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Abstract

In this work, we present a novel approach to multi-view
action recognition where we guide learned action represen-
tations to be separated from view-relevant information in
a video. When trying to classify action instances captured
from multiple viewpoints, there is a higher degree of diffi-
culty due to the difference in background, occlusion, and vis-
ibility of the captured action from different camera angles.
To tackle the various problems introduced in multi-view ac-
tion recognition, we propose a novel configuration of learn-
able transformer decoder queries, in conjunction with two
supervised contrastive losses, to enforce the learning of ac-
tion features that are robust to shifts in viewpoints. Our dis-
entangled feature learning occurs in two stages: the trans-
former decoder uses separate queries to separately learn ac-
tion and view information, which are then further disen-
tangled using our two contrastive losses. We show that our
model and method of training significantly outperforms all
other uni-modal models on four multi-view action recog-
nition datasets: NTU RGB+D, NTU RGB+D 120, PKU-
MMD, and N-UCLA. Compared to previous RGB works, we
see maximal improvements of 1.5%, 4.8%, 2.2%, and 4.8%
on each dataset, respectively. Our code can be found here:
https://github.com/NyleSiddiqui/MultiView Actions

Introduction
Human action recognition (HAR) has played an integral role
in the development and progression of computer vision re-
search. HAR has established itself as a critical intersection
between academic research and real-world implementation
due to its practical application to a myriad of domains, such
as human-computer interaction (Chakraborty et al. 2018),
road safety (Ismail 2010), video understanding (Hussain
et al. 2021), security/surveillance (Black, Ellis, and Rosin
2002), and more. Consequently, there are a plethora of large-
scale datasets that have been collected over the years to pro-
vide ample resources for researchers to advance this histor-
ically active field. Furthermore, HAR datasets have grown
in difficulty proportionally to the astounding capabilities of
deep learning in computer vision, such as the introduction
of additional modalities, increased number of subjects and
actions, and multiple viewpoints.
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In specific regards to multi-view action recognition, it is
currently a vital and heavily researched variant of HAR as
it is more challenging and representative of real-world sce-
narios. For example, HAR datasets are commonly collected
in an in-the-wild manner, where labelled actions are col-
lected from viewpoints that are not explicitly controlled.
Since single-view action recognition is usually the main
learning objective in standard HAR, it is not guaranteed
that the learned action representations of such models are
robust to changes in viewpoints. However, in the previ-
ously mentioned real-world scenarios, videos of an action
being performed are synchronously captured from multiple
known viewpoints. Thus, multi-view action recognition has
emerged as a more modern, challenging, and realistic ver-
sion of HAR (Liu et al. 2016; Gao et al. 2019). Additionally,
many of these in-the-wild scenarios may lack the equipment
or controlled collection that is required to capture additional
modalities besides RGB frames, such as skeletal or depth
(Sun et al. 2022). This proves to be a significant obstacle
for current state-of-the-art multi-modal methods, as many of
these solutions are heavily reliant on these modalities.

There are also many tangential areas of deep learning that
affect the current approaches of multi-view action recog-
nition. For example, a major obstacle in supervised deep
learning is ensuring that learned features do not contain any
irrelevant or confounding information with respect to the
learning objective. This can be difficult to achieve since we
cannot fully control how supervised models learn and rep-
resent information in their feature space. This can lead to
learned features becoming ’entangled’ with irrelevant infor-
mation, thereby degrading performance. An example of this
phenomenon in multi-view action recognition can be seen
in Figure 1, where view and action information can poten-
tially become entangled in the feature space. However, large
strides have been made in representation learning to close
these gaps, including disentangled representation learning
(DRL) (Liu et al. 2018; Higgins et al. 2018). DRL aims to
improve the learned features for a training objective by en-
forcing strict separation between relevant and irrelevant in-
formation, improving overall performance.

