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Abstract

Generative models (GMs) have received increasing research
interest for their remarkable capacity to achieve compre-
hensive understanding. However, their potential application
in the domain of multi-modal tracking has remained unex-
plored. In this context, we seek to uncover the potential of
harnessing generative techniques to address the critical chal-
lenge, information fusion, in multi-modal tracking. In this pa-
per, we delve into two prominent GM techniques, namely,
Conditional Generative Adversarial Networks (CGANs) and
Diffusion Models (DMs). Different from the standard fu-
sion process where the features from each modality are di-
rectly fed into the fusion block, we combine these multi-
modal features with random noise in the GM framework,
effectively transforming the original training samples into
harder instances. This design excels at extracting discrimi-
native clues from the features, enhancing the ultimate track-
ing performance. Based on this, we conduct extensive exper-
iments across two multi-modal tracking tasks, three baseline
methods, and four challenging benchmarks. The experimen-
tal results demonstrate that the proposed generative-based fu-
sion mechanism achieves state-of-the-art performance by set-
ting new records on GTOT, LasHeR and RGBD1K. Code will
be available at https://github.com/Zhangyong-Tang/GMMT.

Introduction
Due to the strict demand for the robustness of tracking sys-
tems in real-world applications, such as surveillance (Lu
et al. 2023) and unmanned driving (Zhang et al. 2023a), vi-
sual object tracking with an auxiliary modality, named as
multi-modal tracking, draws growing attention recently. For
example, the thermal infrared (TIR) modality provides more
stable scene perception in the nighttime (Tang et al. 2023),
and the depth (D) modality provides 3-D perception against
occlusions (Zhu et al. 2023b). In other words, the use of aux-
iliary modalities can complement the visible image in chal-
lenging scenarios.

Regarding this, a series of fusion strategies have been
explored to aggregate the multi-modal information. These
strategies fall into two main categories based on the output
of their fusion block. The first category involves adaptive
weighting strategies (Xu et al. 2021; Zhang et al. 2021b,
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Figure 1: Comparison between the original fusion mecha-
nism and our generative-based fusion mechanism. GM is
denoted as G, and we use F and H to refer to the feature
extractor and task head, respectively. The parameters asso-
ciated with these two components are symbolised by θ and
Θ.

2022b), where the fusion block produces weights (scalars,
vectors, or tensors) multiplied to features from each modal-
ity. In contrast, the second category focuses on embedded fu-
sion blocks (Zhang et al. 2019; Zhang et al. 2021a; Zhu et al.
2021), which generate fused features using dedicated mod-
ules. While these methods differ in the way of producing
fused results, their training processes are quite similar. They
are trained offline using multi-modal datasets like RGBT234
(Li et al. 2019) and LasHeR (Li et al. 2022), and, from a dis-
criminative perspective, their tracking performance hinges
on how well they match the training data, rather than under-
standing.

On the contrary, GMs have achieved great success due to
their superiority in comprehensive understanding. Accord-
ingly, lots of downstream tasks have achieved promising per-
formance, like image to image translation (Isola et al. 2017)
and multi-modal image fusion (Rao, Xu, and Wu 2023). For
example, in (Rao, Xu, and Wu 2023), a generator is em-
ployed to adaptively extract the salient clues among mul-
tiple inputs, and the discriminator further constrains the out-
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put to be high quality by reinforcing the textures globally.
However, extending its success on other multi-modal tasks
to multi-modal tracking has not been sufficiently discussed
yet.

