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Abstract

Although deep generative models have greatly improved
one-shot video-driven talking head generation, few studies
address fine-grained controllable facial expression editing,
which is crucial for practical applications. Existing methods
rely on a fixed set of predefined discrete emotion labels or
simply copy expressions from input videos. This is limiting
as expressions are complex, and methods using only emotion
labels cannot generate fine-grained, accurate or mixed expres-
sions. Generating talking head video with precise expressions
is also difficult using 3D model-based approaches, as 3DMM
only models facial movements and tends to produce devia-
tions. In this paper, we propose a novel framework enabling
fine-grained facial expression editing in talking face genera-
tion. Our goal is to achieve expression control by manipulat-
ing the intensities of individual facial Action Units (AUs) or
groups. First, compared with existing methods which decou-
ple the face into pose and expression, we propose a disentan-
glement scheme to isolates three components from the human
face, namely, appearance, pose, and expression. Second, we
propose to use input AUs to control muscle group intensi-
ties in the generated face, and integrate the AUs features with
the disentangled expression latent code. Finally, we present
a self-supervised training strategy with well-designed con-
straints. Experiments show our method achieves fine-grained
expression control, produces high-quality talking head videos
and outperforms baseline methods.

Introduction
Talking head generation has attracted much attention in the
field of computer vision over recent years. Though tremen-
dous progress has been made in enhancing the visual quality
of generated videos, most existing studies aim at producing
more realistic videos (Ren et al. 2021; Wang et al. 2022) or
focus on the audio-based lip synchronization (Prajwal et al.
2020b; Cheng et al. 2022). Recently, a few facial expression
editing in talking head works have been proposed (de Bar-
ros Reis, Dornhofer Paro Costa, and De Martino 2020; Li
et al. 2021; Liang et al. 2022), which conduct emotional
video synthesis at a coarse granularity to generate specific
emotions like happy or sad. These methods either transfer
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Figure 1: Our FG-EmoTalk enables fine-grained facial ex-
pression control via taking input AUs to control the acti-
vation intensities of muscle groups in the generated talking
face. Our method is subject-agnostic, and can be applied for
both audio-driven and video-driven talking head synthesis.

expressions from input videos (Cheng et al. 2022) by assign-
ing expressions frame-by-frame from input video templates,
or enable expression editing using predefined emotions (Sun
et al. 2022). However, fixed emotions can only represent
limited types of emotions in a coarse-grained and discrete
manner, making it difficult to achieve natural and precise
emotion editing. In addition, emotions from driving videos
also introduce ambiguity if input emotions are misjudged.
Talking head video generation with fine-grained controllable
facial expressions 1 is still an unaddressed problem.

In this work, we address the fine-grained expression edit-
ing task in talking head videos, enabling overall emotion
control as well as editing expression details with facial
AU constraints. Our method uses AUs (Ekman and Friesen
1978) as the fundamental units of expression, and the goal is
to control fine-grained expression by manipulating individ-
ual AUs or groups. For example, activating AU-12 (lip cor-
ner puller) when generating a smile, or manipulating inner
brow raiser by setting AU-1 intensity to level 5 (see Fig. 1).

