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Abstract

Video Motion Magnification (VMM) aims to break the reso-
lution limit of human visual perception capability and reveal
the imperceptible minor motion that contains valuable infor-
mation in the macroscopic domain. However, challenges arise
in this task due to photon noise inevitably introduced by pho-
tographic devices and spatial inconsistency in amplification,
leading to flickering artifacts in static fields and motion blur
and distortion in dynamic fields in the video. Existing meth-
ods focus on explicit motion modeling without emphasizing
prioritized denoising during the motion magnification pro-
cess. This paper proposes a novel dynamic filtering strategy to
achieve static-dynamic field adaptive denoising. Specifically,
based on Eulerian theory, we separate texture and shape to
extract motion representation through inter-frame shape dif-
ferences, expecting to leverage these subdivided features to
solve this task finely. Then, we introduce a novel dynamic
filter that eliminates noise cues and preserves critical fea-
tures in the motion magnification and amplification genera-
tion phases. Overall, our unified framework, EulerMormer, is
a pioneering effort to first equip with Transformer in learning-
based VMM. The core of the dynamic filter lies in a global
dynamic sparse cross-covariance attention mechanism that
explicitly removes noise while preserving vital information,
coupled with a multi-scale dual-path gating mechanism that
selectively regulates the dependence on different frequency
features to reduce spatial attenuation and complement mo-
tion boundaries. We demonstrate extensive experiments that
EulerMormer achieves more robust video motion magnifica-
tion from the Eulerian perspective, significantly outperform-
ing state-of-the-art methods. The source code is available at
https://github.com/VUT-HFUT/EulerMormer.

Introduction
Video Motion Magnification (VMM) has garnered growing
research interest due to its remarkable ability to vividly re-
veal subtle motions in real-world videos that are impercep-
tible to the human eye (Rubinstein et al. 2013; Le Ngo and
Phan 2019). Existing VMM techniques behave as computer-
assisted “eyes” that enable humans to see and grasp mean-
ingful subtle motion in various challenging-to-perceive set-
tings, such as micro-action recognition (Xia et al. 2020; Qi
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Figure 1: Theoretical basis and realistic results of VMM.
Theoretically, the static field in (a) is free of position dis-
placement, while the dynamic field should exhibit ideal po-
sition displacement to satisfy the desired motion magnifica-
tion. However, in the real world, unavoidable photon noise
and spatial inconsistency exist with artifacts, intensity atten-
uation, etc., in (b) for the magnified results (Oh et al. 2018;
Singh, Murala, and Kosuru 2023a). In contrast, we achieve
more robust magnification in both static and dynamic fields.

et al. 2020; Mehra et al. 2022; Nguyen et al. 2023), robotic
sonography (Huang et al. 2023), clinical medicine (Abnousi
et al. 2019) material properties estimation (Davis et al. 2015,
2017) and modal analysis (Eitner et al. 2021). Specifically,
VMM aims to capture and amplify the imperceptible subtle
motion in the video sequence while preserving fine spatial
details for realistic and accurate visualization.

However, this task faces several challenges: (1) Photon
noise (Oh et al. 2018) is inevitably present in videos due
to the characteristics of charge-coupled devices (CCDs) in
photographic devices and signal attenuation during trans-
mission. The noise, indistinguishable from subtle motions,
can result in flickering artifacts. (2) Spatial inconsis-
tency (Wadhwa et al. 2013) measures the magnified quality,
as forced motion magnification can lead to spatial frequency
collapse, resulting in phenomena such as motion blur and
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distortion. As the results of recent methods (Oh et al. 2018;
Singh, Murala, and Kosuru 2023a) shown in Fig. 1(b), noise
amplification disrupts the static field of magnified image,
and spatial intensity attenuation occurs in the dynamic field.

Inspired by the theory of fluid mechanics, early research
drew from the Lagrangian and Eulerian perspectives. Liu et
al. (Liu et al. 2005) proposed the first Lagrangian-based
approach, which involved tracking the motion trajectory of
each pixel (optical flow) for motion magnification, but it was
computationally expensive and sensitive to various noises.
In contrast, Eulerian approaches (Wu et al. 2012; Wadhwa
et al. 2013; Zhang, Pintea, and Van Gemert 2017; Takeda
et al. 2018, 2019) relied on traditional filters to handle the
motion intensity occurring in specific regions rather than
tracking every pixel throughout the video. However, these
Eulerian methods required fine-tuning numerous hyperpa-
rameters to adapt to different scenarios, which makes them
impractical for real-world applications.

