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Abstract

Deep learning models have the ability to extract rich knowl-
edge from large-scale datasets. However, the sharing of data
has become increasingly challenging due to concerns regard-
ing data copyright and privacy. Consequently, this hampers
the effective transfer of knowledge from existing data to novel
downstream tasks and concepts. Zero-shot learning (ZSL) ap-
proaches aim to recognize new classes by transferring seman-
tic knowledge learned from base classes. However, traditional
generative ZSL methods often require access to real images
from base classes and rely on manually annotated attributes,
which presents challenges in terms of data restrictions and
model scalability. To this end, this paper tackles a challenging
and practical problem dubbed as data-free zero-shot learn-
ing (DFZSL), where only the CLIP-based base classes data
pre-trained classifier is available for zero-shot classification.
Specifically, we propose a generic framework for DFZSL,
which consists of three main components. Firstly, to recover
the virtual features of the base data, we model the CLIP fea-
tures of base class images as samples from a von Mises-Fisher
(vMF) distribution based on the pre-trained classifier. Sec-
ondly, we leverage the text features of CLIP as low-cost se-
mantic information and propose a feature-language prompt
tuning (FLPT) method to further align the virtual image fea-
tures and textual features. Thirdly, we train a conditional gen-
erative model using the well-aligned virtual image features
and corresponding semantic text features, enabling the gen-
eration of new classes features and achieve better zero-shot
generalization. Our framework has been evaluated on five
commonly used benchmarks for generalized ZSL, as well as
11 benchmarks for the base-to-new ZSL. The results demon-
strate the superiority and effectiveness of our approach. Our
code is available in https://github.com/ylong4/DFZSL.

Introduction
The power of deep learning models lies in their ability to
extract rich knowledge, including visual features and se-
mantic information, from large-scale datasets. However, the
sharing of data across different companies, institutions, and
countries has become increasingly challenging and sensi-
tive. Concerns related to data copyright and privacy, par-
ticularly in sensitive domains such as health and security,

*These authors contributed equally.
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pose significant obstacles to the seamless transfer of knowl-
edge from large-scale datasets to novel downstream tasks
and concepts. These challenges impede the widespread uti-
lization of deep learning models and limit their potential im-
pact in various fields.

Inspired by the mounting concerns regarding data and
model privacy issues, particularly in the context of knowl-
edge transfer to new concepts, this paper addresses the prob-
lem of data-free zero-shot learning without access to any
real data. Zero-shot learning (ZSL) addresses the challenge
of recognizing new classes by leveraging semantic knowl-
edge transferred from base classes. Despite the notable ad-
vancements in ZSL, most ZSL methods often require ac-
cess to labeled images from base classes, either for align-
ing visual-semantic embeddings or training conditional gen-
erative models (Xian et al. 2018a,b; Narayan et al. 2020).
Unfortunately, obtaining real data from base classes is of-
ten impractical in real-world applications due to privacy or
copyright restrictions. Moreover, existing approaches heav-
ily rely on manually annotated attributes, which present
challenges in terms of scalability and the difficulty of an-
notation (Farhadi et al. 2009; Gan et al. 2015; Shigeto et al.
2015; Romera-Paredes and Torr 2015).

The recent progress in large-scale pre-trained vision-
language models, such as CLIP (Radford et al. 2021),
have demonstrated impressive zero-shot generalization abil-
ities. These models achieve this capability through extensive
training on vast collections of image-caption pairs without
the requirement of manually annotated attributes. However,
effectively transferring the knowledge from these models,
which are trained on weakly aligned image-caption pairs,
to downstream fine-grained zero-shot classification tasks re-
mains challenging and sub-optimal. This is primarily due
to the discrepancy in class granularity between the pre-
trained models and the specific classification tasks at hand.
Propmt tuning deals with this issue by adding learnable
prompts to the inputs. However the recent prompt tuning
methods (Zhou et al. 2022b; Bahng et al. 2022; Zhou et al.
2022a) still suffer from single-side alignment and rely on the
access to the real images.

To this end, this paper addresses a challenging and
practical problem dubbed as data-free zero-shot learning
(DFZSL). In this setting, the only available resource for
zero-shot classification is a pre-trained base classes classi-
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fier based on CLIP features. Notably, we do not have ac-
cess to any real data from either the base or new classes, and
manual attribute annotations are not required. Our setting is
closely related to Absolute Zero-Shot Learning (Gao et al.
2022). However, their method still relies on manual attribute
annotations and performs poorly in both conventional and
generalized ZSL.