1Note the facial expression here is different from emotion.
Emotion is referred to as a specific type of facial expression with a
set of predefined AUs’ intensities in this paper.
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This task is useful yet challenging due to two entangled is-
sues: 1) isolating expression-specific features for more fine-
grained granular control, and 2) providing AU-based con-
trol and alignment of human faces with expressions. The
most related works (Ren et al. 2021; Yin et al. 2022; Pang
et al. 2023) adopt feature disentanglement mechanisms to
extract pose and expression from input videos. However,
we have found these pose and expression features also con-
tain appearance information in our pilot study. Starting from
this point, to obtain purer and more efficient expression fea-
tures while retaining facial appearance, we propose a novel
face disentanglement framework isolating not only pose and
expression but also appearance-specific features in talking
head. Our disentanglement method is able to obtain more
efficient appearance-invariant expression features. We also
present an AU encoding module, and the learned AU fea-
tures can be leveraged together with the expression fea-
tures extracted from the disentanglement scheme to edit la-
tent codes and generate talking heads with fine-grained ex-
pression details. Considering the lack of source and gener-
ated talking head paired data with fine-grained expression
annotations, we design a self-supervised network training
strategy, where talking head generated from separated la-
tent codes under different loss constraints are set as supervi-
sions to disentangle appearance, expression, and pose com-
ponents. Our FG-EmoTalk also enables audio-driven talking
head generation. By designing a Wav2Vec2 (Baevski et al.
2020) based module as the audio encoder, the extracted au-
dio features can be fused with the AU features to edit the
latent code for talking head generation. In this way, our
proposed method can be applied in both audio-driven and
video-driven talking head video generation tasks.

The main contributions of our work are three-fold:
• To the best of our knowledge, we first address the fine-

grained controllable facial expression editing task in
talking head video generation. We propose an end-to-end
video generation framework that enables expression edit-
ing by integrating facial AUs to control muscle group ac-
tion intensities for expression details.

• We propose a feature decomposition mechanism to dis-
entangle talking head features into three components,
namely appearance, pose, and expression. The isolated
expression component is then combined with input AUs
for fine-grained expressions generation.

• We present a self-supervised network training strat-
egy with well-designed constraints and two new losses,
namely appearance loss and expression loss. Exten-
sive experiments demonstrate that our method gener-
ates videos with high visual quality and appropriate fine-
grained expression details.

Related Work
Talking Head Video Generation
Talking head video generation can be used for a lot of
downstream applications such as video conferencing, digital
characters, movie special effects, etc. Existing studies can
be mainly categorized into two types: audio-driven (Vou-
gioukas, Petridis, and Pantic 2018; Zhou et al. 2020; Lu,

Chai, and Cao 2021; Song et al. 2022) and video-driven
methods (Ha et al. 2020; Drobyshev et al. 2022). Audio-
driven methods aim to maintain audio-lip synchronization
of generated animations of human faces, which can be fur-
ther classified into Generative Adversarial Network (GAN)
based methods and 3D Morphable Models (3DMMs) based
methods. Most GAN-based methods only generate images
depicting the mouth-related region (Prajwal et al. 2020a;
Yin et al. 2022; Zhou et al. 2021), and 3D-based approaches
usually extract Mel-Frequency Cepstral Coefficient (MFCC)
features from the input audio to estimate 3DMM expres-
sion coefficients (Zhang et al. 2022) or vertices offsets (Fan
et al. 2022). Compared to 3DMM approaches which only
model facial movements, our method also incorporates head
and shoulder movements. Additionally, 3DMM approaches
tend to produce deviations, and smoothing strategies like in
PIRender (Ren et al. 2021) would introduce expression in-
accuracies.

Compared with audio-driven methods, video-driven
methods can utilize richer information contained in the input
video to generate more natural and realistic results, which
can be roughly classified into 2D keypoint-based meth-
ods (Siarohin et al. 2019; Zhao and Zhang 2022), 2D GAN-
based methods (Wang et al. 2022; Yin et al. 2022), and 3D-
model-based networks (Lahiri et al. 2021; Hong et al. 2022;
Ma et al. 2023). 2D keypoint-based methods first compute
the transfer matrix via matching keypoint pairs between the
source image and the driving image, then wrap the source
image to get the dense flow, and finally generate images with
a GAN generator (Hong et al. 2022). 2D GAN-based meth-
ods mostly utilize the prior information obtained by Style-
GAN (Karras et al. 2020) and manipulate the talking head
video generation by conducting metric learning or condi-
tional injection (Zhou et al. 2021; Tzaban et al. 2022). 3D-
based networks leverage 3DMM coefficients for human face
reconstruction, but the generated videos tend to have facial
inconsistency problems due to the inaccurate recognition of
3DMM coefficients (Ren et al. 2022).