Developing effective VMM methods remains a com-
pelling topic in the computer vision community. Recently,
learning-based methods (Oh et al. 2018; Singh, Murala, and
Kosuru 2023a,b) utilizing different convolutional neural net-
works (CNN) have attained SOTA performance. Whether
they introduce proxy model regularization or frequency do-
main phase (Wang et al. 2022b, 2024) to optimize their mod-
els, they essentially focus on representation learning, such as
motion and phase, for generating motion-magnified videos
without emphasizing prioritizing denoising.

This paper focuses primarily on addressing the denoising
issue in VMM. We specially design a dynamic filter mod-
ule F(·) to address the previously mentioned photon noise
and spatial inconsistency in static and dynamic fields. Based
on Eulerian theory, we disentangle texture and shape and
further acquire the motion = △shape, which is expected to
leverage these subdivided features to solve this task finely.
Especially noteworthy is the to-be-magnified motion rep-
resentation. In our framework, we utilize F(·) to filter out
noise cues from motion during the motion magnification
phase and refine the representations of texture and magnified
shape during the amplification generation phase. Finally,
compared with the limitation of existing CNN-based meth-
ods with local receptive fields, our method is equipped with
Transformer architecture in the encoder and the dynamic fil-
ter F(·), which can ensure the contextualized global rela-
tionship learning between pixels. Overall, we provide a uni-
fied framework to filter out undesired noise cues in the rep-
resentation learning of texture, shape, and motion, which re-
sults in a satisfactory magnification effect.

Our contributions can be summarized as follows:

• We introduce a novel Transformer-based EVM architec-
ture that offers better spatial consistency and fewer arti-
facts and distortion in the magnified video. To our knowl-
edge, this is a pioneering effort in learning-based VMM.

• We develop a dynamic filter implemented on a sparse at-
tention strategy for static-dynamic field adaptive denois-
ing and texture-shape joint refinement during the motion
magnification and amplification generation phases.

• We propose a Point-wise Magnifier, which improves the

magnified representation by incorporating global nonlin-
ear feature interactions per pixel to maintain spatial con-
sistency and reduce flickering artifacts.

• Extensive quantitative and qualitative experiments on
synthetic and real-world datasets demonstrate our favor-
able performances against SOTA approaches.

Related Work
Traditional Methods. Lagrangian-based approaches (Liu
et al. 2005) pioneered this task by tracking the motion tra-
jectory of each pixel for motion magnification, but dense op-
tical flow computation is expensive and sensitive to noise.
Eulerian-based methods (Wu et al. 2012; Wadhwa et al.
2013; Zhang, Pintea, and Van Gemert 2017; Takeda et al.
2018, 2019, 2022) concentrate on the specific regions where
motion occurs, rather than tracking every pixel in the video.
Early Eulerian-based methods (Wu et al. 2012; Wadhwa
et al. 2013) altered intensities to approximate linear mag-
nification or decomposed the motion in the frequency do-
main. With further research, various hand-crafted filters,
such as acceleration (Zhang, Pintea, and Van Gemert 2017),
jerk (Takeda et al. 2018), anisotropy (Takeda et al. 2019),
and bilateral filters (Takeda et al. 2022), were explored.
These works rely on the predefined bandwidth for bandpass
filters to amplify specific motions, but their effectiveness re-
quires extensive hyperparameter tuning.

Deep-Learning Methods. Learning-based approaches for
the VMM have emerged but are still in their infancy, with
only a handful of related works (Oh et al. 2018; Brattoli
et al. 2021; Singh, Murala, and Kosuru 2023a,b). Oh et
al. (Oh et al. 2018) proposed a CNN-based end-to-end ar-
chitecture for the first attempt to learn the motion magnifi-
cation representation, achieving comparable results to hand-
crafted filters. Recently, Singh et al. (Singh, Murala, and
Kosuru 2023a) proposed a lightweight CNN-based proxy
model to eliminate undesired motion efficiently. Afterwards,
they (Singh, Murala, and Kosuru 2023b) also utilized CNN
to model the magnification signals from frequency domain
phase fluctuations to avoid artifacts and blurring in the spa-
tial domain. Unlike the above CNN methods with local re-
ceptive fields (Zheng et al. 2023; Guo et al. 2019; Zhou et al.
2021, 2022), we introduce a novel dynamic filtering strategy
into Transformer-based architecture (Li et al. 2023; Li, Guo,
and Wang 2021; Tang et al. 2022; Li, Guo, and Wang 2023)
in this study. Intrinsically, based on the Eulerian theory, we
integrate the advanced Transformer to globally model the
texture, shape, and motion representations, enabling static-
dynamic field adaptive denoising for motion magnification.