The proposed framework consists of three main compo-
nents. Firstly, to recover the base class data, we model the
CLIP features of base class images as samples from a von
Mises-Fisher (vMF) distribution, with learnable mean (µ)
and proper concentration (κ) parameters based on the pre-
trained classifier. This allows us to recover the virtual fea-
tures of the base data by sampling from the distribution.
It is important to note that our method does not recover
the original images. Instead, our focus is on recovering the
high-level image feature vectors, which is more efficient
and avoids the privacy and copyright concerns. Secondly,
to bridge the base and new classes, we leverage the text
encoder of CLIP to obtain low-cost semantic information
in the form of generalizable text features, which eliminates
the need for manual attribute annotations. Our framework
is generic, and any vision-language foundation models can
be potentially used. In order to enhance the adaptation to
downstream fine-grained zero-shot classification tasks, we
introduce a feature-language prompt tuning method. This
method aims to further align the virtual image features of
base classes with their corresponding text features by tuning
both visual features and textual inputs. Thirdly, we train a
conditional generative model using the well-aligned virtual
image features and corresponding semantic text features,
which enables us to generate labeled data for new classes.
And then zero-shot classification is achieved through super-
vised learning. Our framework has been evaluated on five
commonly used benchmarks for generalized ZSL, as well
as 11 benchmarks for the base-to-new generalization. The
results demonstrate the superiority of our approach.

Related Work
Traditional Zero-Shot Learning. Zero-shot learning (ZSL)
is a research area that explores the generalizability of deep
learning models. Specifically, it focuses on training a clas-
sifier that can recognize samples from the new classes that
are unseen during training. It is broadened to generalized
zero-shot learning (GZSL) where both base and new classes
should be recognized during the testing phase. Embedding
based methods and generative-model based methods are
the two mainstream methodologies for GZSL. An embed-
ding based approach aims to learn a mapping function that
maps visual features and semantic information into a unified
space (Romera-Paredes and Torr 2015; Jiang et al. 2019a;
Reed et al. 2016; LeCun et al. 1998; Elman 1990). The ab-
sence of new class data makes it prone to overfitting so that
the test samples of the new classes are easy to be incorrectly
classified into a base class. To mitigate the data imbalance
problem, recent studies prefer generative-model based meth-
ods because they can convert the challenging ZSL problem
into a fully-supervised recognition task by synthesizing the
absent samples of the new classes. Most generative-model

based methods use GAN or VAE for generation (Ye et al.
2019; Han et al. 2021; Chen et al. 2021b; Ye et al. 2022),
and some studies have explored the combination of them
which we termed as VAEGAN (Larsen et al. 2016; Xian
et al. 2019a). A significant drawback in both embedding
based methods and generative-model based methods is that
they rely on a large amount of real image data to learn the
shared embedding space or train the generator. This require-
ment raises concerns related to copyright infringement and
privacy issues. Moreover, these methods often necessitate
experts attribute annotations, which are labor-intensive and
expensive.

Fine-Tuning for Vision-Language Models. Recently,
the contrastive trained vision-language model CLIP (Rad-
ford et al. 2021) shows impressive zero-shot performance
on recognition tasks. When we directly infer with the pre-
trained CLIP, which is denoted as Zero-Shot CLIP, the per-
formance is still limited on some downstream datasets. It is
because of the domain shift between the pre-training dataset
and the downstream datasets for specific tasks, especially
when the task is fine-grained. Adapter methods focus on
further learning a mapping network for the output features.
One of them is CLIP-Adapter (Romera-Paredes and Torr
2015), which uses a residual connected MLP after the last
vision layer and the last text layer. Prompt tuning meth-
ods introduce parameters to the input. CoOp (Zhou et al.
2022b) establishes a set of learnable vectors on the textual
side to learn a generic prompt template. CoCoOp (Zhou
et al. 2022a) leverages information from the visual side and
builds instance-level prompt templates to achieve base-to-
new generalization. VP (Bahng et al. 2022) and VPT (Der-
akhshani et al. 2022) design the tunable visual prompts ei-
ther on the images or on the patch tokens. MaPLe (Khattak
et al. 2023) inserts learnable tokens inside the visual encoder
and text encoder for deep fine-tuning, but it still relies on im-
ages and requires more training. Unlike existing prompt tun-
ing methods that focus on learning single-modality prompts
or rely on the original images, our approach involves tuning
prompts for both visual features (without need of the origi-
nal images) and textual inputs.

Data-Free Transfer Learning. Data plays a significant
role in the development of artificial intelligence. The value
of data is more and more appreciative so real data is always
not accessible due to copyright or privacy issues nowadays.
Thus, data-free transfer learning, which just needs the source
model for training but leaves the source data protected, re-
ceives increased attention. Existing research under the Data-
Free setting can be divided into three categories based on the
level of the guards of the source model parameters: avail-
able source model parameters (Gao et al. 2022; Tian et al.
2021), inaccessible parameters but enable gradient propoga-
tion (Chen et al. 2019), and a black-box service, where the
source model just exposes an API for the client to request
predictions (Gao et al. 2022). Despite their exhaustive ex-
periments with various guard levels, the results are not sat-
isfactory in the most realistic black-box scenario.
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Figure 1: The proposed framework is based on vision-language pre-trained models, such as CLIP. (a) Stage 1: Model the
distribution of base class image features properly and then sample virtual image features. (b) Stage 2: Align the obtained virtual
image features with the extracted text features via FLPT (Feature-Language Prompt Tuning).