Our method uses a driving video and a source image as the
input to generate talking head with high quality and ideal fa-
cial expression details. Moreover, our framework can be fur-
ther extended to audio-based talking head video generation.

Emotion Editing in Talking Head Videos
Most talking head video generation research concentrate on
enhancing the visual quality of the output video, while the
facial emotions in videos are neglected (Zhou et al. 2021).
Very recently, a few studies generates talking head with fa-
cial expressions according to whole input video (Cheng et al.
2022), where the produced emotions usually lack stability.
Besides, these methods can only transfer expression in the
driving video and do not support fine-grained expression
control (de Barros Reis, Dornhofer Paro Costa, and De Mar-
tino 2020; Liang et al. 2022). For example, EAMM (Ji et al.
2022) aims at generating one-shot emotional talking faces
on arbitrary subjects, and it extract emotion patterns from
the source video. Emotalk (Peng et al. 2023) is a speech-
driven 3D face animation method, while our approach can
be applied in both video-driven and audio-driven. GC-AVT
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Figure 2: The framework of our FG-EmoTalk. Our method mainly contains a video generation network and an AU encoder
module. Given an input source image and a driving image, image features are first extracted with the image encoder, and then
disentangled into three components, i.e., the appearance embedding, the pose embedding and the expression embedding. Then,
the pose and expression embeddings are fused in a latent space. The expression embedding is further constrained by the AU
feature. Finally, the edited latent code is combined with the facial feature to generate the talking head via an image decoder.

(Liang et al. 2022) disassembles the driving image into a
cropped mouth, a masked head and a upper face, to imple-
ment expressive generation. Fine-grained emotion editing in
talking head generation remains an unsolved task. Differ-
ent from the above methods which extracts facial expression
dynamics and motion features, we propose to disentangle
not only expression and motion, but also appearance infor-
mation. Recently, very few studies (Chen et al. 2021, 2022)
leverage AUs (Zhang et al. 2021a) to help the talking head
video generation. However, these studies focus on enhanc-
ing image quality and lip-sync accuracy, while this paper
uses AUs as the input for fine-grained expression control.

Method
The architecture of our proposed network is illustrated in
Fig. 2, which supports one-shot talking head video genera-
tion with a source image, a driving video and input intensi-
ties of AUs. Our talking head generation framework is built
on a GAN-based structure (Wang et al. 2022), and mainly
consists of a video generation network and an AU encoder.
There are two key modules in the video generation network:
(i) the feature disentanglement module which learns the ap-
pearance, pose and expression embedding from the image
features, and (ii) the latent code editing module integrates
the expression embedding with input AU features and con-
struct the latent code for final image generation. The AU
encoder module extracts the AU latent code of the input AU
intensity vector for target expression editing.

Video Generation Network
The video generation network mainly consists of an image
encoder, a feature disentanglement module that contains an
appearance extractor, a pose extractor and an expression ex-

tractor, a latent code editing module, an image generator, and
an image discriminator. Given an input source image S and
a frame from the driving video (denoted as driving image)
D, we first extract image features from them with a CNN-
based image encoder and disentangle the image features into
three components, namely the appearance embedding, the
pose embedding and the expression embedding. Then, we
follow (Wang et al. 2022) to fuse the pose embedding and
the expression embedding which represents the motion in-
formation with an orthogonal dictionary in a latent space.
The expression embedding is further constrained by the AU
feature of the AU encoder module. Finally, the edited latent
code composed of appearance, pose, and expression infor-
mation is combined with the hierarchical facial feature to
generate the output talking head via an image generator.

Denoting the image encoder as E(·), we formulate the
pipeline of the video generation network as:

xS = E(S), xD = E(D) (1)

where xS and xD represent the output source and driving
image feature. Besides, we also extract the hierarchical fa-
cial features of the source image S as xS facial with E(·),
which will be used in the latter image generation process.