Therefore, this work proposes a novel approach specif-
ically towards multi-view action recognition in which we
train a transformer decoder-based model for view-invariant
action recognition using only a single modality. Our train-
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Figure 1: Conceptual visualization of learned action and view features plotted on the x- and y-axes, respectively, for differ-
ent learning objectives. a) Traditional feature learning for multi-view action recognition may lead to view features becoming
entangled in the action embedding space, causing different action classes to erroneously cluster due to similar viewpoints. b)
View-invariant action features will properly cluster by action class, but the disentangled view features do not cluster properly. c)
Our method disentangles the view features from the action features while still retaining the structure of both embedding spaces,
improving performance on unseen viewpoints (see Fig. 3).

ing method leverages disentangled representation learning
by guiding our model to separate the action-relevant features
from the view-relevant features. This enables our model to
learn better quality action features that are robust to changes
in viewpoints. We implement this disentanglement in two
stages. In the first stage, we introduce the use of a singular
view query in our transformer decoder to capture and dis-
entangle view information from the learned action features.
In the second stage, we instill relative comparisons between
features using two supervised contrastive losses to assist
in learning disentangled features. Standard cross-entropy
learning only challenges a model to produce features that
map a singular sample to the correct label. The model may
implicitly learn the relative inter- and intra-class similarities
and differences in the dataset, however this is not explicitly
enforced and thus not guaranteed. On the other hand, super-
vised contrastive learning utilizes additional samples during
training to guide a model to learn relatively identical fea-
tures for similar samples (positives) and relatively disjoint
features for dissimilar samples (negatives). We show that our
novel method of training, paired with our novel architecture,
mitigates the degradation in multi-view action recognition
performance stemming from the noise imparted by multiple
viewpoints. Our main contributions are as follows:

• A novel configuration of transformer decoder queries that
enforce disentanglement of learned action and view fea-
tures for view-invariant action recognition.

• Two supervised contrastive losses and a query orthogo-
nality loss to further supplement our disentangled repre-
sentation learning.

• Unlike most methods, our approach is compatible with
both the RGB or skeleton modality and is shown to out-
perform all unimodal state-of-the-art models on four dif-
ferent multi-view action recognition datasets.

Related Work
Multi-View Action Recognition
Many recent action recognition works focus on tackling
the problem of multi-view action recognition due to the
modern and realistic challenge it poses in conjunction with
its relevance in representation learning (Kong et al. 2017;
Bian et al. 2023). The current dominant approaches con-
sist of skeletal, RGB, or multi-modal methods; however,
they are not without their limitations. Skeletal-based meth-
ods (Chen et al. 2021; Shi et al. 2021; Song et al. 2017) are
the most common approach to multi-view action recogni-
tion due to their quality representation of motion, removal
of irrelevant information like background and clothing, and
widespread availability of accurate skeleton ground truth la-
bels in large-scale datasets (Liu et al. 2017; Xia, Chen, and
Aggarwal 2012; Liu et al. 2019). Additionally, the compati-
bility of graph convolutional methods with skeleton-based
action recognition led to widespread use in the literature
(Chi et al. 2022; Song et al. 2022; Cheng et al. 2020). RGB-
based action recognition is more sparse in the literature due
to its lack of 3D structure, usually only being used in ad-
dition to other modalities (Wang et al. 2019; Cheng et al.
2022; Das et al. 2020). Contrary to these previous works, we
demonstrate how our RGB-based model is able to achieve
state-of-the-art multi-view action recognition performance,
even over skeletal-based models.
In addition to uni-modal approaches, multi-modal learning
has shown promising results due to the additional quan-
tity and modes of information provided during training.
(Bruce et al. 2022) proposed a multi-modal approach to ac-
tion recognition, named MMNet, in which they fuse skele-
tal and RGB-based features in a complementary manner
to learn better action representations. MMNet does show
impressive results on many multi-modal action recognition
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datasets, however we exhibit that we are able to achieve
competitive results with only the RGB modality. Further-
more, our approach does not require the additional extrac-
tion of skeletal features, allowing for a more lightweight ap-
proach without any significant sacrifice in performance; an
attribute not commonly seen with other RGB-based meth-
ods (Wang et al. 2018b; Lin et al. 2020; Shah et al. 2023).
Previous RGB methods have similarly explored contrastive
learning for multi-view action recognition, but still under-
perform when compared to skeletal-based models, whereas
our approach outperforms all uni-modal methods and sets
multiple new state of arts.
Learning view-invariant representations for multi-view ac-
tion recognition has also been explored before for both uni-
and multi-modal approaches (Li et al. 2018b; Das and Ryoo
2023; Ji et al. 2021; Bian et al. 2023), and by using ei-
ther solely convolutional or transformer-based architectures
(Cheng et al. 2022; Vyas, Rawat, and Shah 2020; Ji et al.
2021). Our approach uses a hybrid architecture to limit each
of these respective shortcomings, while also novelly intro-
ducing a specific configuration of queries for transformer de-
coders that facilitates feature disentanglement. We show that
these novelties significantly contribute to our state-of-the-art
results and strong improvements over previous works.