Methodology
Problem Formulation and Overview
In this paper, we propose and address a novel problem called
data-free zero-shot learning (DFZSL). In the data-free set-
ting, data from base classes are protected considering pri-
vacy or copyrights and cannot be directly used for training
zero-shot learning methods.

Formally, consider a data owner as the server and there
are images of base classes on the server. The image encoder
of pre-trained CLIP can be used to extract image features
xbase ∈ Xbase. The corresponding labels for base classes
are ybase ∈ Y base. A classifier for base classes can be
trained with image features extracted from real images by
the pre-trained CLIP model. We denote the trained base clas-
sifier as f base : Xbase → Y base. In a white-box scenario,
the classifier weights are available. While in a black-box sce-
nario, the server does not leak the classifier weights and just
exposes an API for the client to request the prediction.

The client side does not have access to any images that
can be used for training in the data-free setting. The image
features and labels of new class data are denoted as xnew ∈
Xnew and ynew ∈ Y new, respectively. The classes of base
data and new data are disjoint so that Y base ∩ Y new = ∅.
Now we have X = Xbase ∪Xnew and Y = Y base ∪ Y new.

In data-free zero-shot learning, the objective is to classify
test images from both base and new classes on the client
side, utilizing the assistance of a base classifier located on
the server, without directly accessing the training data.

Overview. To solve the proposed data-free zero-shot
learning problem, we propose a generic framework consist-
ing of three main stages. The overall pipeline is shown in
Fig. 1. Firstly, we propose to recover the image features of
base classes from the base classifier. Secondly, we leverage
the CLIP text features as the semantic side information, and
propose a feature-language prompt tuning method to extract
well-aligned high-quality image features and text features.
Thirdly, with both, we follow traditional generative model-

based methods to train the generator and classifier for the
downstream fine-grained zero-shot classification tasks.

Base-Class Data Recovery
While we want to transfer from base classes to disjoint new
classes on downstream datasets via traditional generative
methods, we have to prepare the training data. Therefore,
we propose a novel method to recover the image features of
base classes from the base classifier located on the server in
both white-box and black-box setting. The general idea is to
model the distribution of the original data properly and then
sample virtual data from it.

The most commonly used softmax classifier in deep learn-
ing is in the form of a matrix that consists of weights for
each class and is trained with cross-entropy loss. During the
training process, these weights are forced to be closer to the
image features of the corresponding class and keep away
from other classes. Especially for CLIP, cosine similarity is
used as the metric for prediction. As a result, the L2-normed
weights are good representations of class prototypes.

To recover the base-class data, we hypothesise that the
L2-normed image features follow a distribution on a hyper-
sphere, where features belonging to the same class tend to
cluster together. Therefore, we approximate the real image
features of base classes using the von Mises-Fisher (vMF)
distribution that is defined on the surface of a unit hyper-
sphere. A vMF distribution is determined by two parameters,
the mean direction µ and the concentration κ. We establish
a set of class prototypes: M =

{
µ1,µ2, · · · ,µ|Y base|

}
as

the mean direction of each class. In the white-box scenario,
the base classifier weights W =

{
w1,w2, · · · ,w|Y base|

}
are available, and we directly set M = W . In the black-
box scenario, we turn the class prototypes M into learn-
able parameters and initialize them by the text features T ={
t1, t2, · · · , t|Y base|

}
of corresponding classes. The text fea-

tures are extracted by CLIP’s text encoder Tencoder from the
prompt “a photo of a [CLS].”, where [CLS] is a class name.
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With the mean direction, virtual image features can be
sampled surrounding the center and the concentration con-
trols the spread of sampled features. While we choose a
proper concentration, the underlying principle is that if
sampled features from the distribution belong to different
classes, they should be sufficiently separable. We assume
an isotropic covariance for simplicity. In statistics, vMF dis-
tribution is a close approximation to the wrapped Gaussian
distribution. According to the empirical rules of the Gaus-
sian distribution, approximately 99.73% of the sampled data
deviates from the mean within a range of 3 standard devia-
tions 3σ. Therefore, if we aim for the sampled virtual data
from the two classes to be discriminative, the arc length be-
tween their respective prototypes should be at least greater
than 6σ. Then the concentration parameter can be derived
from the definition of the von Mises-Fisher (vMF) distribu-
tion, expressed as κ = 1

σ2 . Thus, we set the concentration
that caters to all class pairs in the downstream datasets with
the class prototypes:

κtext = max
∀y,y′∈Y base,y ̸=y′

{[
1

6
arccos

(
µy

|µy|
·
µy′

|µy′ |

)]−2
}

(1)

The virtual image features can be considered to follow the
vMF distribution determined by prototypes M , λ, and κtext:

x̃ ∼ vMF (M,λ · κtext) , (2)

where λ is a hyper-parameter to refine the concentration
(which is nomally set to λ = 1 and a greater λ produces
a more concentrated distribution within each class).

