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Abstract

The performance of existing unsupervised video object seg-
mentation methods typically suffers from severe performance
degradation on test videos when tested in out-of-distribution
scenarios. The primary reason is that the test data in real-
world may not follow the independent and identically dis-
tribution (i.i.d.) assumption, leading to domain shift. In this
paper, we propose a Generalizable Fourier Augmentation (G-
FA) method during training to improve the generalization a-
bility of the model. To achieve this, the GFA performs Fast
Fourier Transform (FFT) over the intermediate spatial do-
main features in each layer to yield corresponding frequen-
cy representations, including amplitude components (encod-
ing scene-aware styles such as texture, color, contrast of the
scene) and phase components (encoding rich semantics). We
produce a variety of style features via Gaussian sampling to
augment the training data, thereby improving the generaliza-
tion capability of the model. To further improve the cross-
domain generalization performance of the model, we design
a phase feature update strategy via exponential moving aver-
age using phase features from past frames in an online update
manner, which could help the model to learn cross-domain-
invariant features. Extensive experiments show that the pro-
posed GFA achieves the state-of-the-art performance on pop-
ular benchmarks.

Introduction
Given a video sequence, unsupervised video object segmen-
tation (UVOS) (Zhou et al. 2020; Ji et al. 2021; Tokmakov,
Alahari, and Schmid 2017; Zhang et al. 2021) aims to lo-
cate and segment the primarily moving foreground targets
without any prior knowledge. This task setting is the same
as zero-shot learning in which the test instances may not
be seen during training (Chen et al. 2020). UVOS has been
widely applied in a variety of practical applications such as
visual tracking , autonomous driving and video surveillance.

The existing UVOS methods (Zhang et al. 2021; Ren et al.
2021) are trained and tested by the samples with an im-
plicit assumption that they are independently and identical-
ly distributed (i.i.d.), i.e., both training and test data are in-
distribution samples. Despite the demonstrated success, in
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Figure 1: Bottom: Training samples include motorcycle and
mouse categories while the seen test sample motorcycle
with different scene styles suffers from “scene shift” and
the unseen test sample worm undergoes “semantic shift”.
To reduce both types of distribution shifts, our Generaliz-
able Fourier Augmentation (GFA) augments the features in
the frequency domain by sampling the amplitudes from a
Gaussian distribution while online updating the phase com-
ponents across different domains, which helps the mod-
el to learn style-rich and cross-domain-invariant features
that are effective to improve model generalization capability
(i.e., Top: Information stored In Weights (IIW) (Wang et al.
2022)) vs. accuracy measured by J&F commonly used in
UVOS between our GFA and the state-of-the-art methods).

practical applications, the UVOS models (Chen et al. 2020;
Yue et al. 2021) often suffer from the out-of-distribution
(OOD) test samples due to the zero-shot task setting, which
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degrades the model performance significantly. In UVOS, we
observe that there are two OOD scenarios that may cause
distribution shifts in the test samples. Among them, we term
the first scenario as “scene shift”, e.g., the same semantic
categories of targets in the test videos are seen in the train-
ing data, but the targets in the test videos suffer from severe
appearance variations due to the varying scene styles of tex-
ture, color, and contrast (e.g., the motorcycle shown in Fig-
ure 1). Besides, we term the second scenario as “semantic
shift”, where the targets in the test videos might belong to
the categories that are not present in the training data (e.g.,
the novel class of worm shown in Figure 1). Without con-
sidering these OOD challenges, the existing state-of-the-art
UVOS methods (Pei et al. 2022; Cho et al. 2023; Ren et al.
2021; Ji et al. 2021; Zhou et al. 2020) cannot achieve a sat-
isfying generalization capability (see the IIW (Wang et al.
2022) vs. J&F shown in the top of Figure 1).