Disentangled Representation Learning
Disentanglement has been applied in multi-view action
recognition at both the representation learning level (Zhao
et al. 2021; Guo et al. 2022) and higher (Liu et al. 2020),
as well as other domains (Zhang et al. 2019; Jin et al.
2022; Zhou et al. 2022b,a). Similar to our method, (Tran,
Yin, and Liu 2017) leveraged DRL for pose-invariance, but
for face recognition. They also approach DRL from a joint
generative-discriminative approach, which has been seen
previously (Zheng et al. 2019), in addition to purely gen-
erative methods (Karras, Laine, and Aila 2019). While our
approach is purely discriminative, DRL’s vast applicability
across many domains is a testament to its capability to im-
prove learned representations for specific tasks. However,
improving learned representations is not limited to DRL.
(Guo et al. 2022) explored improving skeleton-based ac-
tion recognition representations using a self-supervised con-
trastive learning method. (Wang et al. 2018a), somewhat
similar to our method, uses view classification as an auxil-
iary task to assist in learning view-invariant representations.

Methodology
Motivation
It is clear that the strongest factor of difficulty in multi-view
action recognition, compared to general HAR, is the multi-
ple viewpoints from which an action is captured. Supervised
deep learning models trained on single-view action recog-
nition datasets are not incentivized to learn as robust action
representations as in the multi-view setting, since the per-
formed actions are viewed from a static and homogeneous
viewpoint. With the introduction of multiple viewpoints, the
visibility and information of a performed action is variable,
and thus requires more generalized and robust features to

account for these perturbations. In order to further advance
general video understanding, it is imperative to develop su-
pervised techniques that can process information from mul-
tiple viewpoints since even state-of-the-art single-view mod-
els will still fail in this facet.

Our Approach
To this end, we propose DVANet to overcome these chal-
lenges, the full details of which can be seen in Figure 2.
We use a hybrid transformer decoder architecture with a
3D-CNN encoder to instill both local and global reason-
ing into our model. For the first stage of disentanglement,
our decoder consists of multiple action queries to capture
all action-relevant information, and a singular view query to
capture all view-relevant information. In addition to stan-
dard cross-entropy loss, we utilize two supervised con-
trastive losses as a second stage of disentanglement to as-
sist in the learning of view-invariant action features. These
losses help drive feature disentanglement by enforcing the
learned action and view features to only contain action and
view information, respectively, and minimize leakage. We
expect the action queries in the decoder to encapsulate all
action-relevant information in a video without any perturba-
tions due to changes in the camera view. Moreover, many
previous methods rely on skeletal data in addition to RGB
data to support the learning of view-invariant action features,
whereas we achieve improved performance on the same task
using only RGB data. We show that our novel architec-
ture paired with our simple training method leads to signif-
icantly improved results over both RGB-based models and
skeleton-based models alike on four different multi-view ac-
tion recognition datasets: NTU RGB+D, NTU RGB+D 120,
PKU-MMD, and N-UCLA.