We can now sample virtual image features of base classes
x̃base ∈ X̃base from the vMF distribution. However, for the
black-box scenario, we further tune the initial class proto-
types to mitigate the modality gap between image and text.
We first upload the sampled virtual image features as test
samples to the base classifier on the server and obtain the
prediction scores sbase. Subsequently, we treat the learnable
class prototypes as a base classifier on the client and predict
scores for these virtual image features. The objective is to
align the two sets of scores and make the prototypes closely
resemble the classifier weights protected on the server:

Lproto(M) =
1

|Y base|
∑

y∈Y base

(
sbase − cos

(
x̃base,M

))2

(3)

Feature-Language Prompt Tuning
In addition to the recovered virtual image features, another
crucial component for achieving the transfer from base to
new classes is the semantic information. We use the text
features extracted by the pre-trained CLIP model. However,
due to the discrepancy in class granularity between the pre-
trained models and the downstream fine-grained zero-shot
classification tasks at hand, the semantic information pro-
duced by the CLIP models trained on weakly aligned image-
caption pairs is sub-optimal.

To further enhance the quality of the semantic informa-
tion, we propose a feature-language prompt tuning method.
On the visual side, our method requires only the features of
the image, not the original picture. Considering that the re-
covered virtual image features only cover base classes and

we have to transfer to new classes, we tune the prompts in
a class-agnostic way. Particularly, we replace the embed-
dings of class-agnostic prefix “a photo of a” used in CLIP
with learnable parameters P = {p1,p2,p3,p4}. In addition
to the text prompts, we also introduce a shift term xshift

as class-agnostic learnable parameters added to the image
features. To accumulate class-agnostic generalizable knowl-
edge, we establish a connection between the text prompts
and the image shift using a light mapping network FΘ pa-
rameterized by Θ. It serves as a bridge between the textual
information and the image transformation, allowing for the
integration of both modalities. The xshift is then defined as:

xshift =
1

4

4∑
i=1

FΘ (P ) . (4)

We try to tune these parameters to better align the features
of two modalities and mitigate the domain shift between
CLIP’s pre-training dataset and the downstream datasets.
Then we have the enhanced image features which can help
us easily generalize to different classes:

x̂base = x̃base + αxshift, (5)
where α is the trade-off parameter that controls how much
we add the shift term. The enhanced text features are:

t̂ = Tencoder ({p1 p2 p3 p4 [CLS] .}) , (6)
where [CLS] represents the embedding of class name. The
parameters are optimized by lower the cross-entropy when
classifying the image features by the text features:

Lpt(Θ, P ) = − log
exp

(
cos

(
x̂base, t̂y

)
/τ

)∑
y′∈Y base exp

(
cos

(
x̂base, t̂y′

)
/τ

) , (7)

and τ is the temperature used in CLIP which equals to 0.01.

New Class Features Generation for Zero-shot
Classification
After we recovered the base class image features and con-
ducted the feature-language prompt tuning, we have already
prepared high-quality training data for traditional generative
zero-shot learning methods.

Generate Data of New Classes. We choose to train a suit-
able generative model based on the enhanced base data. The
loss function is termed as follows:

Lgenerator(Φ) = ℓ
(
x̂base, GΦ

(
z, t̂base

))
, (8)

where ℓ can be GAN loss or other loss defined by the cho-
sen generative model. G is the generator parameterized by
Φ and z represents the random noise. Then we condition the
generator with text features of new classes and generate the
new class image features:

x̂new = GΦ

(
z, t̂new

)
. (9)

Supervised Image Classification. With the enhanced vir-
tual image features of base classes x̂base and the generated
virtual image features of new classes x̂new, the general-
ized zero-shot learning problem is converted into a fully-
supervised image classification problem. Moreover, we ini-
tialize the weights of the final classifier by the enhanced text
features to speed up the training process.
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Experiments
Datasets and Implementation Details
Datasets. We evaluate our method in two different tasks:
generalized zero-shot learning and base-to-new generaliza-
tion. For generalized zero-shot learning, we follow the same
setting as (Xian et al. 2018a). Our framework is evaluated
on five datasets: Attribute Pascal and Yahoo (APY) (Farhadi
et al. 2009), CaltechUCSD-Birds (CUB) (Welinder et al.
2010), Oxford Flowers (FLO) (Nilsback and Zisserman
2008), SUN Attribute (SUN) (Patterson and Hays 2012),
and Animals with Attributes2 (AWA2) (Xian et al. 2018a),
which contains 32, 200, 102, 717 and 50 classes, respec-
tively. As for the base-to-new generalization, we follow the
setting proposed in CoCoOp (Zhou et al. 2022a). We evalu-
ate the performance of our framework on 11 different im-
age classification datasets which covers a wide range of
recognition tasks. This includes a large-scale visual dataset,
ImageNet (Deng et al. 2009); a generic-objects datasets,
Caltech101 (Fei-Fei 2004); five fine-grained image recog-
nition datasets, OxfordPets (Parkhi et al. 2012), Stanford-
Cars (Krause et al. 2013), Flowers102 (Nilsback and Zisser-
man 2008), Food101 (Bossard, Guillaumin, and Van Gool
2014) and FGVCAircraft (Maji et al. 2013); a satellite-view
topographic image dataset EuroSAT (Helber et al. 2019);
an action recognition dataset UCF101 (Soomro, Zamir, and
Shah 2012); a texture dataset DTD (Cimpoi et al. 2014);
and a scene recognition dataset SUN397 (Xiao et al. 2010).
These datasets will be detailed in the appendix.