An intuitive way to improve the generalization capability
of a model is to allow it to see diverse samples from differ-
ent domains (Tobin et al. 2017). Based on this viewpoint,
we address the “scene shift” issue by making the model see
the diverse scene styles in training. Recently, numerous ev-
idences show that the amplitude spectrum of Fourier Trans-
form of a scene image encodes the rich scene style infor-
mation (e.g., the texture, color, contrast information in the
scene) (Oliva and Torralba 2001; Xu et al. 2021; Yang and
Soatto 2020). Therefore, properly manipulating the ampli-
tude spectrum of the image Fourier Transform can generate
a variety of diverse scene styles that facilitate to improve
the model generalization capability. Inspired by this, to gen-
erate the diverse scene styles, we propose to augment the
amplitude spectrum features with uncertainty via Gaussian
sampling. Specifically, given the spatial domain intermedi-
ate features of an image, we leverage the Fast Fourior Trans-
form (FFT) (Brigham and Morrow 1967) to decompose the
features into amplitude components and phase components.
Then, to increase the diversity of styles, we introduce un-
certainty modeling with an assumption that the amplitude
feature statistics (i.e., mean and standard deviation) follow
a Gaussian distribution. In this way, we can produce diverse
scene style features to reduce the dependency of the model
on the training samples and effectively reduce “scene shift”.

Different from the amplitude spectrum that can capture
rich scene style information, the phase spectrum of the
image Fourier Transform encodes rich semantic informa-
tion (Oliva and Torralba 2001; Xu et al. 2021; Yang and
Soatto 2020), which can be used to address the “semantic
shift” issue. To achieve this, we propose an online update
strategy to process the phase spectrum features. Given the
current phase features and the previous phase features from
the past frames updated before, we apply an Exponential
Moving Average (EMA) technique (Klinker 2011) to update
the phase features by the phase features of the past frames.
In this way, the smoothed phase features can be correlated
with the entire dataset in an online update manner to produce
cross-domain-invariant features, which helps reduce the “se-
mantic shift”, further improving the generalization capabili-
ty of the model.

In summary, our main contributions include:

(1) a novel generalizable Fourier augmentation frame-
work to learn robust domain-invariant features, which effec-
tively improves the generalization capability of the model
for UVOS.

(2) a sampling method with uncertainty modeling on the
amplitude feature, which can produce diverse scene-aware
style features to address “scene shift” issue.

(3) an online update strategy on the phase features to bet-
ter learn cross-domain-invariant features, which can allevi-
ate the “semantic shift” issue and further enhance the gen-
eralization ability of the model.

Methodology
Overview
Figure 2 illustrates the network architecture of our mod-
el. The model has a one-stream end-to-end Transformer ar-
chitecture, which is composed of an encoder with a set
of specifically-designed Transformer layers and a decoder
composed of convolutional layers and an upscale layer.

At the encoder stage, we first divide the input of the con-
catenating RGB image and optical flow map into a set of to-
kens with size 4× 4 pixels. Then, the tokens are fed into the
overlap patch embedding layer to produce the embeddings.
Afterward, the embeddings are fed into 4 Transformer lay-
ers with each containing N -layer transformer blocks, each
of which consists of an Efficient self-attention module and a
Mix-FFN module (Xie et al. 2021), to make the token fea-
tures capture long-range dependency information. After this,
the token features are fed into an overlapping patch merging
layer to reconstruct the whole feature map X ∈ RH×W×C .
The feature map X is transformed by a 2-D FFT to produce
the corresponding frequency-domain feature representations
of amplitudeA ∈ RH×W×C and phase P ∈ RH×W×C . We
then sample the amplitude featuresA to yield diverse scene-
aware features, which can effectively augment the training
samples. Besides, we employ an EMA strategy to online
update the phase features, which can help to learn cross-
domain-invariant features that can enhance the model gen-
eralization capability. In the end, the sampled amplitude and
online updated phase features are combined and fed into an
iFFT layer to reconstruct the augmented spatial features.

At the decoder stage, the augmented spatial features in
each Transformer layer are all fed into an upscale layer
which consists of a 1 × 1 convolution layer and an inter-
polation layer, to produce the features with the same resolu-
tion. At the head of the network, a 1 × 1 convolution layer
followed by an upscaling and a sigmoid layer to yield the
predicted segmentation mask P ∈ [0, 1]H×W .