Input Videos During training, we pass a triplet of videos
through our network. There is an anchor video, a, consist-
ing of an action being performed from some known labeled
viewpoint. We then retrieve a video of a different action cap-
tured from the same viewpoint as a and denote this video
as sv (same view). Lastly, we retrieve a video of the same
action as a captured from a different viewpoint, denoted as
sa (same action). We construct the triplets in this manner
to provide positive and negative samples for our supervised
contrastive feature learning, discussed later in this section.
Providing additional positive and negative samples enables
the model to gain a more holistic understanding of the learn-
ing objective through relative comparisons of samples, as
opposed to standard single-label training.

Feature Extraction Our model consists of a backbone
encoder paired with a transformer decoder. The backbone
can be convolutional- or transformer-based, but an unfrozen,
pretrained R3D backbone yielded best results. We firstly
extract features using our backbone, which takes as input
a video clip v ∈ R(T×C×H×W ), where T is the number
of frames, and C,H, and W are the number of channels,
height, and width of each frame respectively. The backbone
encoder produces a feature map f = ENC(v) ∈ R(Ts×D)

as output, where D is the size of the hidden dimension and
Ts is the number of features for the entire video clip after
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Figure 2: First, our spatio-temporal encoder extracts global features from a video. A transformer decoder is used to separately
extract action and view features with the help of learnable action (Qa) and view (Qv) queries. In addition to the classification
loss to predict the action and view, we also introduce contrastive loss to learn disentangled view and action representations.

temporal down-sampling. A learnable positional encoding
is appended to this output, as is required, before it is passed
to the transformer decoder for feature disentanglement.

Feature Disentanglement Our decoder takes the ex-
tracted spatio-temporal features from the backbone encoder
as input and performs the first stage of disentanglement. The
decoder consists of Na learnable action queries and a sin-
gular view query. Through our loss formulation, the action
queries Qa ∈ R(Na×D) learn to encapsulate the semantic
information in a video that is pertinent only to the action be-
ing performed, irrespective of the view it was captured from.
Contrastively, the singular view query Qv ∈ R(1×D) is ex-
pected to only learn view-relevant information in a video, ir-
respective of the action being performed. This view query is
meant to capture any perturbations that would otherwise oc-
cur in the action embedding space due to changes in the cam-
era viewpoint, thereby ’disentangling’ this noise from the
learned action features. In addition to the contrastive learn-
ing, we use view classification as a training objective for
this view query to learn view-relevant information. Thus, we
are encouraging the action queries to produce view-invariant
action features, since the view query captures any view-
relevant information.
The extracted features from our backbone encoder are then
used as input for the transformer decoder, where these learn-
able queries are utilized to produce the decoder’s output of
refined features:

F = [f1, · · · , fNa
] ∈ R(Na×D), fv ∈ R(1×D)

where [f1, · · · , fNa ] are the refined action features and fv
is the final learned view feature. We then take the average
across the refined action features F to impart all learned
query information into a final action feature, fa, where fa ∈
R(1×D). Lastly, fa, fv , are passed to separate fully-connected
linear layers La, Lv that map the action and view features to
their corresponding prediction dimensions, respectively. Ac-
tion and view logits, pa,pv are attained by

pa = La(fa) ∈ RA and pv = Lv(fv) ∈ RV ,

where A and V are the number of actions and views.
Both the action and view branches of our model are tuned
during training, but only the action branch is used during in-
ference to produce action predictions. However, we cannot
ensure that this architecture alone will result in disentangled
action and view features without proper supervision. There-
fore, we propose a combination of losses to properly enforce
feature disentanglement.

Loss Formulation We incorporate standard cross entropy
loss to train the features and linear layers using the corre-
sponding action (Lace) or view (Lvce) labels:

Lace =
N∑

n=1

M∑
m=1

log Pm(pa), (1)

Lvce =
N∑

n=1

M∑
m=1

log Pm(pv), (2)
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where N is the number of training samples, M is the number
of actions (or the number of views in Lv), and Pm(p∗) is
the probability of each predicted class from the logits with
ground truth class m.