Implementation Details. Our proposed framework con-
sists of three stages: recover virtual image features of base
classes, utilize FLPT to enhance both the virtual image fea-
tures and semantic text features, and finally adopt traditional
generative ZSL methods. We recover the base class data in
the data-free setting at the first stage. In the white-box sce-
nario, where the base classifier weights are accessible, we
directly apply them as the class prototypes. In the black-
box scenario, the class prototypes are initialized by text fea-
tures, and λ is set to 1. We apply the Adam optimizer and
the learning rate is set to 0.0003. In the second prompt tun-
ing stage, we implement the light mapping network with a
single-hidden-layer MLP activated by GELU. For the third
stage, we use off-the-shelf generative-model based methods.
The setup stays the same as what they proposed in their pa-
pers. All experiments are performed on an NVIDIA GeForce
RTX3090, except for the ImageNet, which is performed on
an NVIDIA A100.

Results of Generalized Zero-Shot Learning
Setup. We follow the splits and evaluation protocols pro-
posed in (Xian et al. 2018a), train on base classes and then
evaluated on test set that mixes the base classes and the new
classes. Differently, the only input information of our base
classes is the base classifier on the server. We do not use the
attribute vectors provided in these benchmarks, but extract
text features by CLIP with “a photo of a [CLS].” instead.
The mean per-class top-1 accuracy is reported on base and
new classes and the harmonic mean is computed to demon-
strate the balanced performance of our framework.

Baselines. We choose f-CLSWGAN (Xian et al. 2018b),
Cycle-WGAN (Felix et al. 2018), LisGAN (Li et al. 2019),
TCN (Jiang et al. 2019b), f-VAEGAN (Xian et al. 2019b),
TF-VAEGAN (Narayan et al. 2020), GCMCF (Yue et al.
2021), HSVA (Chen et al. 2021a) MSDN (Chen et al.
2022b) AZSL (Gao et al. 2022) and SHIP+CoOp (Wang
et al. 2023) as our baseline methods.

Main results. The results of generalized zero-shot learn-
ing on the five commonly used benchmarks are shown in
Table 1. Firstly, in comparison to traditional generalized
zero-shot learning approaches that utilize the ImageNet-1k
pre-trained ResNet-101 as the backbone, the baseline data-
free ZSL method (AZSL (Gao et al. 2022)) exhibits sig-
nificantly inferior performance. This highlights the inherent
challenge of the data-free ZSL task, as it performs notably
worse than ZSL methods that have access to real base data.
Secondly, our method improves both traditional generative
ZSL methods using CLIP features and the state-of-the-art
prompt-tuning methods even without access to the real data
in both black-box (Data-Free) and white-box (Data-Free*)
settings. For example, when compared with the state-of-
the-art SHIP+CoOp method, our framework improves the
harmonic mean accuracy by 4.5%, 6.3%, and 10.8% on
the three standard benchmarks of AWA2, CUB and FLO,
respectively. This verify the effectiveness of the proposed
framework. Thirdly, it is worth noting that the performance
gain by our method does not solely originate from the base
classes but primarily from the new classes. This observation
validates the generalization ability of the proposed method.

Results of Base-to-New Generalization
Setup. We follow CoCoOp (Zhou et al. 2022a) to makes
a half-and-half split on 11 datasets, which turns out to di-
vide them into two non-overlapping subsets: the base classes
and the new classes. The base-to-new generalization task re-
quires the model to train on base classes and then separately
test on base classes and new classes. It is just the same as the
conventional ZSL when the model is tested on new classes.

Baselines. We take several recent prompt-tuning methods
as baselines, including CoOp, CoCoOp, MaPLe (Khattak
et al. 2023), CLIP-Adapter (Gao et al. 2021), VPT (Der-
akhshani et al. 2022) and SHIP (Wang et al. 2023).