Preliminaries
Task Definition
Let I(x, t) denote the intensity at spatial position x and time
t. With I(x, 0)=f(x) and I(x, t)=f(x+ δ(x, t)), δ(x, t) de-
notes a displacement function of x at time t, the goal of
VMM is to synthesize Im(x, t) with respect to a magnifica-
tion factor α as follows (Wu et al. 2012; Zhang et al. 2023):

Im(x, t) = f(x+ (1 + α)δ(x, t)). (1)
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Figure 2: The overall architecture of EulerMormer for video motion magnification, which consists of three phases: (1) texture-
shape disentanglement, (2) motion magnification with a dynamic filter F(·) and a point-wise magnifier M(·), and (3) am-
plification generation, which recouples and refines the original texture ψt(x, t) and the magnified shape ϕ′s(x, t) to generate
high-quality magnified frames. Among them, the dynamic filter F(·), consisting of DMF in (a) and MGR in (b), performs twice
in motion magnification and amplification generation processes, which targets to achieve the static-dynamic field adaptive de-
noising in terms of texture, shape and motion representation learning.

We can approximate I(x, t) in a first-order Taylor series
expansion as:

I(x, t) ≈ f(x) + δ(x, t)
∂f(x)

∂x
, (2)

where δ(x, t)∂f(x)∂x is regarded as the intensity magnitude.
Combining Eqs. 1 and 2, we have the magnification:

Im(x, t) ≈ f(x) + (1 + α)δ(x, t)
∂f(x)

∂x
. (3)

According to Eulerian learning-based VMM methods (Oh
et al. 2018; Singh, Murala, and Kosuru 2023a), the mo-
tion magnification process can be disentangled into texture
and shape components as shown in Eq. 4. In this work, our
method belongs to this methodological scope.

Im(x, t) ≈ I(x, t)︸ ︷︷ ︸
Texture

+ α δ(x, t)︸ ︷︷ ︸
△Shape

∂f(x)

∂x
. (4)

Motivation
As described above, videos can be modeled by two inde-
pendent latent variables: texture and shape. Texture repre-
sentation exhibits invariance, while the motion generated
by shape displacement for magnification deserves further
investigation. We extract subtle motion by calculating the
inter-frame shape difference between two frames, i.e., mo-
tion = △ shape. Meanwhile, the amplification of subtle mo-
tion is inevitably affected by noise, as depicted in Fig. 1, i.e.,
photon noise in the static field and spatial inconsistency in
the dynamic field. To this end, we propose a dynamic filter
F(·) in our framework designed for denoising to eliminate

artifacts and distortion caused by these noises. It is applied
twice within our framework: once for denoising the motion
representation and once for denoising the recoupled texture-
magnified shape joint refinement, formulated as follows:

IOurs(x, t) = F
[
I(x, t)︸ ︷︷ ︸
Texture

+α F
(
δ(x, t)︸ ︷︷ ︸
△Shape

∂f(x)

∂x

)]
. (5)

Methodology
Texture-Shape Disentanglement
Given any pair of reference and query images in a video,
[I(x, 0), I(x, t)], we use a 3×3 convolution layer to obtain
initial feature maps F (x, 0),F (x, t)∈ RH

2 ×W
2 ×C , and fur-

ther use a Texture Transformer Encoder ψt(·) and a Shape
Transformer Encoder ϕs(·) to obtain their texture and shape
representations, i.e., [ψt(x, 0),ϕs(x, 0)] ∈ RH

2 ×W
2 ×C ,

[ψt(x, t),ϕs(x, t)] ∈ RH
2 ×W

2 ×C , as shown in Fig. 2. Specif-
ically, the two encoders comprise the Transformer with
Multi-Dconv Head Transposed Attention (MDTA, derived
from Restormer (Zamir et al. 2022)) and Multi-Scale Gated
Regulator (MGR, see Sec.). MDTA replaces multi-head
self-attention (MHA) in Transformer and facilitates con-
textualized global interaction between pixels by incorpo-
rating depth-wise convolutions and cross-covariance atten-
tion. This choice enables efficient pixel-grained representa-
tion learning, making it well-suited for this task. Our MGR
utilizes the multi-scale dual-path gating mechanism to selec-
tively integrate features at different frequencies, providing
satisfactory texture and shape representations.
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Motion Magnification
Obtaining a “clean” motion representation is crucial for mo-
tion magnification, as the inherent photon noise has nearly
equivalent energy fields and the subtle motion change and
is prone to amplify noise resulting in artifacts and distor-
tion. We define the motion representation by implement-
ing a simple inter-frame shape difference, i.e., δm(x, t) =