Contrastive Feature Loss Using the aforementioned
triplet construction, we propose two opposing supervised
contrastive learning objectives. Both of these losses use the
same triplet construction, however the difference resides in
the designation of positive and negative samples. Firstly,
the action contrastive loss (Eq. 3) prioritizes learning view-
invariant action features by treating the sa video as a positive
sample, and the sv video as the negative sample. Thus, the
distance between outputted features from the anchor video
a, and a video of the same action from a different view sa,
are minimized. Conversely, the distance between outputted
features from a and a video of a different action from the
same viewpoint sv is maximized:

Lac =
N∑

n=1

[δ +D(fa, fsa)−D(fa, fsv)], (3)

where fa, fsa, and fsv denote the action feature outputs from
the a, sa, and sv videos, respectively, D(·, ·) is a distance
function, and δ is a margin parameter. The learned action
features are then expected to become view-invariant, since
they are encouraged to be identical when resulting from two
different videos that consist of the same action, regardless
of which viewpoint it was recorded from. We reverse the
positive and negative samples for the view contrastive loss:

Lvc =

N∑
n=1

[δ +D(fa, fsv)−D(fa, fsa)], (4)

such that the singular view query in the decoder learns to
produce similar features for videos that are from the same
viewpoint, regardless of the action being performed. Since
our main objective is to improve multi-view action recog-
nition, training our model to disentangle the action-relevant
features from the view-relevant features in this manner pro-
vides cleaner, more accurate action representations that are
robust to changes in the camera viewpoint.

Orthogonal Query Loss As seen in previous works (Fei
et al. 2022; Zhang et al. 2021), initializing and enforcing or-
thogonality between queries in the decoder improves both
model performance and numerical stability. Leveraging or-
thogonal queries aligns with our learning objective as we de-
sire each action query to learn distinct, non-overlapping se-
mantic information in the video to avoid redundancy. We use
the cosine similarity between action queries (qm,qn ∈ Qa)
to compute the loss and discourage any overlap between ac-
tion queries during training:

Lortho =

Na∑
m=0

∑
n̸=m

∣∣∣∣ ⟨qm,qn⟩
||qm|| ||qn||

∣∣∣∣ . (5)

Our overall loss is then calculated as follows:

L = Lace + Lvce + Lac + Lvc + Lortho.

Experimental Evaluation
Results
We show results on three large-scale, multi-view action
recognition datasets (NTU RGB+D, NTU RGB+D 120,
PKU-MMD) and one smaller scale dataset (N-UCLA) to ex-
hibit the effectiveness of our approach with varying amounts
of data. We show results on the standard cross-subject and
cross-view evaluation protocols provided for each dataset.
Additional analyses and details are in the supplement.

NTU RGB+D & NTU RGB+D 120 In Table 1, we pro-
vide a comparison of action test accuracy on NTU RGB+D
with previous state-of-the-art (SOTA) unimodal models. In
both the cross-subject and cross-view evaluation protocol,
we achieve the highest performance and beat the previous
best (which used the skeleton modality) in each protocol by
0.2% and 0.7%, respectively. When only compared to RGB
models, we beat the previous best by an impressive 1.5%
margin in cross-subject, and 0.2% in cross-view. An impor-
tant distinction of our method is the use of view classifica-
tion to better learn and identify view-relevant information,
thereby making it easier to disentangle from our model’s
learned action features (see Table 5).

In Table 2, we observe similar superior performance of
our method when applied to the larger dataset of NTU
RGB+D 120. Our model achieves SOTA results compared
to other unimodal models, achieving a 0.5% and 0.4%
improvement over the SOTA skeleton-based model in the
cross-subject and cross-setup protocols, respectively. More
importantly, we significantly outperform RGB based mod-
els with large improvements of 4.8% and 4.1%, respectively.
Smaller improvements are seen over skeleton-based meth-
ods due to the difference in quality of information between
modalities, whereas our approach yields significantly large
improvements over other RGB methods.

PKU-MMD Table 3 shows the comparisons of our re-
sults with previous works on PKU-MMD. Again we report
large margins between our model and previous SOTA meth-
ods, with improvements of 2.2% and 1% on cross-subject
and cross-view, respectively. The listed RGB-based methods
even use additional depth information and still do not reach
the our level of performance. Our model also beats all base-
lines in Table 3 when we train using the skeleton modality,
which can be found in the supplement.