Motivated by the aforementioned observations, the poten-
tial of applying GMs to address the multi-modal information
fusion is discussed in this paper, with a novel generative-
based fusion mechanism being proposed for multi-modal
tracking (GMMT), shown in Fig. 1. In order to learn the
external projection between the input and output, as well as
the internal data distributions, GMs require a longer training
time and a bigger size of training data. However, despite the
emergence of several multi-modal datasets in recent years
(Zhu et al. 2023b; Li et al. 2022; Zhang et al. 2022a), con-
taining around 1000 videos captured across less than 1000
scenarios, there remains a significant diversity gap compared
to some widely-used datasets for generation tasks, such as
CelebA(Liu et al. 2015) used in face generation. Therefore,
the multi-modal feature pair grouped with a random factor is
formulated as the input of the GMMT to enlarge the data size
and avoid over-fitting. Besides, to facilitate adaptive fusion
of the certain image pair when testing, the original informa-
tion from both modalities are retained as conditions. Based
on the above considerations, CGAN (Mirza and Osindero
2014) and DM (Rombach et al. 2022) are implemented in
this paper. The generative-based fusion mechanism endows
the fusion model with a better awareness of the noise, and
thus the fused features are more clean, as shown in Fig. 4(c)
and (d), which boosts the tracker to be a more accurate one.
To validate the effectiveness of the proposed fusion mecha-
nism, it is implemented on several RGB-T baseline trackers.
Consistent improvements can be obtained on all the eval-
uation metrics. Furthermore, extended experiments on the
largest RGB-D benchmark (Zhu et al. 2023b) are also con-
ducted to demonstrate the generalisation of GMMT. In con-
clusion, our contributions can be summarised as follows:
• We explore the potential of addressing the information

fusion part of multi-modal tracking in a generative ap-
proach. To achieve this, a novel generative-based fusion
mechanism is proposed, which boosts the fused features
to be more discriminative.

• A general fusion mechanism is proposed, with its gen-
eralisation demonstrated on multiple baseline methods,
benchmarks, and two multi-modal tracking tasks.

• Extensive experimental results demonstrate the proposed
method as a state-of-the-art one on both RGB-T and
RGB-D tracking tasks.

Related Work
RGB-T Trackers
Before the access of extensive RGB-T datasets, including
GTOT (Li et al. 2016), RGBT210 (Li et al. 2017), and
RGBT234 (Li et al. 2019), traditional RGB-T methods pri-
marily relies on the sparse representation (Li et al. 2016)
or handcrafted weighting strategies (Cvejic et al. 2007) to
tackle the information fusion task. But these non-deep ap-
proaches suffer significant performance degradation in chal-
lenging scenarios. As a result, recent researches have been

dominated by deep learning techniques. In recent studies,
ranging from the simplest operation, concatenation (Zhang
et al. 2019), to the more complicated transformer architec-
ture (Hui et al. 2023; Zhu et al. 2023a), the researchers have
tried various fusion strategies with multiple intentions, in-
cluding learning modality importance (Zhang et al. 2021b;
Tang, Xu, and Wu 2022), reducing the multi-modal re-
dundancy (Li et al. 2018; Zhu et al. 2019), propagating
the multi-modal patterns(Wang et al. 2020), learning the
multi-modal prompts from the auxiliary modality (Zhu et al.
2023a), to name a few. With the increment in network com-
plexity and the availability of larger training sets, tracking
results have been gradually improved. This improvement is
particularly noteworthy since the release of the LasHeR (Li
et al. 2022), which promotes the development in a steep way.

Generative Models
While GMs have been one of the classical learning
paradigms (Wang and Wong 2002), they initially receive less
attention during the early years of deep era compared to the
discriminative models. However, their significance is solidi-
fied after the introduction of GAN (Goodfellow et al. 2014).
GAN first showcases its prowess in image synthesis and sub-
sequently is found to be a success in a range of tasks, includ-
ing multi-modal image fusion (Rao, Xu, and Wu 2023), text-
to-video generation (Luo et al. 2023), and text-to-audio gen-
eration (Ruan et al. 2023). After that, although more varia-
tions of GMs, such as variational auto-encoder (Kingma and
Welling 2014), and flow-based model (Prenger, Valle, and
Catanzaro 2019), also draw increasing attention, the down-
stream applications are still mainly based on GAN.

Until the proposal of the denoising diffusion model (DM)
(Ho, Jain, and Abbeel 2020), the interest in GAN falls grad-
ually, as the DM shows superior performance across mul-
tiple domains, notably excelling in visual-language genera-
tion (Iqbal and Qureshi 2022). Compared to GAN, the DM
exhibits a more stable training procedure, generating items
in a more refined way.