△(ϕs(x, t), ϕs(x, 0)) ∈ RH
2 ×W

2 ×C . To manipulate the mo-
tion magnification, we describe two core components (DMF
and MGR, see below) of the dynamic filter F(·) and a point-
wise magnifier M(·) in detail below.

Dynamic Masking Filter (DMF). We revisit multi-head
self-attention on the motion δm(x, t). After implementing
1 × 1 convolution and 3 × 3 depth-wise convolutions, we
group δm(x, t) into h heads and each single-headed projec-
tion has Q,K,V ∈ R(H

2 ×W
2 )×Ĉ , where Ĉ = C

h and h =
4. On each head, we calculate a cross-covariance attention
matrix CA ∈ RĈ×Ĉ between K and Q. In CA, a learn-
able temperature τ scales inner products before calculating
attention weights, enhancing training stability.

CA = τKT ·Q, (6)
In Fig. 2(a), a critical design of DMF is that we take

CA as a search space to perform dynamic sparse eras-
ing. Our sparse strategy applies a dynamic filtering mech-
anism with the Top-k operator (Zhao et al. 2019; Wang et al.
2022a) along the channel dimension. Specifically, we adap-
tively select row-wise top-k contributive elements based
on the channel correlation scores in CA. Then, we utilize
Eq. 7 to generate the corresponding binary mask for posi-
tion indexing, representing the relative positions of the high-
contributing elements obtained in CA. Here, the dynamic
mask Dk(CA) ∈ RĈ×Ĉ is formulated as:

[Dk(CA)]ij =

{
CAij CAij ≥ kij
0 otherwise

, (7)

where kij represents the k-th row-wise maximum value in
CAij . This allows us to dynamically degenerate the dense
CA into a sparse attention matrix SCA ∈ RĈ×Ĉ :

SCA = Softmax(Dk(CA)). (8)
After the implementation of the weighted value V sum

with the sparse matrix SCA, we concat all the heads’ re-
sults and output the updated motion δ′m(x, t) ∈ RH

2 ×W
2 ×C .

DMF is designed to explicitly remove noise from the static-
dynamic fields in δm(x, t) and preserve the desired motion,
preventing distortion and artifacts caused by amplified noise.

Multi-Scale Gating Regulator (MGR). Humans intelli-
gently perceive visual changes across multiple scales. How-
ever, when the motion is too subtle and indistinguishable
from noise, the integrity of the motion trajectory is com-
promised. Based on the DMF processing noise, we propose
MGR that repairs the smoothness and uncertainty of the mo-
tion contours to overcome this issue. The MGR is a dual-
path feedforward network consisting of multi-scale context
branches C(·) and dual-path gating G(·), see Fig. 2(b).

We normalize and map the motion δ′m(x, t) to a high-

dimensional space with a 1×1 convolution, where the ex-
pansion factor is η = 3. Next, after a 3×3 depth-wise convo-
lution, the motion representation is split into dual-path gates,
i.e., G(δ′m(x, t)), C(δ′m(x, t)) ∈ RH

2 ×W
2 × ηC

2 . For C(·), we
parallelly employ three depth-wise convolutions with the
kernel sizes of s ∈ {1, 3, 5} to capture the interactions at
different frequencies C1,C3,C5 ∈ RH

2 ×W
2 × ηC

6 . Notably,
high-frequency noise characterized by a small scale is effec-
tively handled by the low-frequency characteristics of C1.
With increasing kernel sizes, C3 and C5 play a crucial role
in motion contours acquisition and motion complementa-
tion. And these different frequency features are fused be-
fore passing through a layer with a nonlinear activation func-
tion of GELU. As for G(·), a GELU activation function en-
sures nonlinear feature transformation. Finally, MGR regu-
lates the output by Hadamard product ⊙ with G(·) and C(·):

δ′′m(x, t) = G(δ′m(x, t))⊙ C(δ′m(x, t)), (9)

where the output of updated motion δ′′m(x, t) ∈ RH
2 ×W

2 ×C .
The combination process of DMF and MGR is defined as
the dynamic filter F(·).