Then, three feature extractors are designed to disentangle
the source and driving image features, i.e., an appearance
extractor Eapp, an expression extractor Eexp, and a pose ex-
tractor Epose. The appearance extractor learns image facial
appearance, such as the shape of the face and the size of
facial features. We set a specific appearance extractor to en-
sure that the outputs of the pose and expression extractors
contain only motion features and not facial appearance in-
formation. The appearance extractor Eapp consists of a fully
connected neural network that employs self-attention mech-
anisms. These three extractors share the same structure as
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in (Wang et al. 2022) and the same parameters, which helps
guarantee that the latent representations encoding facial ap-
pearance, expression, and body posture are embedded in the
same latent space. The disentanglement process and the la-
tent code editing process can be formulated as:

xm
n = Em(xn),m ∈ {app, pose, exp}, n ∈ {S,D} (2)

where xm
n represents the appearance, pose or expression

embedding of the source or driving image. Since our FG-
EmoTalk aims to keep appearance inconsistency from the
source image and be similar to the driving image in pose and
expression, we use the appearance embedding of the source
xapp
S , and the pose and expression embeddings of the driving

image (xpose
D and xexp

D ), for latter image generation process.
Furthermore, the motion-related embeddings of the driv-

ing image, i.e., xpose
D and xexp

D , are fused with an orthogonal
dictionary in a latent space Dic(·), which is further added
with the appearance embedding of the source image xapp

S to
form the final edited latent code y:

y = xapp
S +Dic(xexp

D , xpose
D ) (3)

We finally feed the edited latent code y and the hierar-
chical facial features xS facial into the generator G(·) and
obtain the generated output image S′:

S′ = G(xS facial, y) (4)

AU Encoder Module
To achieve fine-grained control of facial expressions, we de-
sign an AU encoder module (see the lower left corner of
Fig. 2) to incorporate with the expression latent code for fa-
cial expression details control. The AU Encoder consists of a
learnable AU Embedding matrix and a Gated-GCN network.

The input of the AU encoder module is an AU intensity
vector representing the type and intensity of each action
unit. The AU intensity vector is first multiplied by the corre-
sponding AU Embedding, and the output is encoded with the
Gated-GCN, where an averaging graph pooling layer is ap-
plied to extract graph features. The reason for using Gated-
GCN to encode AU intensity features is to propagate fea-
tures based on the relationship between AUs as in (Luo
et al. 2022). During training, the output AU features of the
AU encoder module are set as supervision for the expression
latent code learning in the video generation network. Dur-
ing testing, the expression latent can be added or directly
replaced with the AU embedding. In Fig. 1, row 3/4 demon-
strates generation by adding the expression latent with the
AU embedding, allowing specific AUs to change while pre-
serving other expressions. Experiments demonstrate the ef-
fectiveness of editing facial expression details by modifying
the AU intensity vector (refer to the Experiments section).

Self-Supervised Training Strategy
Due to the lack of paired talking head source and generated
data with fine-grained facial expression details, and there is
no dataset involving separated facial expressions and pose
movements for the same talking head either, we design a
self-supervised learning strategy to train our FG-EmoTalk.
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Figure 3: The loss calculation process.

Images generated with separated latent codes using differ-
ent loss constraints are leveraged to conduct the disentan-
glement of appearance, expression, and pose information.