N-UCLA Compared to the other three large-scale
datasets, N-UCLA is considerably smaller in both the
number of videos and actions. Some works (Shah et al.
2023) evaluate their model using transfer learning and
fine-tuning on this dataset, while others train fully from
scratch. Previous works such as (Vyas, Rawat, and Shah
2020) are only able to obtain competitive results when
using transfer learning, as training from scratch resulted in
severely degraded performance. We train our model from
scratch on this dataset and beat recent RGB works by a
significant margin of 2.3% and 4.8%, as seen in Table 4.
Our results indicate that our approach does not require mass
amounts of data to achieve SOTA performance.
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Model CS CV
(Liu et al. 2020) † 91.5 96.2
(Chen et al. 2021) † 92.4 96.8
(Chi et al. 2022) † 93.0 97.1
(Trivedi and Ravi 2023) † 92.9 96.7
(Duan et al. 2022) † 92.6 97.4
(Song et al. 2022) † 92.1 96.1
(Zhang, Lin, and Liu 2023) † 90.4 95.7
(Wang et al. 2018a) ‡ 63.3 70.6
(Baradel et al. 2018) ‡ 86.6 93.2
(Vyas, Rawat, and Shah 2020) ‡ 82.3 86.3
(Piergiovanni and Ryoo 2021) ‡ - 93.7
(Cheng et al. 2022) ‡ 91.9 95.4
(Das and Ryoo 2023) ‡ 89.7 94.1
(Shah et al. 2023) ‡ 91.4 98.0
DVANet ‡ 93.4 +1.5 98.2 +0.2

Table 1: Comparison between DVANet and previous SOTA
unimodal models on NTU RGB+D. Highest accuraices are
in bold, and margin of improvement over RGB methods (‡)
are underlined. † denotes skeleton-based methods.

Model CS XSet
(Liu et al. 2020) † 86.9 88.4
(Chen et al. 2021) † 88.9 90.6
(Chi et al. 2022) † 89.8 91.2
(Chi et al. 2022) † 88.5 89.7
(Song et al. 2022) † 88.7 88.9
(Duan et al. 2022) † 88.6 90.8
(Trivedi and Ravi 2023) † 89.4 90.6
(Zhang, Lin, and Liu 2023) † 85.6 87.5
(Das and Ryoo 2023) ‡ 84.5 86.2
(Shah et al. 2023) ‡ 85.6 87.5
DVANet ‡ 90.4 +4.8 91.6 +4.1

Table 2: Comparison between DVANet and previous SOTA
unimodal models on NTU RGB+D 120. Highest accuraices
are in bold, and margin of improvement over RGB methods
(‡) are underlined. † denotes skeleton-based methods.

Model CS CV
(Song et al. 2017) † 86.9 92.6
(Li et al. 2018a) † 92.6 94.2
(Elias, Jan, and Zezula 2019) † 86.5 92.2
(Wang et al. 2018b) ‡ 85.0 85.7
(Lin et al. 2020) ‡ 91.7 92.6
(Cheng et al. 2022) (TSN) ‡ 92.6 92.1
(Cheng et al. 2022) (TSM) ‡ 93.6 94.2
DVANet ‡ 95.8 +2.2 95.2 +1.0

Table 3: Comparison between DVANet and previous SOTA
unimodal models on PKU-MMD. Highest accuraices are in
bold, and margin of improvement over RGB methods (‡) are
underlined. † denotes skeleton-based methods.

Model CS CV
(Wang et al. 2018a) ‡ 92.1 86.5
(Baradel et al. 2018) ‡ - 87.6
(Vyas, Rawat, and Shah 2020) ‡ 87.5 83.1
(Das and Ryoo 2023) ‡ - 89.1
(Shah et al. 2023) ‡ - 91.7
DVANet ‡ 94.4 +2.3 96.5 +4.8

Table 4: Comparison between DVANet and SOTA unimodal
models on N-UCLA. Highest accuraices are in bold with
margin of improvement over RGB methods (‡) underlined.