Generalizable Fourier Augmentation
Figure 3 illustrates the schematic diagram of our GFA. The
GFA first transforms the spatial features into frequency do-
main via FFT, and then augments the amplitude features via
Gaussian sampling technique that takes modeling uncertain-
ty into account, and enhances the phase features via EMA
that is an online update strategy, which can effectively learn
domain-invariant foreground features.
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Figure 2: Pipeline of the proposed network architecture for UVOS.
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Figure 3: Schematic diagram of the proposed GFA, which
includes an amplitude feature sampling process and an on-
line updated phase feature process. The former generates
augmented features with diverse scene-aware styles while
the latter generates continuously updated domain-invariant
foreground features, which are able to enhance the model
generalization capability.

Frequency Representation Given the feature map X ∈
RHi×Wi×Ci with width Wi, height Hi, and channel number
Ci after the overlap patch merging layer in the i-th Trans-
former layer, each channel of X is transformed by FFT to
achieve the corresponding frequency representation X̂i as

X̂i(x, y) = F(Xi), (1)

where F denotes the FFT operator (Brigham and Morrow
1967). Then, X̂i can be decomposed into an amplitude com-

ponent Ai and a phase component Pi as

Ai =

√
R2(X̂i)(x, y) + I2(X̂i)(x, y),

Pi = arctan(I(X̂i)(x, y)/R(X̂i)(x, y)),
(2)

where R(X̂i) and I(X̂i) denote the real component and
imaginary component of the frequency feature representa-
tion X̂i, respectively. In addition, combined amplitude Ai
and phase Pi can be transferred to spatial domain features
Xi via IFFT, which is defined as

Xi = F−1(AiejPi), (3)

where F−1 denotes the IFFT operator (Brigham and Mor-
row 1967).

Amplitude Feature Augmentation The amplitude fea-
tures Ai encode rich scene-aware style information about
the texture, color, and contrast of the scene (Huang et al.
2021; Oliva and Torralba 2001). An intuitive way to im-
prove the generalization capability of the model to differ-
ent scenes is to allow it to see diverse scene styles. To this
end, we augment the scene-aware samples by manipulating
the amplitude statistics (mean and standard deviation). We
randomly sample the amplitude statistics from a Gaussian
distribution to produce a variety of samples with different
styles to reduce the dependency of the model on the training
data. As shown in Figure 3, given a spatial domain feature
Xi in the i-th Transformer layer, we decompose Xi into am-
plitude components Ai and phase components Pi via (2),
which denotes the style content and semantics, respective-
ly. Then, we achieve the channel-wise amplitude statistics
(mean and standard deviation) in a mini-batch, which is ex-
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pressed as

µ(Ai) =
1

HiWi

Hi∑
x=1

Wi∑
y=1

Ai,

σ(Ai) =

√√√√ 1

HiWi

Hi∑
x=1

Wi∑
y=1

(Ai − µ(Ai))2,

(4)

where µ(Ai) and σ(Ai) are the mean and standard deviation
of amplitude Ai, respectively.

The variance of the probability feature statistics model-
s their uncertainty scope (Li et al. 2022; Jeon et al. 2021),
and as the variance increases, the amplitude features with
the OOD scene styles are more likely to be sampled from the
distributions. Inspired by this, we employ a non-parametric
estimation method in a mini-batch to obtain the variances of
µ(Ai) and σ(Ai) for sampling the amplitude features, which
can be formulated as

σ2
µ(Ai) =

1

B

B∑
b=1

(µ(Ai)− Eb(µ(Ai)))2,

σ2
σ(Ai) =

1

B

B∑
b=1

(σ(Ai)− Eb(σ(Ai)))2,

(5)

where B denotes batch size and Eb refers to ex-
pectation in a mini-batch. σ2

µ(Ai), σ2
σ(Ai) represen-

t the variances of µ(Ai) and σ(Ai), respectively. Once
we have obtained the new feature statistics, i.e. mean
β(Ai) ∼ N (µ(Ai), σ2

µ(Ai)) and standard deviation
γ(Ai) ∼ N (σ(Ai), σ2

σ(Ai)), we can randomly sample
rich scene-aware style features from the new distribution
N (β(Ai), γ(Ai)) to reduce the model overfitting to the
training set. However, the direct sampling operation is not
differentiable, and we therefore apply a re-parameterization
technique (Kingma and Welling 2013) to make it differen-
tiable as

β(Ai) = µ(Ai) + εµσµ(Ai),
γ(Ai) = σ(Ai) + εσσσ(Ai),

(6)

where εµ ∼ N (0,1) and εσ ∼ N (0,1) both follow the
standard normal distribution.