Specifically, taking the source image S and the driving
image D as input, our network generates the image S′ =
G(xS facial, y) as described in Equation 4, where y is the
edited latent code composed of the appearance of the source
image xapp

S , and the fused expression and pose feature of
the driving image Dic(xexp

D , xpose
D ). Besides the target im-

age S′, the other four images conditioned on the edited la-
tent code with slight changes are also generated during the
training process. We use different combinations of latent
code y with the facial feature of the input source image
xS facial to generate the images: (1) the appearance-driven
image Sapp generated only with the appearance latent code;
(2) the expression-driven image Sexp generated with the ap-
pearance latent code and the expression latent code; (3) the
pose-driven image Spose generated with the appearance la-
tent code and the pose latent code, and (4) the reconstructed
images Srec generated only with the combination of its all
three latent codes. We formulate the procedure as:

Sapp =G(xS facial, Eapp(xS))

Sexp =G(xS facial, Eapp(xS) +Dic(Eexp(xD)))

Spose =G(xS facial, Eapp(xS) +Dic(Epose(xD)))

Srec =G(xS facial, Eapp(xS) +Dic(Eexp(xS))

+Dic(Epose(xS)))

(5)

To effectively disentangle the appearance, expression, and
pose information, we design a set of constraints on the above
intermediate output images via loss functions. Specifically,
four types of image pairs are used as the source and driv-
ing image during the network training process to ensure the
appearance (⟨Sapp, S⟩), expression (⟨Sexp, D⟩), and content
(⟨S′, D⟩, ⟨Srec, S⟩) consistency. These constraints offer ef-
fective supervision for the disentanglement of appearance,
expression, and pose latent codes. Fig. 3 shows the condi-
tional generated images and the self-supervised training pro-
cedure. See more analysis in our experiments in Sec. .

Loss Function
Our loss function consists of five loss terms.

Appearance Loss Lapp. The appearance loss constrains
the generated talking head is the same identity as the in-
put image. Popular appearance loss computing methods use
arcface (Deng et al. 2019) as the backbone to measure the
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similarity of the input human face and the generated one.
However, talking head generation in our work involves not
only the human face but also the head and shoulder regions.
Inspired by the idea in the ReID field, we adopt a pre-trained
backbone in (Zheng et al. 2019) (denoted as LA(·)) to com-
pute the appearance loss Lapp:

Lapp = LA (Sapp, S) (6)

Expression Loss Lexp. Previous methods have used fa-
cial expression recognition network (Pang et al. 2023) to
calculate the expression loss. However, on one hand, the
performance of facial expression recognition is instability.
On the other hand, the widely used datasets (Zhang et al.
2021b; Zhu et al. 2022) in the talking head field do not have
enough data with significant facial expressions. The exist-
ing method cannot well evaluate the quality of the expres-
sion latent code. To enable talking heads generation with a
greater degree of expression variation, we use the Micron-
BERT (Nguyen et al. 2023) (denoted as LE) to compute the
distance of facial expressions:

Lexp = LE (Sexp, D) (7)
Perceptual loss Lper. To enhance the vividness of the gen-

erated results, we adopt a perceptual loss based on VGG-
16 (Johnson, Alahi, and Fei-Fei 2016) (denoted as LP ), to
constrain the similarity of the following two pairs of images:

Lper = LP (S′, D) + LP (Srec, S) . (8)
Reconstruction loss Lrec. We use Mean Absolute Error

(MAE) loss (denoted as LR) to calculate the reconstruction
error between image pairs:

Lrec = LR (S′, D) . (9)

GAN loss Lgan. We use a discriminator to distinguish gen-
erated images from source images, and use a non-saturated
adversarial loss LG to measure the error of the generated
results:

Lgan = LG(S
′) + LG(S

app) + LG(S
exp)

+LG(S
pose) + LG(S

rec) (10)

Finally the overall loss function is a combination of the
five loss terms:

L = λappLapp + λexpLexp + λperLper + Lrec + Lgan (11)

where λapp, λexp and λper are hyper-parameters used in net-
work training process.