Main Results. As shown in Table 2, most of the prompt-
tuning methods improve the performance of CLIP in the
base classes, while they demonstrate limited performance
gain or even degradation for new classes. This may be due
to the fact that training only on the base classes leads the
model to overfit the base classes. To mitigate overfitting
to the base classes, SHIP generates the new-class data via
the pre-trained CLIP encoders. However, the CLIP features
may not be optimal due to the domain gap between the
pre-training data and the downstream task data, leading to
sub-optimal results. By contrast, our method generates new-
class data based on the proposed FLTP method that further
align the visual and textual features through multi-modal
prompt-tuning strategy. The promising results achieved by
FLPT+TFVAEGAN show that the further aligned features
are better for training an effective conditional generator.
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AWA2 APY CUB SUN FLO
Base New H Base New H Base New H Base New H Base New H

R
es

ne
t-

10
1

Real-Data

HSVA 79.8 56.7 66.3 - - - 58.3 52.7 55.3 48.6 39.0 43.3 - - -
MSDN 74.5 62.0 67.7 - - - 67.5 68.7 68.1 34.2 52.2 41.3 - - -
f-CLSWGAN 61.4 57.9 59.6 - - - 57.7 3.7 49.7 36.6 42.6 39.4 73.8 59.0 65.6
Cycle-WGAN 63.4 59.6 59.8 - - - 59.3 47.9 53.0 33.8 47.2 39.4 69.2 61.6 65.2
LisGAN 76.3 52.6 62.3 - - - 57.9 46.5 51.6 37.8 42.9 40.2 83.8 57.7 68.3
f-VAEGAN 70.6 57.6 63.5 - - - 60.1 48.4 53.6 38.0 45.1 41.3 74.9 56.8 64.6
TCN 65.8 61.2 63.4 64.0 24.1 35.1 52.0 52.6 52.3 37.3 31.2 34.0 - - -
GCM-CF 75.1 60.4 67.0 56.8 37.1 44.9 59.7 61.0 60.3 37.8 47.9 42.2 - - -
TF-VAEGAN 75.1 59.8 66.6 61.5 31.7 41.8 64.7 52.8 58.1 40.7 45.6 43.0 84.1 62.5 71.7

Data-Free AZSL 3.7 3.5 3.6 4.0 6.8 5.1 - - - - - - - - -
Data-Free* AZSL 44.3 27.3 33.7 52.5 17.9 26.7 - - - - - - - - -

C
L

IP

Real-Data
f-VAEGAN 95.9 61.2 74.7 - - - 82.2 22.5 35.3 - - - 97.6 11.1 20.0
TF-VAEGAN 96.3 43.7 60.1 71.7 22.3 34.0 84.4 21.1 34.0 51.4 61.4 55.9 97.2 37.4 54.0
CoOp 95.3 72.7 82.5 85.4 76.1 80.5 63.8 49.2 55.6 61.3 61.8 61.6 85.8 52.2 64.9
SHIP+CoOp 94.4 84.1 89.0 - - - 58.9 55.3 57.1 - - - 76.3 69.0 72.4

Data-Free CLIP* 93.0 88.2 90.6 81.6 75.8 78.6 56.3 56.1 56.2 51.2 55.9 53.5 69.4 67.9 69.6
Data-Free FLPT+TF-VAEGAN 93.9 93.2 93.5 84.2 81.1 82.6 66.1 60.9 63.4 60.9 65.6 63.2 89.0 78.2 83.2
Data-Free* FLPT+TF-VAEGAN 93.9 93.6 93.7 84.4 81.0 82.7 70.4 60.8 65.2 63.8 62.8 63.3 89.7 79.5 84.3

Table 1: Generalized zero-shot learning. The model is trained on the base classes and is evaluated on the mixture of base classes
and new classes. ‘Base’ indicates the base-class results, ‘New’ indicates the new-class results, and ‘H’ is the harmonic mean.
‘Data-Free’ represents the black-box scenario. ‘Data-Free*’ means the white-box scenario. ‘CLIP*’ means that the hand-crafted
prompt templates are used.

11 Dataset Average ImageNet Caltech101 OxfordPets
Base New H Base New H Base New H Base New H

Real-Data

CoOp 82.69 63.22 71.66 76.47 67.88 71.92 98.00 89.81 93.73 93.67 95.29 94.47
CoCoOp 80.47 71.69 75.83 75.98 70.43 73.10 97.96 93.81 95.84 95.20 97.69 96.43
MaPLe 82.28 75.14 78.55 76.66 70.54 73.47 97.74 94.36 96.02 95.43 97.76 96.58
CLIP-Adapter 83.05 65.20 73.05 75.74 68.21 71.78 98.13 92.19 95.39 91.55 90.10 90.82
CoOp + VPT 71.98 74.76 73.34 74.73 70.60 72.60 95.47 93.80 94.62 90.77 97.83 94.16
SHIP + CoOp 80.03 73.69 76.73 75.87 69.95 72.79 97.55 95.20 96.36 95.37 97.87 96.61
SHIP + CLIP-Adapter 83.14 67.77 74.67 76.00 69.32 72.51 97.68 95.09 96.37 92.19 93.85 93.01

Data-Free
CLIP* 69.34 74.22 71.70 72.43 68.14 70.22 96.84 94.00 95.40 91.17 97.26 94.12
FLPT 78.08 75.46 76.85 74.06 68.74 71.30 97.87 96.29 97.07 95.59 97.76 96.66
FLPT+TFVAEGAN 83.91 76.21 79.71 76.99 68.22 72.34 98.64 96.18 97.40 96.49 98.21 97.34