Generative Models Meet Tracking
In the RGB tracking task, GMs are mainly introduced with
two motivations, i.e., generating more samples to improve
the diversity (Wang et al. 2018; Han et al. 2020; Yin et al.
2020), and maintaining the most robust and long-lasting pat-
terns (Song et al. 2018; Zhao et al. 2019; Han et al. 2020).
The generator is used for the first purpose while the second
category employs the discriminator to discard the less dis-
tinguishing patterns.

However, the application of generative models in the field
of multi-modal tracking has received limited attention. As
far as we know, only BD2Track (Fan et al. 2023) conducts
fusion in this way. However, there are two main issues in this
method. Firstly, BD2Track employs a diffusion model to ac-
quire fused classification features while retaining regression
features learned discriminatively. This configuration raises
questions, since both classification and regression features
within each modality encounter challenges and can poten-
tially benefit from modality complementarity (Xiao et al.
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2022). Secondly, it lacks in-depth analysis, leaving space for
a comprehensive understanding.

In our method, we address the first issue by generating
fused features before they are fed into the classification and
regression heads. This approach eliminates the need to han-
dle classification and regression features separately within
each modality. Furthermore, to tackle the second issue, we
provide an intuitive explanation that verifies the superior
performance of GMs. This explanation sheds light on why
GMs are advantageous for multi-modal information fusion.
Notably, we extend our approach by implementing more
than one type of GM. This inclusion enriches our discussion
of applying GMs in multi-modal tracking, providing a more
comprehensive exploration of this approach. Additionally,
we thoroughly evaluate the effectiveness of our proposed
generative-based fusion mechanism across multiple baseline
methods, benchmarks, and tracking tasks.

Methodology
Multi-modal tracking aims to obtain the prediction with
the collaboration among multiple modalities, requiring the
model to fuse relevant clues from the multi-modal input
{X 1,...,Xm}. After pre-processing, the images are sent into
the feature extractor and the fusion block. However, these
two blocks are sometimes entangled (Hui et al. 2023), and
therefore termed as F in combination. The fused features
fused are then forwarded to the task head H to extract
task-specific information. Later, the final prediction P can
be maintained after post-processing. The mathematical de-
scription is presented as follows:

P = H(F(input, θ),Θ), (1)
where θ and Θ denote the learnable parameters of F and
H, respectively. input is the multi-modal image pair after
pre-processing.

Generative-Based Fusion Mechanism
To fulfill this objective, we introduce a novel fusion mecha-
nism, termed GMMT, in this section. Given that the fusion
process is typically applied at the feature level, our GMMT
is also carefully designed and discussed within the embed-
ding feature space. Following the typical design of GMS,
the original fused features fused, the input of our GMMT,
should be obtained beforehand, which aligns with our multi-
stage training scheme. Other than fused, the features from
each modality (f1, ..., fm) should also be retained, which
provides strong conditions to guide the fusion for the spe-
cific frame pair. These analysis constrain the input of the
GMs, but attach no limitation to the architecture of GMS.
Therefore, two popular GMs, i.e., DM and CGAN, are in-
volved in our method.

The DM-based GMMT is depicted in Fig. 2(a). Follow-
ing the DDIM (Song, Meng, and Ermon 2020), in the train-
ing stage, the original fused feature fused serves as the
x0. In the forward diffusion process, x0 undergoes diffusion
through the random Gaussian noise zt, as defined by the fol-
lowing formulation:

xt =
√
αtx0 +

√
1− αtzt, (2)
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Figure 2: Illustration of the proposed GMMT.

where the subscript t is a random factor chosen from the
interval [1, T], which defines how many steps x0 are per-
formed. αt is a factorial of α1,..,t, which are the remainder
of β1,...,t. Here βt is the predefined diffusion rate and de-
termines how far the tth forward step goes. Once the noisy
representation xt is computed, the reverse diffusion process
begins, aiming to recover a clean xt−1. It takes xt as input,
along with (f1, ..., fm) as conditions, and the tensorised em-
bedding of t, ft, as a flag. These elements are concatenated
and fed into the U-shaped network U . U is then optimised
by minimizing the L2 loss between the output and noise zt,
based on which the mean µt−1 and variance σt−1 for the
distribution of xt−1 can be derived according to Eq. 3.