Discussion & Analysis
We provide multiple ablations and analyses on our losses
and results. All ablations are performed using the cross-
subject evaluation protocol on PKU-MMD. We use the
cross-subject protocol since our model is trained in a su-
pervised manner for view-invariant action recognition from
seen viewpoints. However, Fig. 4 exhibits our model ability
to implicitly perform on unseen viewpoints.

Ablations
Effectiveness of Using View Information When we re-
move the cross-entropy and contrastive losses related to
view information, we observe a significant 1.8% drop in
performance in the first row of Table 5. These two losses
aid in the disentanglement of view information from the ac-
tion features, and thus removing them expectedly degrades
the quality of learned action features. This shows that mul-
tiple viewpoints does in fact perturb learned action features
enough to drop performance.

Effectiveness of Contrastive Losses Rows 2-4 of Table 5
show the individual and combined contributions of our two
contrastive losses. We see around a 0.5% decrease in perfor-
mance when only ablating one contrastive loss, which may
be due to the other contrastive loss still assisting the model in
improving its learned features through relative comparisons.
However, performance drops by nearly 2% when removing
both contrastive losses, exhibiting that constructing triplets
for contrastive learning during training is superior to simple
single-label cross-entropy learning for this task.

Effectiveness of Orthogonal Loss The last row in Table
5 shows that we obtain a roughly 1% increase when using
the orthogonal loss. The largest drops in performance occur
from removing either the contrastive losses or view informa-
tion during training, indicating that these losses contribute
more directly to our learning objective than orthogonal loss.

Analysis
Visualizing Disentanglement To further exhibit disentan-
glement, Figure 3 shows the clustering of the learned action
and view features for the 10 most common actions in the
PKU-MMD cross-subject test set. A single test sample is
randomly selected as a reference point (shown by ∗). We
then calculate the distance between its action feature and
the action features of every other sample, and do the same
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Figure 3: Visualizations of view and action features to show feature disentanglement. Each point is plotted by the distance of
its respective action and view features from the reference point (∗). The learned action features form clusters by action class,
and within each cluster are separated by viewpoint. Grid lines are added to help show the segregation of clusters.

Lace Lvce Lac Lvc Lortho Cross-Subject
✓ ✗ ✓ ✗ ✓ 94.0
✓ ✓ ✗ ✓ ✓ 95.3
✓ ✓ ✓ ✗ ✓ 95.2
✓ ✓ ✗ ✗ ✓ 94.2
✓ ✓ ✓ ✓ ✗ 95.0
✓ ✓ ✓ ✓ ✓ 95.8

Table 5: PKU-MMD results when certain training losses are
ablated. We achieve the highest performance with all losses.

for the view features. The x-axis denotes the distance of a
given sample’s action feature from our reference point’s ac-
tion feature, with the y-axis denoting the same for the view
features. Each action class (denoted by color) clusters sepa-
rately along the x-axis from other action classes in the fea-
ture space. Additionally, for each action class there are three
distinct clusters along the y-axis: one for each viewpoint.
The deduction from these observations is two-fold: the in-
stances of a certain action class cluster together, indicating
that our model produces action features that are distinguish-
able from other action classes. Secondly, instances of the
same action from different viewpoints are clustered sepa-
rately along the y-axis. Thus, the learned view features of
our model were successfully disentangled from the action
features.

Conclusion
We propose a novel transformer decoder-based architecture
in tandem with two supervised contrastive losses for multi-
view action recognition. By disentangling the view-relevant
features from action-relevant features, we enable our model
to learn action features that are robust to change in view-
points. We show that changes in viewpoint impart perturba-
tions on learned action features, and thus disentangling these

Figure 4: t-SNE of the view features from our cross-view
model evaluated on the cross-subject test set. The ’left’
viewpoint (shown in red) is unseen during training and is
still separated from the known views during testing.

perturbations improves overall action recognition perfor-
mance. Uni-modal state-of-the-art performance is attained
on four large-scale, multi-view action recognition datasets.
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