Experiments
Datasets. We use the HDTF (Zhang et al. 2021b) and
CelebV-HQ (Zhu et al. 2022) datasets which have no emo-
tion or AU annotation to train our video generation network
(see the upper part of Fig. 2). As for the evaluation, we select
2,000 videos from the HDTF dataset that did not appear in
the training set. Moreover, the MEAD dataset (Wang et al.
2020) contains emotional talking face videos of different ac-
tors speaking with 8 emotion categories. We also randomly

Method ACCemo ↑ PSNR↑ SSIM ↑
EAMM 0.5435 30.0120 0.8577

VideoRetalking 0.5773 31.2131 0.8437
Ours 0.6102 31.4556 0.8802

Table 1: Quantitative evaluation on facial expression quality.

select 2,000 videos from the MEAD dataset for testing to
validate the cross-dataset generalization ability of our FG-
EmoTalk. All videos are resized to a resolution of 512x512.
We did not geometrically align faces, instead allowing free
motion within a fixed bounding box.

We used the DISFA dataset (Mavadati et al. 2013) to train
our AU Encoder Module for AU-based expression editing.
Due to annotation issues, we filtered some poorly labeled
examples and AUs affecting mouth shapes. We retained 7
AUs for expression control, shown in Fig. 5.
Evaluation Metrics. We evaluate talking head generation
methods across three factors: (1) facial expression quality:
we adopt the accuracy of emotion classification (ACCemo),
PSNR, and SSIM to measure the quality of the expression
in the generated videos; (2) visual quality: we use learned
perceptual image patch similarity (LPIPS), peak signal-to-
noise ratio (PSNR), structural similarity index (SSIM), av-
erage pose coefficient distance (APD), and average emotion
coefficient distance (AED) to evaluate the visual quality of
the generated videos; (3) disentanglement of pose and ex-
pression: we use mean absolute error (MAE) to measure the
accuracy of predicted pose and expression features. In all the
tables, ↓ indicates “the smaller the better”, and ↑ indicates
“the larger the better”.
Implementation Details. We implemented our framework
in Pytorch. During training, we first train the video genera-
tion network and then train the AU encoder with the param-
eters of the video generation network fixed to enable fine-
grained expression editing.During testing, the expression la-
tent can be either added or directly replaced with the AU
embedding. In Fig. 1, row 3/4 show the generation results
by adding the expression latent with the AU embedding, al-
lowing specific AUs to change while preserving other ex-
pressions. All experiments were conducted with 4 NVIDIA
Tesla A10 GPUs. We used the Adam optimizer with a learn-
ing rate of 0.002. The hyperparameters λapp, λexp, and λper

were set to 100.0, 100.0, and 10.0 respectively in the train-
ing stage. To improve teeth clarity in generated images, we
adopted fine-tuning the GFP-GAN (Wang et al. 2021) as an
optional post-processing step. By fine-tuning for 100 epochs
on CelebV-HQ, the quality of teeth in generated talking head
has been significantly improved.

Compare with State-Of-The-Art Methods
Facial Expression Quality. Facial expression control us-
ing AU intensity is the focus of our FG-EmoTalk. We in-
vestigate the expression editing performance of our method
with single AU and Muliple AUs.

Single AU. Talking head generation results with each AU
are shown in Fig. 5, demonstrating that our method can edit
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Figure 4: Talking head generation example results with emotions involving combinations of multiple AUs. Left: results of our
method with different AUs’ intensities. Right: results of EAMM and VideoRetalking with emotion labels.
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Figure 5: Talking head generation results with single AU.
Input images are from CFD dataset (Lakshmi et al. 2021).

fine-grained expressions by integrating AUs to control mus-
cle group intensities.