Finally, we use a transform similar to AdaIN (Huang and
Belongie 2017) that is widely applied in style transfer to pro-
duce the augmented amplitude features with rich styles as

Ai = γ(Ai)
Ai − µ(Ai)
σ(Ai)

+ β(Ai). (7)

Online Update of Phase Features The phase features en-
code rich semantic information that is domain-invariant, and
this is helpful to improve the generalization capability of the
model when no semantic shift occurs. Otherwise, we need
to further learn cross-domain-invariant features since the tar-
gets with different semantic categories need to be projected
onto the same foreground label space in UVOS.

To learn cross-domain-invariant features, we first define
the n-domain phase features as Pn = {P1

i , . . . ,Pni }, and

Figure 4: Visualization of the updated phase features. The
online phase update strategy (8) projects fox, dog, and horse
semantic features onto the same foreground label space,
which helps to learn cross-domain-invariant features that can
reduce “semantic shift” challenge.

then we learn the network fθ(·) with learnable parameters θ
that projects P onto the same foreground label space Y that
satisfies fθ(P1

i ) = fθ(P2
i ) = ... = fθ(Pni ) ∈ Y . Finally,

we average the n output features to construct more robust
cross-domain-invariant transformation as

f̄θ(Pn) =

∑n
k=1 fθ(Pki )

n

= (1− ρ)f̄θ(Pn−1) + ρfθ(Pni ),

(8)

where the parameter ρ = 1/n.
The above online update process in (8) is an EMA op-

erator (Klinker 2011) which can effectively smooth cross-
domain-variant noisy information while keeping the fore-
ground features of different semantic categories consistent
(see Figure 4), and this helps to well handle the “semantic
shift” issue in UVOS.

Loss Function
The loss L is a combination of cross-entropy (CE) loss
LCE and Intersection-over-Union (IoU) loss LIoU (Ren
et al. 2021), over the predicted segmentation mask P ∈
[0, 1]H×W and ground-truth mask G ∈ {0, 1}H×W . The
loss L is defined as follows

L = λLCE + (1− λ)LIoU , (9)

where LCE=−
∑
i,j Gij logPij , LIoU=1 − min(Gij ,Pij)

max(Gij ,Pij)
,

and λ is a trade-off coefficient.

Experiments
Implementation Details
We apply the SegFormer (Xie et al. 2021) weights pre-
trained on the ImageNet dataset to initialize the weights of
our GFA. The training set consists of two parts: (a) all the
training data in DVAIS-2016 (Perazzi et al. 2016), which
contains 30 videos with about 2,000 frames. (b) a subset
of 10,000 frames are selected from YouTubeVOS-2018 (X-
u et al. 2018) using one frame every 10 frames sampling
strategy. Our experiments follow the common practices as
in (Zhang et al. 2021; Zhou et al. 2020) with training on
(a) and (b) and fine-tuning on (b). All images are resized to
512× 512× 3 pixels, and the RAFT (Teed and Deng 2020)
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Methods Aeroplane Bird Boat Car Cat Cow Dog Horse Motorbike Train Average
AGS 87.7 76.7 72.2 78.6 69.2 64.6 73.3 64.4 62.1 48.2 69.7

AGNN 71.1 75.9 70.7 78.1 67.9 69.7 77.4 67.3 68.3 47.8 70.8
COSNet 81.1 75.7 71.3 77.6 66.5 69.8 76.8 67.4 67.7 46.8 70.5
MATNet 72.9 77.5 66.9 79.0 73.7 67.4 75.9 63.2 62.6 51.0 69.0

GraphMem 86.1 75.7 68.6 82.4 65.9 70.5 77.1 72.2 63.8 47.8 71.4
WCS-Net 81.8 81.1 67.7 79.2 64.7 65.8 73.4 68.6 69.7 49.2 70.5
AMCNet 78.9 80.9 67.4 82.0 69.0 69.6 75.8 63.0 63.4 57.8 71.1