σt−1 =
1− αt−1

1− αt
βt,

µt−1 =

√
αt(1− αt−1)

1− αt
xt+

√
αt−1βt

1− αt

1√
αt

(xt −
√
1− αtU(xt, f1, ..., fm, ft)).

(3)
Therefore, in the testing phase, the reverse diffusion process
is executed iteratively, and in the end, the result can be sam-
pled from the learned distribution of x0. But at the begin-
ning, xt is replaced by random noise, and then the time flag
t is reversely traversed from T to 1.

In general, with the DM-based GMMT, the typical track-
ing process described in Eq. 1 develops to Eq.4:

P = H(Sam(
∑

(F(input, θ))),Θ), (4)

where Sam is the abbreviation of the sampler, which means
sampling data from the generated distribution. Inspired by
the total probability formula,

∑
is used as a symbol of dis-

tribution.
The CGAN-based GMMT is displayed in Fig. 2(b). Fol-

lowing the widely-used CGAN (Mirza and Osindero 2014),
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the discriminator D and generator G are trained iteratively.
To train the D, the synthesised fused∗ and the original
fused are one-hot labelled, assigning 1 to fused and 0 to
fused∗. After that, separate losses are computed for fused∗
and fused, denoted as LossD0

and LossD1
, respectively.

Aiming at distinguishing the real and fake data, D is opti-
mised by minimising LossD = LossD 0 + LossD 1. After
training D, its parameters are frozen, and the learning pro-
cess of G commences. fused∗ is sent into D, with the label
change to 1, and the corresponding loss LossG is obtained
and minimised. Since G is designed to deceive and mislead
D, LossG is equivalent to LossD 1. Notably, the loss in this
part is calculated by mean square error. To ensure a fair com-
parison, the architecture of G mirrors that of U employed in
DM-based GMMT. Besides, since only G is employed dur-
ing inference, the introduction of D is remained in the sup-
plementary material.

In conclusion, the output of the CGAN-based GMMT
consists of fake features, signifying that the distribution is
not explicitly learned. Consequently, the overall tracking
process remains the same to Eq. 1.

Multi-Modal Trackers
The proposed GMMT is implemented on three RGB-T
trackers i.e., a self-designed Siamese tracker, the ViPT (Zhu
et al. 2023a), and TBSI (Hui et al. 2023), which implies that
m = 2 during application. During the discussion of GMMT,
the fused features fused are assumed pre-defined, indicat-
ing that the baseline trackers should be pre-trained before-
hand. This necessitates two training stages: one to train the
baseline method and another to train the proposed GMMT.

For the three selected baseline trackers, the first train-
ing stage consists of two primary steps: training the feature
extractor and the fusion block. As to the Siamese tracker,
SiamBAN (Chen et al. 2020) with a single region proposal
network is trained for each modality. A straightforward
convolution-based fusion block is constructed and trained
for multi-modal fusion. In this fusion block, the multi-modal
features are initially concatenated and then fused through
a convolutional block. Regarding ViPT (Zhu et al. 2023a),
the feature extractor is pre-trained, but its fusion block is re-
trained in our implementation. As to TBSI (Hui et al. 2023),
we use both the publicly available feature extractor and fu-
sion block. A comprehensive description of the implemen-
tation details for these baseline trackers is provided in the
supplementary material.

Our GMMT is trained during the second stage of our ap-
proach. To provide a stable input to GMMT, the feature ex-
tractor and the original fusion block are frozen while train-
ing the GMMT. Besides, to harmonise the fusion approach
with the tracking task, a learnable tracking head is appended,
which means the loss in this stage combines the generative
loss and the tracking loss Losstrack inherited from the base-
line method:

Loss = Losstrack + λ ∗ Lossgen, (5)

where λ is a hyper-parameter used to balance the contribu-
tion of generative loss.

During the testing phase, the overall tracking process is
almost the same. The only change is that the original fu-
sion block is discarded, and the fused feature generated by
GMMT serves as the input to the subsequent task head H.
Further details are provided in the supplementary material.