Point-wise Magnifier (PWM). In this part, PWM serves
as a manipulator to perform nonlinear magnification on
δ′′m(x, t) = F(δm(x, t)). It adopts a simple and efficient de-
sign with two fundamental modifications to improve mag-
nified representation learning: (a) in order to reduce flick-
ering artifacts, we abandon local convolutions and oper-
ate point-wise convolutions to interact with magnification
across channels, thereby reducing checkerboard artifacts and
being more compatible with global filtering; (b) we use the
more stable GELU activation function to provide nonlinear
representation learning and avoid gradient explosion. There-
fore, the calculation process of PWM is as follows:

ϕ′s(x, t) =Wp(α ·Wp(δ
′′
m(x, t))) + ϕs(x, t), (10)

where ϕ′s(x, t) ∈ RH
2 ×W

2 ×C represents the amplified shape
representation with the factor α andWp(·) denotes the point-
wise convolution with GELU activation layer.

Amplification Generation
We reconstruct the high-quality magnified image by recou-
pling the magnified shape ϕ′s(x, t) with the original texture
ψt(x, t). Its challenge is avoiding high-frequency noise from
ψt(x, t) and ringing artifacts at the recoupled boundaries.
For this purpose, we recouple ϕ′s(x, t) and ψt(x, t) across
the feature channels and adopt the same dynamic filter F(·)
to perform the texture-magnified shape joint refinement to
facilitate their fusion and boundary completeness:

Im(x, t) =Wup

(
F
(
ϕ′s(x, t), ψt(x, t)

))
, (11)

where Wup(·) denotes a layer that combines pixel shuffling
operation (Shi et al. 2016) and a 3×3 convolution to per-
form sub-pixel level upsampling, generating the final mag-
nified image Im(x, t). Methodologically, F(·) in this section
dynamically filters ϕ′s(x, t) and ψt(x, t) through interactive
guidance along the channel to suppress noise while aiding in
synthesizing smooth motion boundaries and clear details.
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Loss Optimization
To optimize the proposed model, the objective function L is
the weighted sum of three loss terms as follows:

L = Lmag + µ1Ldr + µ2Ledge, (12)
where µ1, µ2 are hyperparameters to balance the three loss
functions. Lmag is a basic loss term, which calculates the
Charbonnier penalty (Bruhn, Weickert, and Schnörr 2005)
between the magnified image Im and ground-truth IGT as:

Lmag =

√
∥Im(x, t)− IGT (x, t)∥2 + ε2, (13)

where ε is a constant value, being empirically set to 10−3.
The robust Charbonnier penalty term approximates the l1-
loss and easily captures outliers in Im(x, t). Besides, similar
to (Oh et al. 2018; Singh, Murala, and Kosuru 2023a), we
use a color perturbation loss Ldr to enforce the disentangled
representation learning of shape and texture as follows:

Ldr = L(ϕs(x, t), ϕcs(x, t)) + L(ψt(x, t), ψ
c
t (x, t)). (14)

where [ϕs(x, t), ψt(x, t)] and [ϕcs(x, t), ψ
c
t (x, t)] are respec-

tive shape and texture representations of image I(x, t) and
its color perturbed image Ic(x, t). Notably, in this study,
we use a new loss term Ledge, namely using a Laplacian
of Gaussian (LoG) edge detector ELoG (Zhang et al. 2017)
with Charbonnier penalty, that is used to restrict the consis-
tency between texture and amplified shape deformation as:

Ledge =

√
∥ELoG(Im(x, t))− ELoG(IGT (x, t))∥2 + ε2. (15)

Experiments
Experiment Setup
Real-World Datasets. We experiment on three real-world
benchmarks used in previous work: (a) Static dataset (Wu
et al. 2012; Wadhwa et al. 2013; Oh et al. 2018) and (b) Dy-
namic dataset (Zhang, Pintea, and Van Gemert 2017; Oh
et al. 2018) contain 10 and 6 classic subtle videos in both
static (slight motion, e.g. baby breathing) and dynamic (e.g.,
strenuous motion and perspective shifts) scenarios. (c) Fab-
ric dataset (Davis et al. 2015, 2017) contains 30 videos of
subtle changes in fabric surface under wind excitation.

