windowsand apply the shift window self-attention
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Figure 6: Block Attention Fusion Module. BAFM receives
input from different projections and depths, employing a 3D
self-attention mechanism to fuse all the features.

mechanism to these features. As shown in Figure 5, HSTL
utilizes a self-attention mechanism within horizontal striped
windows to establish long-term dependencies. By confining
attention computation to horizontal windows, we enable the
establishment of dependencies over a wider and more effec-
tive range, facilitating a comprehensive exploration of the
contextual information within ERP.

Perspective Shift Transformer Block (PSTB)
PSTB is designed based on the perspective variability of the
CMP. As shown in Figure 4 (b), PSTB consists of multi-
ple Swin Transformer Layer (STL) (Liang et al. 2021) with
shifted window self-attention and a convolutional layer. We
introduce perspective shifts by deploying the Perspective
Shift Layer (PSL) after the input and before the output. PSL
first uses C2E to convert CMP features FCMP to ERP, and
then horizontally rolls the features in the ERP domain. The
finally output of PSL is obtained by converting the features
into CMP via E2C, which can be formally expressed as:

FCMP = E2C(R(C2E(FCMP )), (13)

where R is the horizontally roll operation.
The modeling capacity of shift window self-attention

modules is constrained by the absence of connections be-
tween different views. This limitation hinders their ability to
fully exploit the characteristics of CMP. PSTB integrates the
incorporation of interconnections among diverse perspec-
tives, facilitating a broader and more effective range of mod-
eling.

Block Attention Fusion Module (BAFM)
Although dense connections (Huang et al. 2017) and skip
connections (He et al. 2016) facilitate the transfer of shal-
low information to deep layers, they do not effectively lever-
age the interdependencies among different blocks (Niu et al.
2020). As shown in Eq. 11, the input features to BAFM are
derived from different depths and projections. To enhance
the fusion effect, we develop BAFM, as illustrated in Fig-
ure 6. The core component of BAFM is a 3D self-attention
mechanism, which selectively enhances feature blocks with
significant contributions while suppresses redundant feature
blocks. By doing this, the overall representation ability of

the network is enhanced. More concretely, given any input
Finput ∈ RN×C×H×W , the query matrix Q and value ma-
trix V are obtained by:

Q = 3DConvQ(Finput), (14)
V = 3DConvV (Finput), (15)

where 3DConv denotes a 3D convolution of size 1× 1× 1.
Next, the attention map is produced by the matrix multipli-
cation between Q and Q⊤, followed by the Softmax function
for normalization. Then, the modulated features via self-
attention are yielded by:

Fm = 3DConv(
Softmax(Q ·Q⊤)

s
· V ), (16)

where s is the scaling factor. Finally, the output of BAFM
is generated by compressing Fm ∈ RN×C×H×W via a 3D
convolution layer as:

Fout = 3DConv(Finput + Fm) ∈ R1×C×H×W . (17)

Experiments
Dataset and Implementation Details
We verify the effectiveness of our method using the
widely used datasets: ODI-SR (Deng et al. 2021) and
SUN360 (Xiao et al. 2012), which contain various types of
panoramic scenes. The model is trained using 1200 training
images of ODI-SR and evaluated on the test sets of ODI-SR
and SUN360, both containing 100 images.We adopted the
L1 loss function and use the Adam optimizer with β1 = 0.9
and β2 = 0.999. The model is trained for 500k iterations
with the initial learning rate as 2× 10−4, which is halved at
250k, 400k, 450k, and 475k iterations. In our model, K is
set to 4, and the number of STL and HSTL is both set to 6.
The attention window sizes of HSTB and PSTB are set as
4× 16 and 8× 8, respectively. The model feature dimension
is set to 60, and the rotation magnification in PSTB is set to 3
times. For evaluation, we additionally employ Weighted-to-
Spherical Uniform PSNR (WS-PSNR) and Weighted Spher-
ical Uniform SSIM (WS-SSIM) (Sun, Lu, and Yu 2017) as
metrics which are specially designed for ODIs quality mea-
surement.

Comparisons with State-of-the-Art
To demonstrate the superiority of our proposed PBOSR,
we compare it with 9 representative SISR methods, includ-
ing SRCNN (Dong et al. 2014), VDSR (Kim, Lee, and
Lee 2016), LapSRN (Ahn, Kang, and Sohn 2018a), Mem-
Net (Tai et al. 2017), MSRN (Li et al. 2018), EDSR (Lim
et al. 2017), D-DBPN (Haris, Shakhnarovich, and Ukita
2018), RCAN (Zhang et al. 2018), and DRN (Guo et al.
2020), and 4 state-of-the-art ODISR algorithms: 360-
SS (Ozcinar, Rana, and Smolic 2019), LAU-Net (Deng et al.
2021), SphereSR (Yoon et al. 2022), and OSRT (Yu et al.
2023). More results can be found in the supplementary ma-
terial.