Evaluation
Implementation Details
Our experiments are conducted on an NVIDIA RTX3090Ti
GPU card. Our GMMT is trained on the training split of
LasHeR with the parameters optimised by the SGD opti-
miser. The learning rate is warmed up from 0.001 to 0.005
in the first 20 epochs and subsequently reduces to 0.00005
for the remaining 80 epochs. We set the value of T to 1000.

Benchmarks and Metrics
The effectiveness of GMMT is verified on GTOT (Li et al.
2016), LasHeR (Li et al. 2022), and RGBD1K (Zhu et al.
2023b) benchmarks. In these benchmarks, precision rate
(PR), success rate (SR), normalised precision rate (NPR),
recall (RE), and F-score are employed for evaluation, whose
detail introductions can be found in the supplementary ma-
terial.

Ablation Study
In this section, based on the siamese framework, we present
the ablation study of our GMMT in Table. 2. We denote
GMMT(DM) when the embedded generative model is a dif-
fusion model and GMMT(CGAN) when a conditional GAN
is employed within GMMT. Additionally, to demonstrate
that the improvement is indeed attributed to the generative-
based fusion mechanism rather than the larger fusion block
embedded in GMMT, we conduct an experiment where the
generative loss is removed. In this situation, the network is
trained using an L2 loss between the fused and the network
output. This variant is denoted as RAW .For fairness, the
network architecture remains consistent for all the competi-
tors. Thus, the primary distinction among these competitors
lies in the loss function, which is mathematically defined as
follows:

Lossgen =


LossRAW = L2(fused, output);
LossCGAN = Ex∼pg(x)[logD(x, frgb, ftir)]

+ Ez∼pn(z)[log(1−D(G(z, frgb, ftir)))];

LossDM = L2(noise, output);
(6)

where Lossgen denotes the loss function for the network U ,
and it can be switched to multiple choices. LossCGAN is
a widely-used loss in the research of GAN, and its detail
can be found in (Mirza and Osindero 2014). LossDM is ac-
tivated when the diffusion model is employed (Chen et al.
2023).

As to the quantitative results, on LasHeR, the perfor-
mance of the Siamese baseline is 39.8 on SR. Replac-
ing the fusion block with a larger network U (RAW) re-
sults in an improvement to 42.5. Later, when using the
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Figure 3: Qualitative visualisation of several advanced
RGB-T trackers. The exhibited image pairs are sampled
from video 7rightorangegirl, 10runone, ab bolstershaking,
boyinplatform, besom3, ab rightlowerredcup quezhen,
which are introduced in a top-down and left-right way.

GMMT(CGAN), although a slight degradation of 0.6 ap-
pears on SR, a bigger enhancement of 2.3% was main-
tained on PR, raised from 51.8 to 54.1. Replaced by the
DM, consistent improvements are obtained across all the
metrics, reaching 57.1, 53.0, and 44.9. Compared to the
baseline tracker, significant gains of 6.2%, 5.6%, and 5.1%
are observed on PR, NPR, and SR, respectively. It indi-
cates that both the network with deeper architecture and our
GMMT contribute to the promising performance. Similar
conclusions are drawn from experiments on GTOT. Com-
pared to the baseline method, improvements of 1.7% and
2.3% are displayed in the results of GMMT(DM) on PR and
SR. Additionally, since GMMT(DM) performs better than
GMMT(CGAN), the rest experiments are conducted based
on DM.

Compared with State-of-the-Art Trackers
On LasHeR and RGBT234 benchmarks, several advanced
RGB-T trackers are involved, including APFNet (Xiao et al.
2022), ProTrack (Yang et al. 2022), DFAT (Tang et al. 2023),
HFRD (Zhang et al. 2023b), ViPT* (Zhu et al. 2023a), TBSI
(Hui et al. 2023), and the ViPT* and TBSI modified by
GMMT, termed as ViPT*+GMMT and TBSI+GMMT. Here
the superscript ∗ represents the results are reproduced by us.
As shown in Table. 1, on LasHeR, the best results are ob-
tained by TBSI+GMMT, reaching 70.7, 67.0 and 56.6 on
PR, NPR, and SR, respectively. Compared to the original
TBSI, GMMT improves the PR, NPR, and SR by 1.5%,
1.3%, and 1.0%. Combining GMMT with ViPT also leads
to enhanced performance, with scores rising from 65.0, 61.6,
and 52.4 to 66.4, 63.0, and 53.0.