Synthetic Datasets. Real-world videos are rich in percep-
tual characteristics but lack ground truth annotations. Thus,
we generate a synthetic dataset for quantitative evaluation.
We select 100 objects from the public StickPNG library1

and 600 high-resolution background images from the DIS5K
dataset (Qin et al. 2022). In the data generation, we ran-
domly place the objects onto the background images, initial-
izing them as reference frames. Subsequently, we synthesize
query frames by randomly adjusting the object direction and
velocity with velocities limited to the range of (0, 2] to im-
itate subtle motions of objects. Therefore, we multiply the
inter-frame velocities by magnification factors to synthesize
the accurate ground truth for magnified motion. We create
three synthetic subsets: Synthetic-I Dataset: Implement-
ing random magnification factors α ∈ (0, 50]; Synthetic-II

1The StickPNG library is available at https://stickpng.com/.

Dataset: Adding Poisson noise with the scale of random in-
tensity levels λ ∈ [3, 30]; Synthetic-III Dataset: Adding
Gaussian blurs with the scale of random standard deviations
σ ∈ [3, 30]. In conclusion, the synthetic dataset contains
1,800 pairs of images and corresponding α.

Implementation Details. Following the protocol (Oh
et al. 2018; Singh, Murala, and Kosuru 2023a,b), all methods
are implemented with the same training data from (Oh et al.
2018) comprising 100,000 pairs of input sized 384 × 384
pixels. The focus in this field revolves around cross-dataset
testing. We employ the Adam optimizer (Kingma and Ba
2015; Qian et al. 2023; Zhou, Guo, and Wang 2022) with
the learning rate of 2×10−4 and the batch size of 4. For
the network setting, the feature channel C is set to 48, and
the numbers of the Texture Transformer Encoders and Shape
Transformer Encoders are 2. The dynamic filter F(·) is con-
figured with N1 = 2 in Phase 2 and N2 = 8 in Phase 3, and
the Top-k operator is set with k = 7. Besides, we set the loss
hyperparameters as µ1 = 0.1 for Ldr and µ2 = 0.5 for Ledge.

Evaluation Metrics. For synthetic datasets, we employ
RMSE to assess magnification error and PSNR (Shen,
Zhao, and Zhang 2023; Shen et al. 2023), SSIM, and
LPIPS (Zhang et al. 2018) to assess the magnification qual-
ity. For real-world datasets, we introduce an advanced no-
reference image quality assessment metric, MANIQA (Yang
et al. 2022). MANIQA is the NTIRE 2022 NR-IQA chal-
lenge winner achieves human-comparable quality assess-
ment and is widely applied in image distortion and video
reconstruction tasks (Wu et al. 2022; Ercan et al. 2023).

Quantitative Comparisons
Comparisons on Synthetic Datasets. We compare with
existing approaches and report the experimental results in
Tab. 1. On the Synthetic-I, our method performs superior to
the recent best method MDLMM on magnification error and
visual quality, with RMSE, PSNR, SSIM, and LPIPS val-
ues of 0.0594 vs. 0.0651, 25.49 dB vs. 24.84 dB, 0.9536 vs.
0.9173, and 0.0535 vs. 0.1228, respectively. On Synthetic-II
and Synthetic-III, EulerMormer still shows significant per-
formance gains for Poisson noise and Gaussian blur.

Comparisons on Real-World Datasets. From Tab. 2, pre-
vious works with traditional narrowband filters (Zhang,
Pintea, and Van Gemert 2017; Takeda et al. 2018, 2019)
have lower MANIQA scores than ours. The MANIQA met-
ric (Yang et al. 2022) mainly evaluates visual distortion lev-
els. For example, compared to the previous best method
Anisotropy (Takeda et al. 2019), we achieve 0.6920 vs.
0.6872, 0.6760 vs. 0.6634, and 0.7316 vs. 0.7288 on Static,
Dynamic, and Fabric datasets, respectively.