Quantitative results. Table 1 presents the comparison re-
sults with state-of-the-art algorithms under ×4, ×8, and ×16
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Dataset ODI-SR SUN360

Scale ×4 ×8 ×16 ×4 ×8 ×16

Method WS-
PSNR

WS-
SSIM

WS-
PSNR

WS-
SSIM

WS-
PSNR

WS-
SSIM

WS-
PSNR

WS-
SSIM

WS-
PSNR

WS-
SSIM

WS-
PSNR

WS-
SSIM

SI
SR

Bicubic 24.62 0.6555 19.64 0.5908 17.12 0.4332 24.61 0.6459 19.72 0.5403 17.56 0.4638
SRCNN 25.02 0.6904 20.08 0.6112 18.08 0.4501 26.30 0.7012 19.46 0.5701 17.95 0.4684
VDSR 25.92 0.7009 21.19 0.6334 19.22 0.5903 26.36 0.7057 21.60 0.6091 18.91 0.5935

LapSRN 25.87 0.6945 20.72 0.6214 18.45 0.5161 26.31 0.7000 20.05 0.5998 18.46 0.5068
MemNet 25.39 0.6967 21.73 0.6284 20.03 0.6015 25.69 0.6999 21.08 0.6015 19.88 0.5759
MSRN 25.51 0.7003 23.34 0.6496 21.73 0.6115 25.91 0.7051 23.19 0.6477 21.18 0.5996
EDSR 25.69 0.6954 23.97 0.6483 22.24 0.6090 26.18 0.7012 23.79 0.6472 21.83 0.5974

D-DBPN 25.50 0.6932 24.15 0.6573 22.43 0.6059 25.92 0.6987 23.70 0.6421 21.98 0.5958
RCAN 26.23 0.6995 24.26 0.6554 22.49 0.6176 26.61 0.7065 23.88 0.6542 21.86 0.5938
DRN 26.24 0.6996 24.32 0.6571 22.52 0.6212 26.65 0.7079 24.25 0.6602 22.11 0.6092

O
D

IS
R

360-SS 25.98 0.6973 21.65 0.6417 19.65 0.5431 26.38 0.7015 21.48 0.6352 19.62 0.5308
LAU-Net 26.34 0.7052 24.36 0.6602 22.52 0.6284 26.48 0.7062 24.24 0.6708 22.05 0.6058
SphereSR — — 24.37 0.6777 22.51 0.6370 — — 24.17 0.6820 21.95 0.6342

OSRT 26.89 0.7581 24.53 0.6780 22.69 0.6261 27.47 0.7985 24.38 0.7072 22.13 0.6388
BPOSR 26.95 0.7598 24.61 0.6782 22.72 0.6285 27.59 0.7997 24.47 0.7084 22.16 0.6433

Table 1: Quantitative comparisons (WS-PSNR/WS-SSIM) with SISR and ODISR algorithms on benchmark datasets. The best
results are highlighted in bold.

BPOSR

BPOSR

RCAN

RCANHR

HR CARN

CARN

Figure 7: LAM results for different networks. The LAM at-
tribution reflects the importance of each pixel in the input
LR image when reconstructing the patch marked with a box.

Method WS-PSNR WS-SSIM

BPOSR 24.61 0.6782
Variant-CMP 24.30 0.6620
Variant-ERP 24.47 0.6716

Table 2: Ablation studies for Bi-Projection

upscaling factors on ODI-SR and SUN360. As seen, our
model outperforms other competitors on both two datasets.
Specifically, our model outperforms all SISR networks. On
the ODI-SR dataset, our method achieves performance gains
of 0.71 dB, 0.29 dB, and 0.2 dB WS-PSNR over the best
SISR method DRN under ×4, 8 × 8, and ×16 factors, re-
spectively. Furthermore, our model also achieves the best
results compared to all ODISR models designed specifically
for ODIs. On the SUN360 dataset, our method achieves a
performance gain of 0.12 dB WS-PSNR over the recent al-
gorithm OSRT (Yu et al. 2023) under ×4 factor. These re-
sults provide strong evidence of the remarkable capability of
our network in effectively leveraging the distinctive features
inherent in panoramic images.