On RGBT234, TBSI+GMMT continuously shows the
best performance, reaching 64.7 and 87.9 on the SR and PR
metrics, respectively.

On GTOT, we simultaneously display the overall per-
formance and the analysis on each attributes agianst CAT

(Li et al. 2020), CMPP (Wang et al. 2020), (Zhang et al.
2022b), JMMAC (Zhang et al. 2021b), ADRNet (Zhang
et al. 2021a), MANet++ (Li et al. 2019), HMFT (Zhang et al.
2022a), MacNet (Zhang et al. 2020), APFNet, and TBSI,
which are illustrated in the supplymentary material. With
the help of the proposed GMMT, TBSI+GMMT shows sig-
nificantly improvement compared to the competitors. Com-
pared to the baseline method, TBSI, improvements of 2.6%
and 2.1% are achieved on SR and PR, boosting the perfor-
mance from 75.9 and 91.5 to 78.5 and 93.6, respectively, es-
tablishing a new state-of-the-art record on this benchmark.

To intuitively show the superiority of GMMT, the track-
ing results are displayed in Fig. 3, with additional visual
comparisons available in the supplementary material. In par-
ticular, for ViPT, the enhanced understanding provided by
GMMT results in a noticeable improvement, as evident in
the comparison between boxes coloured in yellow and red.

RGB-D Extension
To validate the generalisation of GMMT, we also implement
it on the RGB-D tracking task, using ViPT-D as the base-
line tracker. ViPT-D is an extension of ViPT tailored for
RGB-D data.. Initially, we run the official ViPT-D on the
RGBD1K dataset, but we notice a performance gap com-
pared to the state-of-the-art, SPT (Zhu et al. 2023b). As
RGBD1K videos exhibit a higher diversity with more chal-
lenging factors compared to other RGB-D benchmarks, we
retrain ViPT-D on the training split of RGBD1K. This re-
training effort boosts the F-score from 46.2 to 50.6. The fur-
ther application of GMMT is based on this retrained variant,
which we denote as ViPT-D*.

The quantitative results are displayed in Table. 3, with
the competitors being SPT, DDiMP (Bhat et al. 2019),
and DeT (Yan et al. 2021). When the UNet is utilised as
the embedding network of GMMT, a performance gain of
5.6% is observed. This improvement becomes even more
substantial when UNet is replaced by UViT, resulting in
an F-score of 57.4. Notably, in addition to the main met-
ric, ViPT-D*+GMMT(V) surpasses ViPT-D* by 6.7% and
7.0% on PR and RE, demonstrating consistent enhance-
ments across all metrics. These results highlight the supe-
riority of GMMT. Besides, although our baseline tracker
ViPT-D* falls far behind SPT, which performs the best
among all the competitors, a new state-of-the-art is built with
the help of our GMMT.

Self-Analysis
Implementation on Multiple Baseline Trackers: To prove
our GMMT as a general fusion mechanism, various experi-
ments are conducted on equipping multiple baseline trackers
with our GMMT, including a self-designed Siamese tracker,
the ViPT and TBSI. On GTOT, when using the UNet (Ho,
Jain, and Abbeel 2020) as the embedding network U , the
SR of the Siamese baseline is enhanced from 67.0 to 69.3
through the combination of GMMT. On LasHeR, the perfor-
mance of our Siamese baseline can be significantly boosted
from 39.8 to 44.9, with an increment of 5.1%. However, the
improvements were relatively modest for ViPT* and TBSI,
with gains of around 0.3% and 1.0%, respectively.
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Metrics APFNet ProTrack DFAT HFRD ViPT* TBSI ViPT*+GMMT TBSI+GMMT

LasHeR
PR ↑ 50.0 53.8 44.6 59.0 65.0 69.2 66.4 70.7

NPR ↑ 43.9 - 40.0 54.5 61.6 65.7 63.0 67.0
SR ↑ 36.2 42.0 33.6 46.4 52.4 55.6 53.0 56.6

RGBT234 PR ↑ 82.7 78.6 75.8 82.4 83.5 87.1 84.3 87.9
SR ↑ 57.9 58.7 55.2 58.4 61.7 63.8 61.5 64.7

Table 1: Results on LasHeR and RGBT234 benchmarks.