RTNet 84.1 80.2 70.1 79.5 71.8 70.1 71.3 65.1 64.6 53.3 71.0
HFAN 84.7 80.0 72.0 76.1 76.0 71.2 76.9 71.0 64.3 61.4 73.4
TMO 85.7 80.0 70.1 78.0 73.6 70.3 76.8 66.2 58.6 47.0 71.5

GFA (ResNet) 82.9 81.2 73.5 80.9 78.9 68.8 75.6 71.5 64.2 58.1 73.6
GFA (Segformer) 87.2 85.5 74.7 82.9 80.4 72.0 79.6 67.8 61.3 55.8 74.7

Table 1: Quantitative results for each category and overall average on Youtube-objects dataset, in which the top two perfor-
mances are expressed in “bold” and “underline” fonts, respectively.

Methods DAVIS-2016 FBMS
J&F J F J

COSNet 80.0 80.5 79.4 75.6
MATNet 81.6 82.4 80.7 76.1
DFNet 82.6 83.4 81.8 -

3DC-Seg 84.5 84.3 84.7 71.5
FSNet 83.3 83.4 83.1 -
F2Net 83.7 83.1 84.4 77.5

TransportNet 84.8 84.5 85.0 78.7
AMCNet 84.6 84.5 84.6 76.5

RTNet 85.2 85.6 84.7 -
CFANet 82.8 83.5 82.0 -
IMPNet 85.6 84.5 86.7 77.5
DBSNet 85.3 85.9 84.7 78.5
HFAN 86.7 86.2 87.1 76.1
TMO 86.1 85.6 86.6 79.9

GFA (ResNet) 86.3 85.9 86.7 80.1
GFA (Segformer) 88.2 87.4 88.9 82.4

Table 2: Quantitative results on the DAVIS-2016 and FBMS
test sets, and the top three performances indicated in “bold”
and “underline” fonts, respectively. For FBMS, we only re-
port metric J .

is adopted to estimate optical flow. The data augmentation
strategies includes random rotation, random horizontal flip,
random cropping and color enhancement during training.
We use four NVIDIA 2080TI GPUs with 4 batch size in each
GPU, and the total batch size is set to 16. During training, the
model is optimized using the AdamW optimizer (Loshchilov
and Hutter 2018) with a cosine decay schedule. The initial
learning rate and weight decay are set to 1e-4 and 1e-4 re-
spectively. The trade-off factor λ in the segmentation loss is
set to 0.5, and directly yield the binary segmentation mask
without any post-processing technique.

Datasets and Evaluation Metrics
We conduct extensive evaluations on three benchmarks in-
cluding DAVIS-2016 (Perazzi et al. 2016), FBMS (Ochs,
Malik, and Brox 2013), and Youtube-objects (Prest et al.
2012). We report the evaluation results in terms of region
similarity J , boundary accuracy F and overall average
J&F .

Comparison with the State-of-The-Arts
Table 1 lists the quantitative results of our GFA for each cat-
egory and overall average against the state-of-the-art meth-
ods in terms of J on Youtube-objects (Prest et al. 2012).
From the results, we can notice that our GFA obtains the
best performance on the overall average and six different se-
mantic categories such as bird and boat. In addition, there
are many cases of out-of-distribution scenarios on Youtube-
objects, where our GFA still achieves state-of-the-art perfor-
mance. This adequately demonstrates that our GFA method
can learn robust domain-invariant features to improve the
generalization ability of the model.

Table 2 lists the comparison results of our GFA against the
state-of-the-arts on DAVIS-2016 (Perazzi et al. 2016) and F-
BMS (Ochs, Malik, and Brox 2013). We can observe from
the results that our GFA yields the best performance com-
pared to the existing state-of-the-art UVOS methods in al-
l evaluation metrics. Specifically, our GFA outperforms H-
FAN 1.4% and 6.3% with a significant margin in terms of
J&F on DAVIS-2016 as well as in terms of J on FBMS,
respectively. This verifies the proposed GFA can reduce the
dependency of the model on the training data and enhance
the generalizability.

Ablation Study
In this section, we investigate the contribution of each com-
ponent by experiments. We employ standard metrics to mea-
sure performance on DAVIS-2016 and FBMS.