Multiple AUs. To eliminate the impact of the original
expressions of driving images, we further choose to con-
duct an audio-driven talking head generation experiment to
explore the performance of expression control with multi-
ple AUs. We compare two representative emotional talking
head generation methods, i.e., EAMM (Ji et al. 2022) and
VideoRetalking (Cheng et al. 2022), which generate talk-
ing head with emotion labels (not fine-grained). We first fol-
low (Ling et al. 2020) to establish the correspondence be-
tween three emotions and their corresponding combinations
of AUs (happy: AU1+AU12, sad: AU4+AU5+AU9, disgust:
AU4+AU6+AU9). Then we randomly select 100 groups of
images and audio combinations from the test set of CelebV-
HQ for evaluation. In order to eliminate the influence of
mouth shapes generated by these methods on the evalu-
ation metrics, we adopt an emotion recognition network
(Amos, Ludwiczuk, and Satyanarayanan 2016) to measure
the quality of generated expressions. We also include com-
mon PSNR and SSIM indicators as the metrics. The results
are shown in Tab. 1, indicating that our method achieves the
best performance. From the visual results shown in Fig. 4,
we can observe that the face reconstruction performance
of EAMM is not satisfactory, and the emotional expression
editing results of our method are better than those of Video-
Retalking. In addition, we also show generation results with
different AUs’ intensities in the left part of Fig. 4, demon-
strating that our FG-EmoTalk can edit expressions with
variable intensities. The input images are from Voxceleb2
dataset (Chung, Nagrani, and Zisserman 2018), which are
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Figure 6: Visual quality comparison with SOTA methods.
Top two rows: same-identity reenactment. Bottom two rows:
cross-identity reenactment.

Method TPSM StyleHeat LIA DPE Ours
LPIPS ↓ 0.1587 0.3374 0.1563 0.1598 0.1565
PSNR ↑ 31.1108 20.6398 31.3126 30.2071 31.4725
SSIM ↑ 0.7928 0.5674 0.7834 0.7534 0.7970
APD ↓ 0.0358 0.0200 0.0301 0.0089 0.0067
AED ↓ 0.0075 0.0152 0.0174 0.0153 0.0053
APD ↓ 0.0199 0.0232 0.0139 0.0093 0.0088
AED ↓ 0.0286 0.0632 0.0283 0.0528 0.0185

Table 2: Quantitative comparisons on visual quality. Rows
(2-6): same-identity; Rows (7-8): cross-identity.

not used for training and can be seen as in-the-wild inputs.

Visual Quality Comparison. We compare our method
with four state-of-the-art (SOTA) approaches on the vi-
sual quality of generated talking heads, i.e., TPSM (Zhao
and Zhang 2022), StyleHeat (Yin et al. 2022), LIA (Wang
et al. 2022) and DPE (Pang et al. 2023). TPSM is a typical
2D keypoint-based method surpassing First-Order Motion
Model. LIA is a typical StyleGAN (Karras et al. 2020)-based
method. StyleHeat and DPE are representative works focus-
ing on disentanglement techniques in talking head genera-
tion. As shown in Tab. 2, our approach achieves the highest
scores across all metrics on both same-identity and cross-
identity experimental settings compared to the baselines.
Fig. 6 also shows our visual results are superior to these
methods in terms of visual quality.

User study. We further conduct a user study to compare
our method with the four SOTA methods. We randomly se-
lect 10 generation examples from the HDTF dataset using
these methods. The participants were presented with the in-
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Method (a) (b) (c) (d) (e)
TPSM 9.5% 8.0% 11.5% 8.5% 8.5%

StyleHeat 7.0% 6.5% 11.5% 9.0% 8.5%
LIA 14.5% 13.0% 9.0% 12.5% 10.5%
DPE 4.0% 4.5% 4.5% 6.0% 4.5%
Ours 65.0% 68.0% 63.5% 64.0% 68.0%

Table 3: User study. (a): Naturalness; (b): Appearance; (c):
Lip sync; (d): Expression; (e): Overall. The percentages of
five methods being selected as the best for corresponding
criterion are shown.

Method SSIM ↑ APD ↓ AED ↓
StyleHeat 0.6535 0.0184 0.0300

DPE 0.8535 0.0135 0.0265
Ours 0.8595 0.0115 0.0222

Table 4: Comparison with SOTA methods on disentangle-
ment efficiency of pose and expression latent code.

put source photo, the driving video, as well as the five gen-
erated videos, arranged in a side-by-side manner to ensure a
randomized order. Subsequently, they were tasked with re-
sponding to questions of five criterion: naturalness, appear-
ance, lip sync, expression and overall. A total of 20 par-
ticipants participated in this user study. The results of each
method being selected as the best under the criterion in each
question are shown in Tab. 3. Our proposed method achieves
the best results across all evaluation criteria.