Qualitative results. In Figure 8 we show visual results
for images obtained from the SUN360 dataset with a scale
factor of ×8. Both the full image and a cropped area are

Window size 8× 8 4× 16 2× 32 8× 16

WS-PSNR 24.48 24.61 24.52 24.51
WS-SSIM 0.6747 0.6782 0.6745 0.6749

Table 3: Ablation studies for the Horizontal Striped Trans-
former Block

shown for comparisons. As shown, RCAN (Zhang et al.
2018) and LAU-Net (Deng et al. 2021) suffer from unpleas-
ant blurring artifacts. OSRT (Yu et al. 2023) alleviates it to
some extent, but still leaves out some details and structures.
In contrast, our proposed BPOSR can effectively suppress
artifacts and leverage scene details and internal natural im-
age statistics to restore high-frequency content.

Ablation Study
To better understand BPOSR, we evaluate each key compo-
nent under a completely fair setting. We use the same archi-
tecture and hyper-parameter for the following experiments
and only vary one component for each ablation. The evalua-
tion of these ablation experiments is conducted on the ODI-
SR dataset, employing ×8 upscaling factor.

Bi-Projection vs. Single Projection. To validate the ef-
fectiveness of the bi-projection mechanism used in our
model, we introduce two alternative variants of our BPOSR:
Variant-CMP and Variant-ERP, which leverage ERP or CMP
in both two branches, respectively. In the experiments, we
keep other configurations identical for a fair comparison.
The results are presented in Table 2. We can see that the
bi-projection strategy is superior to the other two versions,
suggesting the effectiveness of our design that uses two dif-
ferent projections for high-fidelity reconstruction.

Effectiveness of the Horizontal Striped Transformer
Block. We further verify the efficacy of our horizontal
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Figure 8: Visual comparisons with both SISR and ODISR methods on benchmark datasets. Our results are more visually faithful
than other state-of-the-art algorithms.

Rotation ratio w/o 2 3 4 5

WS-PSNR 24.49 24.52 24.61 24.62 24.62
WS-SSIM 0.6741 0.6758 0.6782 0.6774 0.6776

Table 4: Ablation studies for Perspective Shift Transformer
Block. The rotation ratio r means that the angle of the spher-
ical rotation is 360◦

r .

Method mean 1×1 Conv BAFM

WS-PSNR 24.53 24.55 24.61
WS-SSIM 0.6735 0.6757 0.6782

Table 5: Ablation studies for the Block Attention Fusion
Module

striped attention for ERP by changing the used window
sizes. Table 3 shows that the horizontal choices outperform
the square version when using the same region size for at-
tention. This suggests that the horizontal window attention
is more suitable for modeling ERP than the square variant.

Through the utilization of LAM (Gu and Dong 2021), an
attribution method for super-resolution, we could tell which
input pixels contribute most to the selected region. As shown
in Figure 7, compared with CARN (Ahn, Kang, and Sohn
2018b) and RCAN (Zhang et al. 2018), BPOSR exhibits
more pronounced horizontal regions and wider range of re-
sults in LAM analysis. This result implies that HSTB effec-
tively captures the features in the horizontal region of ERP.

Effectiveness of the Perspective Shift Transformer
Block. To evaluate the effectiveness of Perspective Shift At-
tention on CMP, we conduct experiments by varying the ro-

tation magnifications applied to PSL. The results presented
in Table 4 reveal a decrease of 0.14 dB in WS-PSNR when
the Perspective Shift is not applied to CMP. This observation
underscores the significance of view conversion in enhanc-
ing CMP’s performance. Furthermore, through additional
experiments, we find that as the rotation ratio increases, the
effect of the model tends to converge. The model achieves
the best performance when the rotation ratio is set to 3.

Effectiveness of the Block Attention Fusion Module.
To further investigate the influence of BAFM, which fuses
features from different projections and depths, we conduct
experiments using a 1× 1 convolution and mean operations
to substitute for BAFM. Table 5 shows that the removal of
BAFM leads to a performance decrease of 0.10 dB in terms
of WS-PSNR, suggesting the effectiveness of our design.

Conclusion
In this paper, we present a novel Bi-Projection Omnidi-
rectional Image Super-Resolution (BPOSR) network for
ODISR. BPOSR performs ODISR based on the complemen-
tary information extracted from the ERP and CMP branches.
To leverage the distinct geometric properties of these pro-
jections, we propose the Horizontal Striped Transformer
Block (HSTB) for ERP and the Perspective Shift Trans-
former Block(PSTB) for CMP. Furthermore, we introduce
the Block Attention Fusion Module (BAFM) to enhance the
overall feature extraction capability by assigning varying at-
tention weights to features from different projections and
depths. Extensive quantitative and qualitative evaluations on
multiple ODIs datasets demonstrate the superiority of our
method over other state-of-the-art competitors.
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