Impact of transformer as baseline. As shown in Sec-
tion , we adopt the transformer-based model as a baseline.
To prove its validity, we replace it with ResNet101 (He et al.
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Module Variants DAVIS-2016 FBMS
Res Segf A-Samp P-EMA J&F J
X 83.5 77.5

X 85.3 79.2
X X 85.8 79.7

X X 87.5 81.0
X X X 86.3 80.1

X X X 88.2 82.4

Table 3: Ablation study on DAVIS-2016 and FBMS for d-
ifferent variants of the proposed GFA method, in which we
replace SegFormer with ResNet101 to evaluate the impact
of each individual component in our GFA method. “Res”,
“Segf”, “A-Samp” and “P-Enh” denote ResNet101, Seg-
Former, sampling on amplitude features and the online up-
date of phase features, respectively.

training set
test set

Amplitude feature mean

Amplitude feature variance

training set
test set

training set
test set

training set
test set

Baseline GFA

Baseline GFA

Figure 5: Visualization of the distribution of the amplitude
feature statistics between the training set and testing set.

2016) and obtain a CNN-based model and the results are re-
ported in Table 3. From the results, we have the following
observations: (1) The transformer-based model outperforms
the CNN-based model on both data sets. This may attribute
to the fact that the transformer applies less inductive bias,
leading to better results. (2) Our GFA is a plug-and-play
module that is suitable to both the transformer-based and the
CNN-based models and generalizes well to test videos.

Impact of amplitude feature augmentation. Now we
augment amplitude features via Gaussian sampling to the
transformer-based baseline, and the result is reported in the
fourth row of Table 3. As seen, the proposed GFA achieves
2.2% absolute improvement in terms of J&F on DAVIS-
2016 and 2.3% improvement in terms of J on FBMS. Fur-
thermore, Figure 5 shows the amplitude feature statistics dis-
tribution between training and test sets. As seen, the distri-
bution of our GFA method is closer than the baseline about
the mean and variance of the feature statistics. These all ver-
ify that amplitude feature augmentation in GFA can produce
a variety of style features to reduce the model overfitting and
improve the generalizability.

Model IIW DAVIS16 FBMS
J F J

Base w/ SegF 5.2E-06 84.8 85.7 79.2
GFA w/ SegF 2.8E-06 87.4 88.9 82.4

Table 4: Results on DAVIS16 and FBMS test sets with and
without the proposed GFA method, and we also report the
IIW metric to measure the generalization of the model.

Impact of the phase feature update. we perform abla-
tion experiments to prove the significance of the online up-
date of phase features in UVOS, and the result can be seen
in Table 3. As seen, without the phase enhancement method,
the performance of the model drops about 1% in terms of
all evaluation metrics on both datasets (row 4 vs. row 6).
This indicates that the online update process can learn cross-
domain-invariant features to improve the generalization of
the model, leading to better performance.

Impact of generalizable Fourier augmentation. We al-
so add the generalizable Fourier augmentation method to the
baseline and report the results in the last row of Table 3. As
seen, our GFA method improves the results by 2.9% in terms
of J&F on DAVIS-2016 and by 3.2% in terms of J on F-
BMS (row 2 vs. row 6). Our proposed method can achieve
significant improvements over all evaluation metrics on both
datasets. In the second column of Table 4, our GFA method
achieves a lower generalization gap (lower IIW) than the
transformer-based baseline. These all demonstrate that the
proposed GFA could learn domain-invariant features to im-
prove the generalization performance.

Conclusion
This paper has presented a GFA framework for UVOS,
which consists of a Gaussian sampling and an online update
designs, to improve the model’s generalizability. Specifical-
ly, the amplitude features of image Fourier Transform are
sampled from a Gaussian distribution to produce diverse
scene style augmentation features, which can reduce the
dependency of the model on the training set and alleviate
“sence shift” issue. To further improve the generalization,
the semantic-rich phase features are online updated via E-
MA by updating the phase features from the past frames,
which can learn cross-domain-invariant features to reduce
“semantic shift”. Extensive experiments on seven challeng-
ing benchmarks have verified that our GFA achieves the fa-
vorable performance against the state-of-the-art methods in
terms of all evaluation metrics.
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