Dataset Method PR↑ NPR↑ SR↑
GTOT Base 84.0 - 67.0
GTOT +RAW 81.9 - 67.4
GTOT +GMMT(CGAN) 81.4 - 67.5
GTOT +GMMT(DM) 85.7 - 69.3

LasHeR Base 50.9 47.4 39.8
LasHeR +RAW 51.8 50.7 42.5
LasHeR +GMMT(CGAN) 54.1 49.3 41.9
LasHeR +GMMT(DM) 57.1 53.0 44.9

Table 2: Ablation study on GTOT and LasHeR.

Method PR ↑ RE ↑ F-score ↑ ∆

DDiMP 55.7 53.4 54.5
DeT 43.8 41.9 42.8
SPT 54.5 57.8 56.1

ViPT-D 45.3 47.2 46.2
ViPT-D* (Base) 49.2 52.0 50.6

Base+GMMT(U) 54.7 57.9 56.2 +5.6%
Base+GMMT(V) 55.9 59.0 57.4 +6.8%

Table 3: Results on RGBD1K benchmark.

We attribute this phenomenon to the fusion block in the
baseline trackers. In the self-designed Siamese baseline, the
fusion block is lightweight. It solely contains a convolutional
block, leading to the multi-modal information being insuffi-
ciently aggregated. Thus, promoted by GMMT, the perfor-
mance climbs in a large step. In contrast, ViPT* and TBSI
already have well-established fusion processes for multi-
modal information, leading to smaller performance incre-
ments. In ViPT*, the fusion process occurs in all the 12 self-
attention blocks, and it only takes place in the 3th, 6th, and
9th blocks in TBSI. Therefore, the improvement on ViPT*
is slightly less than that on TBSI. In conclusion, the worse
the multi-modal information is fused in the baseline tracker,
the more it can be boosted by our GMMT. The overall results
are provided in the supplementary material.

The experiments on RGB-D tracking are also in line with
this conclusion. Based on the same ViPT baseline, a consid-
erably larger improvement can be found in RGB-D bench-
marks. We owe this to the difference in the distinct character-
istics of the input data. Although RGB and T data have vary-
ing characteristics under various scenarios, they are both im-

aged based on electromagnetic waves. However, the depth
image reflects the distance signal of the surroundings, which
has larger heterogeneity to the RGB data. Consequently, the
same fusion strategy employed in RGB-T data yields poorer
results when applied to RGB-D data. In other words, the
multi-modal information in ViPT-D is more inadequately
fused than ViPT, which gives reason for the larger enhance-
ment observed in the RGBD1K benchmark.

Learnable Network U in GMMT: To accomplish the
GMMT, an learnable network U is necessarily introduced in
the embedding GM. In our implementation, two renowned
networks, UNet (Ho, Jain, and Abbeel 2020) and UViT (Bao
et al. 2023), are involved. As their name suggests, both of
them follow the U-shaped architecture introduced in supple-
mentary material. However, they differ in two significant as-
pects: the number of blocks and the detailed architecture of
each block. UNet employs a convolution-based block, while
UViT constructs its block using the transformer architecture.

With the UNet employed, on the SR metric, the perfor-
mance of ViPT* reaches 52.7 and that of TBSI is improved
from 55.6 to 56.6. Replaced by the UViT, ViPT* performs
better but the results of TBSI degrades slightly. But in gen-
eral, GMMT can boost the baseline methods on all three
metrics consistently no matter which inner network is se-
lected. More results are provided in the supplymentary ma-
terial.

Details of the network architecture and the analysis of the
number of blocks, n, are remained to the supplementary ma-
terial.

Analysis of the Generated Features: To verify the su-
periority of GMMT intuitively, the generated features are
visualised in Fig. 4. Specifically, it is demonstrated globally
and locally.