Disentanglement of Pose and Expression. To evaluate
the effectiveness of our disentanglement mechanism, we
compare our approach with two SOTA disentanglement-
based talking head generation methods, i.e., StyleHeat (Yin
et al. 2022) and DPE (Pang et al. 2023). As shown in Tab. 4,
our method achieves the best results. Fig. 7 shows the visual
results generated with only pose or expression latent code,
respectively. These results demonstrate that our method per-
forms better than the baselines in imitating the pose and ex-
pressions of driving images.

Ablative Study
We further explore the contributions of the loss functions.
Specifically, three variants of our model are implemented by
removing the appearance loss, the expression loss, or both
from our full model. The quantitative results are shown in
Tab. 5. We can conclude that: (1) the LPIPS changes sig-
nificantly without appearance loss, which indicates appear-
ance loss is crucial for capturing visual similarity. (2) The
APD and AED scores increase obviously without expres-
sion loss, demonstrating that the expression loss is impor-
tant to disentangle appearance and expression. (3) Removing
both appearance and expression losses result in invalid gen-
erated images and significantly reduces reconstruction accu-
racy and expression similarity.

Driven by Audio
Besides the video-driven talking head generation, our frame-
work also enables using audio for controlling the generation.

Source StyleHeat DPE Ours Driving Source StyleHeat DPE Ours Driving
(a) (b)

Ours

Happy
AU1: Inner Brow Raiser
AU12: Lip Corner Puller

Sad
AU4: Brow Lowerer

AU5: Upper Lid Raiser
AU9: Nose Wrinkler

Disgust
AU4: Brow Lowerer
AU6: Cheek Raiser
AU9: Nose Wrinkler

VideoRetalkingEAMM
Source StyleHeat DPE Ours Driving

(b)

(a)

Ours

Happy

Sad

Disgust

VideoRetalkingEAMM

Figure 7: (a) Talking head video examples generated with
only pose latent code. (b) Talking head video examples gen-
erated with only expression latent code.

LPIPS ↓ PSNR ↑ SSIM ↑ APD ↓ AED ↓
(a) 0.1735 29.4573 0.7404 0.0186 0.0214
(b) 0.1690 30.8425 0.7574 0.0307 0.0117
(c) 0.2111 27.3525 0.7092 0.0302 0.0122

Ours 0.1565 31.4725 0.7970 0.0067 0.0053

Table 5: Quantitative results of ablation study. (a): without
Lapp; (b): without Lexp; (c): without Lapp&Lexp.

Existing audio-driven studies usually control mouth move-
ment with 3DMM coefficients, while we directly align au-
dio features with the disentangled expression latent code to
control mouth shape changes. Specifically, we design an au-
dio encoder based on Wav2Vec (Baevski et al. 2020) and
ResBlocks (He et al. 2016) to extract audio features, and
adopt InfoNCE (Oord, Li, and Vinyals 2018) to constrain
the alignment between the output of the audio encoder and
the expression latent code of the video generation network.
In this way, we can control mouth-shape movements in talk-
ing head generation with input audio.

Conclusion
In this paper, we propose a talking head generation frame-
work enabling fine-grained facial expression control. An
self-supervised disentanglement strategy is designed to dis-
entangle facial appearance, expression, and posture informa-
tion. By aligning the expression latent code with AU em-
bedding, our FG-EmoTalk enables fine-grained expression
editing using AUs. Extensive experiments show our method
is better than baseline methods and can control fine-grained
expressions. For future work, on one hand, we will collect
new datasets with more fine-grained expression annotations
for more precision talking head generation. On the other
hand, we will cope up with more interactive modalities to
enable more user-friendly talking head generation.
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