StanfordCars Flowers102 Food101 FGVCAircraft
Base New H Base New H Base New H Base New H

Real-Data

CoOp 78.12 60.40 68.13 97.60 59.67 74.06 88.33 82.26 85.19 40.44 22.30 28.75
CoCoOp 70.49 73.59 72.01 94.87 71.75 81.71 90.70 91.29 90.99 33.41 23.71 27.74
MaPLe 72.94 74.00 73.47 95.92 72.46 82.56 90.71 92.05 91.38 37.44 35.61 36.50
CLIP-Adapter 79.16 59.49 67.93 98.29 64.68 78.02 88.24 88.33 88.29 42.14 25.67 31.91
CoOp + VPT 65.27 75.97 70.21 72.97 75.90 74.40 90.37 91.67 91.01 29.57 33.80 31.54
SHIP + CoOp 68.57 73.90 71.14 94.02 74.40 83.06 90.54 91.03 90.78 34.27 32.33 33.28
SHIP + CLIP-Adapter 78.51 62.52 69.61 98.20 65.89 78.86 88.63 87.07 87.84 42.26 30.05 35.13

Data-Free
CLIP* 63.37 74.89 68.65 72.08 77.80 74.83 90.10 91.22 90.66 27.19 36.29 31.09
FLPT 65.24 75.74 70.10 88.79 76.52 82.20 90.74 92.09 91.41 32.89 33.17 33.03
FLPT+TFVAEGAN 77.06 75.41 76.23 94.11 78.65 85.69 91.71 92.10 91.90 45.26 32.81 38.04

SUN397 DTD EuroSAT UCF101
Base New H Base New H Base New H Base New H

Real-Data

CoOp 80.60 65.89 72.51 79.44 41.18 54.24 92.19 54.74 68.69 84.69 56.05 67.46
CoCoOp 79.74 76.86 78.27 77.01 56.00 64.85 87.49 60.04 71.21 82.33 73.45 77.64
MaPLe 80.82 78.70 79.75 80.36 59.18 68.16 94.07 73.23 82.35 83.00 78.66 80.77
CLIP-Adapter 79.44 66.81 72.58 81.94 39.49 53.30 93.45 54.41 68.78 85.42 67.77 75.58
CoOp + VPT 73.77 77.90 75.77 57.67 58.70 58.18 67.97 71.63 69.75 73.23 74.63 73.92
SHIP + CoOp 79.54 75.27 77.35 74.88 56.88 64.65 88.62 66.87 76.22 81.08 76.85 78.91
SHIP + CLIP-Adapter 79.86 66.52 72.58 81.60 46.38 59.14 93.05 57.15 70.81 86.61 71.61 78.40

Data-Free
CLIP* 69.36 75.35 72.23 53.24 59.90 56.37 56.48 64.05 60.03 70.53 77.50 73.85
FLPT 77.84 76.25 77.04 70.37 62.68 66.30 86.00 79.54 82.64 79.52 75.66 77.55
FLPT+TF-VAEGAN 82.23 76.23 79.12 80.32 64.37 71.47 95.74 79.97 87.15 84.50 76.21 80.13

Table 2: Base-to-new generalization. The model is trained on the base classes and is evaluated on the base classes and new
classes independently. ‘Base’ indicates the base-class results, ‘New’ indicates the new-class results, and ‘H’ is the harmonic
mean. ‘Data-Free’ represents the black-box scenario. ‘Data-Free*’ means the white-box scenario. ‘CLIP*’ means that the hand-
crafted prompt templates are used.
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AWA2 APY CUB SUN FLO
Base New H Base New H Base New H Base New H Base New H

Data-Free
CLIP* 93.04 88.21 90.57 81.63 75.76 78.58 56.29 56.12 56.21 51.20 55.90 53.45 69.39 67.86 69.62
CoOp 94.35 85.27 89.58 82.21 78.47 80.30 51.90 51.73 51.82 55.78 53.19 54.45 76.82 65.30 70.59
FLPT 93.57 92.92 93.24 83.00 80.11 81.82 57.26 57.75 57.50 56.94 59.72 58.30 70.54 72.64 71.57

Real-Data FLPT 93.84 93.60 93.72 84.50 79.95 82.16 62.22 59.44 60.80 57.64 64.10 60.69 71.61 73.20 72.40

Data-Free
CLIP*+ZLAP 94.05 92.79 93.42 81.97 76.90 79.36 63.13 61.52 62.31 67.52 51.39 58.36 87.62 68.39 76.82
CoOp+ZLAP 94.50 88.76 91.54 83.11 79.69 81.36 64.43 60.76 62.54 66.09 52.85 58.73 89.64 68.57 77.70
FLPT+ZLAP 94.37 93.69 94.03 83.99 80.59 82.25 65.80 60.70 63.14 65.89 62.29 64.04 91.53 77.28 83.80