Through the global description, the effectiveness of the
generated features is proved. The t-sne tool is used to ex-
hibit thousands of the original and generated features. Fig.
4(a) and Fig. 4(b) are the statistical analysis on GTOT and
RGBD1K datasets (red marks denote the generated features
and the blues represent the original features). In these two
graphs, the original features are marked with blue circles
and the generated ones are highlighted by the red pentagram.
Apparently, the clusters of the generated and the original
fused features are highly overlapped. This overlap indicates
that they occupy the same semantic space and share similar
properties. Consequently, we believe the generated features
are capable of supporting the tracking task, just as the origi-
nal ones.

After that, the superiority is further demonstrated by the
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Figure 4: Visualisation of the feature embeddings.
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Figure 5: Analysis of diffusion Steps. The content below
each feature map is the time step and its structural similarity
between the original fused features on the right side.

local description. We provide the visualisation of the fea-
ture maps before and after combining GMMT in Fig. 4(c)
and Fig. 4(d). Two samples from GTOT are displayed. The
left one is from the video LightOCC and another is from
BlackCar. In these two instances, the targets locate in the
centre because they are centre-cropped before sending into
the network. Therefore, the ideal feature maps should ex-
hibit a strong response in the central target area while sup-
pressing background regions. In LightOCC , the visualisa-
tion from GMMT has a higher response in the target area,
and the background is clearer because the region with ex-
treme illumination in the RGB modality better discarded. In
BlackCar, both feature maps are focused on the key po-
sition, but the background noise in GMMT is better sup-
pressed. Based on the analysis of these two video samples,
we attribute the superiority of GMMT to its ability to gener-
ate more discriminative features. Further visualisations and

analyses are available in the supplementary material, where
consistent conclusions are drawn.

The reason for producing better features is attributed to
the generative training paradigm. During training, a random
noise together with the RGB and TIR features form the in-
put of the network U . In this setup, U needs to effectively
understand and extract crucial cues from both frgb and ftir
to successfully perform the information fusion task. As a
result, compared to a network trained with a purely dis-
criminative paradigm, our approach encourages U to better
extract important information from each modality. This, in
turn, leads to fused features with enhanced discrimination,
making them more suitable for challenging tracking tasks
that involve diverse and complex environmental conditions.

Analysis of Diffusion Steps: Different from the typical
fusion blocks, our GMMT(DM) can be recursively executed.
Fig. 5 gives the visualisation of s = 10 steps (from 999
to 99, in a reverse manner) when T is set to 1000. It can
be seen that with s becomes larger, the generated features
are more similar to the original fused features fused. Un-
expectedly, the noise in fused is also better recovered as
shown in Fig. 5(a) and (b). The similarity is quantified by
the structural similarity between the generated feature map
fused∗ and fused. This indicates the superiority of GMMT
is disappearing gradually when s goes larger. The quanti-
tative results and the corresponding analysis are displayed
in the supplementary material. Since more steps cost more
computational resources and time, s equals 1 in our method
for efficiency, reaching 18 frames per second.

Analysis of λ: λ is a crucial factor banding the tracking
and generation tasks. Thus, the analysis on it is conducted
and exhibited in the supplementary material, with λ valued
from (1,2,3,5,10,100). The conclusion is that all the variants
perform better than the baseline method, which demonstrate
the superiority of GMMT. Additionally, when λ=100, the
performance is lightly better than the baseline. This indi-
cates that λ should not be a large value, leading to a small
influence of the tracking loss, and, furthermore, the strong
supervision of the tracking task is crucial and should not be
ignored.

Conclusion

This paper proposes a novel generative-based fusion mech-
anism for multi-modal tracking, named as GMMT. Its ef-
fectiveness has been demonstrated n multiple tracking base-
lines, multiple challenging benchmarks, as well as two
multi-modal tracking tasks. Enhanced by our GMMT, new
state-of-the-arts are built on the challenging GTOT, LasHeR,
and RGBD1K benchmarks. Furthermore, through the intu-
itive visualisation, we attribute its superiority to the noisy
training paradigm, which forces the model understands and
preserves the discriminative clues from each modality to the
fused features. Additionally, GMMT tends to yield larger
improvements when applied to baseline methods with rough
information fusion processes. The supplementary material is
available at https://github.com/Zhangyong-Tang/GMMT.
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