Ablation Studies
Effectiveness of Filter F(·). We test the dynamic filter
F(·) in Phase 2 and Phase 3 separately. Observing Tab. 3,
removing F(·) from the model significantly decreases both
accuracy and quality of the magnification (e.g., removing
F(·) decreases the perceptual quality LPIPS from 0.0535
to 0.1170 in Phase 2 and increases the magnification error
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Method Venue
Synthetic-I: Magnification (α) Synthetic-II: Poisson Noise (λ) Synthetic-III: Gaussian Blur (σ)

RMSE PSNR SSIM LPIPS RMSE PSNR SSIM LPIPS RMSE PSNR SSIM LPIPS
Linear TOG’12 0.1029 20.21 0.8397 0.3247 0.1102 19.39 0.6746 0.2497 0.1347 17.21 0.5874 0.4666
Phase TOG’13 0.0978 21.18 0.8613 0.1428 0.1053 20.30 0.6941 0.2283 0.1206 18.87 0.6109 0.4499
Acc. CVPR’17 0.0781 22.99 0.9299 0.1346 0.0854 22.20 0.7694 0.1922 0.1011 20.62 0.6508 0.4242
Jerk CVPR’18 0.0746 23.61 0.9333 0.1302 0.0787 23.06 0.7964 0.1844 0.0951 20.82 0.6612 0.4156

LBVMM ECCV’18 0.0682 23.89 0.8748 0.1775 0.0700 23.65 0.8329 0.2164 0.0913 21.19 0.6645 0.4177
Aniso. CVPR’19 0.0687 24.01 0.9386 0.1260 0.0745 23.72 0.8230 0.1744 0.0919 20.93 0.6646 0.4121

LNVMM WACV’23 0.0662 24.19 0.8943 0.1544 0.0681 23.92 0.8497 0.1889 0.0915 21.16 0.6581 0.4264
MDLMM CVPR’23 0.0615 24.84 0.9173 0.1228 0.0637 24.53 0.8659 0.1720 0.0896 21.34 0.6639 0.4205

Ours - 0.0594 25.49 0.9536 0.0535 0.0616 25.04 0.8706 0.1604 0.0867 21.89 0.6797 0.4077

Table 1: Quantitative comparison of our EulerMormer and existing methods on three subsets of the synthetic dataset: evaluating
magnification accuracy, noise robustness, and blur sensitivity. Our EulerMormer achieves the best performance.

Method Static Dyn. Fabric
Linear .6288 .5169 .6597
Phase .6696 .5861 .7120
Acc. .6748 .6289 .7225
Jerk .6769 .6594 .7256

LBVMM .6830 .6409 .7234
Aniso. .6872 .6634 .7288

LNVMM .6332 .6435 .7195
MDLMM .6297 .6150 .7134

Ours .6920 .6760 .7316

Table 2: Quantitative compar-
ison on real-world datasets in
the term of MANIQA↑.

w/o 1 3 5 7 9 11

RMSE↓
.0648

.0626

.0611
.0603

.0594

.0621
.0634

Figure 3: Ablation results
of k in Top-k operator on
the Synthetic-I dataset.

Phase 2 Phase 3
RMSE PSNR SSIM LPIPS

DMF MGR DMF MGR
! ! % % 0.0747 23.04 0.8195 0.2479
! ! % ! 0.0638 23.38 0.9389 0.0876
! ! ! % 0.0631 24.58 0.9437 0.0691
% % ! ! 0.0708 23.40 0.8756 0.1170
% ! ! ! 0.0622 24.72 0.9450 0.0685
! % ! ! 0.0603 25.34 0.9501 0.0583
! ! ! ! 0.0594 25.49 0.9536 0.0535

Table 3: Ablation studies of the filter F(·) in Phase 2 and
Phase 3 on the Synthetic-I dataset.

RMSE from 0.0594 to 0.0747 in Phase 3). Moreover, we
deeply discuss the two core components of F(·), DMF and
MGR. A more comprehensive analysis highlights the signifi-
cant roles played by the DMF and MGR modules in denois-
ing and artifacts-freeing (e.g., DMF improves PSNR from
24.72 to 25.49 in Phase 2, and MGR improves SSIM from
0.9437 to 0.9536 in Phases 3), thus validating the effective-
ness of entire dynamic filter F(·) in this task.

Impact of Top-k in Filter F(·). To investigate the impact
of the Top-k operator in Filter F(·), we test k ∈ {1, 3, 5, 7,
9, 11}. Here, k ∈ [0, Ĉ] and Ĉ = 12 in our experiment setup.
From Fig. 3, while k = 1, it leads to significant sparsity of

Lmag Ldr Ledge LSobel RMSE PSNR SSIM LPIPS
! % % % 0.0678 22.05 0.9317 0.1121
! ! % % 0.0613 24.91 0.9405 0.0783
! ! % ! 0.0606 25.06 0.9487 0.0687
! ! ! % 0.0594 25.49 0.9536 0.0535

Table 4: Ablation studies of losses on the Synthetic-I dataset.

similarity-based attention matrix, resulting in a large error,
i.e., RMSE of 0.0648. While k = 11, there is a large error
too, i.e., RMSE of 0.0621. Hence, an appropriate value of k
contributes to the balance of the attention sparsity calcula-
tion and magnification denoising. As a result, we set k = 7
with the lowest RMSE of 0.0594 as the optimal setting.