Real-Data FLPT+ZLAP 92.66 96.05 94.32 83.54 81.91 82.72 66.15 62.80 64.43 59.53 79.38 68.04 96.51 74.27 83.94

Data-Free
CLIP*+SDGZSL 93.14 93.69 93.41 82.02 76.37 79.09 59.14 54.51 56.73 58.10 59.79 58.93 94.73 62.68 75.45
CoOp+SDGZSL 93.43 92.15 92.79 82.14 79.31 80.70 57.04 53.20 55.05 58.99 61.18 60.07 94.37 66.23 77.83
FLPT+SDGZSL 92.47 95.30 93.87 84.10 80.20 82.10 63.18 65.38 64.26 59.50 68.26 63.58 92.40 74.12 82.26

Real-Data FLPT+SDGZSL 93.94 93.03 93.48 83.72 81.20 82.44 74.46 62.09 67.72 64.11 76.32 69.68 96.34 74.17 83.81

Data-Free
CLIP*+TF-VAEGAN 93.88 89.23 91.49 81.93 78.22 80.04 65.15 53.14 58.54 63.06 62.85 62.95 90.61 65.96 76.34
CoOp+TF-VAEGAN 94.51 88.50 91.41 83.01 79.39 81.16 63.04 56.72 59.71 60.31 61.46 60.88 89.63 67.81 77.21
FLPT+TF-VAEGAN 93.86 93.16 93.51 84.18 81.12 82.62 66.06 60.92 63.39 60.93 65.56 63.16 88.98 78.15 83.22

Real-Data FLPT+TF-VAEGAN 93.84 93.59 93.71 84.56 80.75 82.61 73.25 58.45 65.02 62.87 70.97 66.67 94.11 77.58 85.05

Table 3: Ablation Study. Comparison results of different prompt-tuning methods, different generative models, and ‘Data-Free’
v.s. ‘Real-Data’ settings. ‘CLIP*’ means the hand-crafted prompt templates are used.
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Figure 2: Visualization of tSNE of the real source data and
recovered virtual data.
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Figure 3: Comparisons of the proposed FLPT method with
the baseline prompt tuning methods.

Ablation Study
We conducted ablation studies under the setting of general-
ized zero-shot learning to demonstrate the validity and gen-
eralizability of our proposed framework.

Quality of the Recovered Virtual Data. We visualized
the recovered virtual base data and the real base data of 6
classes in AWA2 in Figure 2. It can be seen that the re-
covered data exhibits a distribution similar to that of the
real data and possesses sufficient class discriminative qual-
ities. To further validate the quality of the recovered image
features and make a fairer comparison with baselines, we
performed the experiments on real and virtual data, respec-
tively. As shown in Table 3, It can be seen that the perfor-
mance gap between the real data and virtual data is small,
especially for AWA2, APY and FLO, which validate the ef-
fectiveness of the proposed base class data recovery method.
The gap is slightly larger for CUB and SUN datasets, which
is due to their fine-grained and challenging nature.

Comparisons of Different Prompt-tuning Methods. To
evaluate the proposed FLPT that enhances the image fea-
tures and text features, we compare FLPT to hand-crafted
prompts in CLIP and the learning-based CoOp in Figure 3
and Table 3. It can be seen that FLPT outperforms the other
two on all the five GZSL benchmarks. Furthermore, the per-
formance is further improved after applying the enhanced
features to the generative-model based methods. Compared
to hand-crafted prompts, FLPT is a data-driven method,
which costs less and is more effective. While compared
to CoOp, FLPT makes a link between two modalities and
aligns both image features and text features simultaneously.

Different Generative-Model-Based Methods. The pro-
posed FLPT method can be combined with any generative
models to further improve the ZSL performance. We evalu-
ate our method with three generative methods: GAN-based
ZLAP (Chen et al. 2022a), VAE-based SDGZSL (Chen et al.
2021c), and VAEGAN-based TF-VAEGAN (Narayan et al.
2020). As shown in Table 3, when integrating FLPT with
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the three types of generative models, all of them exhibit im-
proved performance compared to FLPT alone.

Conclusion
This paper addresses a challenging and practical problem
dubbed as data-free zero-shot learning (DFZSL). In DFZSL,
the use of real images from both the base classes and the
new classes is not necessary, thereby effectively preserving
data copyright and privacy. To tackle DFZSL, we propose a
CLIP-based framework, which consists of three main stages.
Firstly, the virtual base-class data are recovered via a mod-
eled von Mises-Fisher distribution based on the pre-trained
CLIP classifier. Secondly, we propose a feature-language
prompt tuning method to further align the virtual image fea-
tures and textual features. Thirdly, to achieve better zero-
shot classification, we generate the new-class data by train-
ing a conditional generative model based on the well aligned
base-class multi-modal features. Extensive experiments on
both base-to-new ZSL and generalized ZSL demonstrate the
effectiveness of the proposed framework.
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