Effect of Loss Function. Tab. 4 reports the ablation stud-
ies of different loss functions. Based on the basis Lmag , the
introduction of disentangled representation loss Ldr signifi-
cantly improves the robustness of magnification, i.e., PSNR
is improved from 22.05 dB to 24.91 dB. Moreover, applying
the Ledge yields gains of 0.58 dB and 0.0131 for PSNR and
SSIM, respectively. Comparing it with the well-known So-
bel loss LSobel (Zheng et al. 2020), which focuses solely on
horizontal and vertical edges, Ledge incorporates the LoG
operator for noise smoothing and edge detection, demon-
strates better noise robustness, edge continuity, and effective
extraction of low-contrast magnified motion boundaries.

Qualitative Analysis
(1) Magnification visualization comparisons. In Fig. 4,
Linear (Wu et al. 2012) and Phase (Wadhwa et al. 2013)
exhibit significant distortion and ringing artifacts; Acceler-
ation, Jerk-aware and Anisotropy methods (Zhang, Pintea,
and Van Gemert 2017; Takeda et al. 2018, 2019) show in-
sufficient amplification amplitude, and the other learning-
based methods (Oh et al. 2018; Singh, Murala, and Ko-
suru 2023a,b) show flickering artifacts and motion distor-
tion originating from their spatial inconsistency. In contrast,
we achieve more robust results, noticeably improving arti-
facts and distortions while achieving satisfactory magnifi-
cation amplitude. (2) Magnification factor α. Fig. 5 shows
the magnified results of shift-up and shift-down setups of the
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Figure 4: Qualitative results of our method with existing methods on (a) Static, (b) Dynamic and (c) Fabric datasets with magni-
fication factors α of 20, 10, and 20, respectively. We highlight spatial regions where motion occurs and provide spatiotemporal
(ST) slices of magnified motion for better comparison.

Reference

Reference

α = 15

α = 15

30
th

 F
ra

m
e

90
th

 F
ra

m
e

Shift-down

Query α = 5 α = 10 α = 15

Shift-up

Query α = 15α = 5 α = 10

Figure 5: Magnification visualization of the drum video from the Static dataset. We randomly sample two frames with shift-
down and shift-up motion. EulerMormer achieves reliable video motion magnification under different magnification factors α.

Query Shape 𝝓𝒔Texture 𝝍𝒕 Motion 𝜹𝒎 After 𝓕 𝜹𝒎 After 𝑴 . , 𝝓′𝒔 After 𝓕 𝝓𝒔
$ , 𝝍𝒕 Magnified Result

Phase 1 Phase 3Phase 2

Figure 6: Dataflow of our method pipeline with the eye video from the Dynamic dataset. The disentangled texture, shape, and
motion feature maps have distinguishable vision characteristics. The dynamic filter F(·) effectively erases the noises in the
static-dynamic field of the image and refines the texture-shape joint refinement process.

drum surface. We achieve reliable magnification at differ-
ent α levels. (3) Magnification dataflow. Fig. 6 displays the
dataflow of EulerMormer. The disentangled texture, shape,
and motion feature maps have distinguishable vision char-
acteristics. Please pay attention to the dynamic filter F(·)
in Phase 2, which effectively eliminates noise in the static
field of the motion while preserving important motion infor-
mation in the dynamic field. On this basis, the visualization
of F(ϕ′s(x, t), ψt(x, t)) also validates the ability of F(·) to
process the texture-magnified shape joint refinement.

Conclusion

In this paper, we have introduced EulerMormer, a novel
Transformer-based end-to-end framework designed for
VMM tasks from the Eulerian perspective, aiming to pro-
vide more robust magnification effects. The core of Euler-
Mormer lies in embedding a dedicated dynamic filter within
Transformer, enabling static-dynamic field adaptive denois-
ing for motion and recoupling refinement. Extensive quan-
titative and qualitative experiments demonstrate that Euler-
Mormer outperforms SOTA approaches.
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