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Abstract
Few-shot semantic segmentation (FSS) aims to segment un-
seen objects in a query image using a few pixel-wise an-
notated support images, thus expanding the capabilities of
semantic segmentation. The main challenge lies in extract-
ing sufficient information from the limited support images to
guide the segmentation process. Conventional methods typ-
ically address this problem by generating single or multiple
prototypes from the support images and calculating their co-
sine similarity to the query image. However, these methods
often fail to capture meaningful information for modeling
the de facto joint distribution of pixel and category. Conse-
quently, they result in incomplete segmentation of foreground
objects and mis-segmentation of the complex background. To
overcome this issue, we propose the Cross Gaussian Mix-
ture Generative Model (CGMGM), a novel Gaussian Mixture
Models (GMMs)-based FSS method, which establishes the
joint distribution of pixel and category in both the support and
query images. Specifically, our method initially matches the
feature representations of the query image with those of the
support images to generate and refine an initial segmentation
mask. It then employs GMMs to accurately model the joint
distribution of foreground and background using the support
masks and the initial segmentation mask. Subsequently, a
parametric decoder utilizes the posterior probability of pix-
els in the query image, by applying the Bayesian theorem, to
the joint distribution, to generate the final segmentation mask.
Experimental results on PASCAL-5i and COCO-20i datasets
demonstrate our CGMGM’s effectiveness and superior per-
formance compared to the state-of-the-art methods.

Introduction
Semantic segmentation is a fundamental task in the field of
computer vision and can formulated as a pixel-wise clas-
sification problem. Recent significant improvements have
occurred to semantic segmentation given the considerable
development of deep neural networks (DNNs) (Chen et al.
2018; Huang et al. 2019; Zhao et al. 2017; Yuan et al.
2019; Xie et al. 2021). Conventional methods for se-
mantic segmentation rely heavily on large amount anno-
tated datasets (Everingham et al. 2010; Nguyen and Todor-
ovic 2019), whereas collecting high-quality data is time-
consuming and laborious. In the case of extremely limited
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Figure 1: Examples of cosine similarity (CS) and GMMs
posterior (GP), compared to Ground Truth (GT), on Pascal-
5i (Shaban et al. 2017) under 1-shot setting.

data, the performances of these method may degrade no-
tably. To address this challenge, few-shot semantic segmen-
tation (FSS) (Shaban et al. 2017; Cheng et al. 2021), which
aims to segment the objects of a novel category in a query
image with a few annotated support images for training, has
emerged as a noteworthy subfield of semantic segmentation.
The setting of FSS is closer than that of the general seman-
tic segmentation to the way humans recognize unseen ob-
jects in the real word with limited supporting information or
knowledge. Obviously, the key difficulty of FSS is to extract
adequate guidance information from the support images.

Existent FSS methods (Lang et al. 2022a; Tian et al. 2020;
Li et al. 2021; Zhang et al. 2019) counteract the above-
mentioned difficulty via extracting semantic-level proto-
types from the feature representations of the support images
and adopting a metric learning pipeline between these pro-
totypes and the feature representation of the query image
for guidance information. Among these methods, the proto-
typical ones (Lang et al. 2022a; Li et al. 2021; Zhang et al.
2019, 2021) have achieved the state-of-the-art performance,
while they undergo specific limitations. First, the conven-
tional process can be summarized as guiding the feature rep-
resentation of the query image using prototypes, no matter
category-wise (Zhang et al. 2019; Lang et al. 2022a), cluster-
wise (Li et al. 2021) or pixel-wise (Zhang et al. 2021), and
then adopting simplistic cosine similarity for measurement.
As shown in Figure 1, calculating cosine similarity relies
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Guidance Method Similarity Measure GmIoU FmIoU
Prototype with CS

(xT
q xs)/(∥ xq ∥∥ xs ∥) 24.11 67.81(Lang et al. 2022a)

CGMGM (Ours)
∑

πs,q
cmN (xq;µ

s,q
cm,Σs,q

cm) 58.05 69.85
CGMGM w/ GT

∑
πq
cmN (xq;µ

q
cm,Σq

cm) 64.89 82.17

Table 1: Comparison between our CGMGM and prototype
with cosine similarity, i.e., BAM (Lang et al. 2022a), on
Pascal-5i under 1-shot setting. The mIoU between the simi-
larity map and the ground truth as Guidance mIoU to quan-
tify the guidance information from the feature representa-
tions of the support image xs to that of the query image xq ,
where CS, GT, GmIoU, and FmIoU denote Cosine Similar-
ity, Ground Truth, Guidance mIoU, and Final mIoU.

heavily on generalizing the feature representations of the
support images and can hardly model the de facto joint dis-
tribution of pixel and category. Second, the guidance infor-
mation extracted from the support images lacks of the cues
on the novel category in the query image, which results in
category bias during the generalization of feature representa-
tions. Third, the information on the scene (i.e., background)
has been so far only considered from the perspective of the
support images (Lang et al. 2022b), whereas the scene of
the query image can differ significantly. It may aggravate the
performance for FSS without introducing the information on
the scene of the query image.

We propose a novel generative method for FSS, that is, the
Cross Gaussian Mixture Generative Model (CGMGM), to
address above-discussed limitations via modeling the joint
distribution of pixel and category in the support images and
the query image. Normally, a generative model (Bernardo
et al. 2007) establishes the joint distribution p(x, c) between
high-dimensional feature corresponding to pixel x and cat-
egory c, and use p(x, c) to evaluate the category condi-
tional probability p(x|c), which is to model the input data
itself (Liang et al. 2022) and thus has the potential to over-
come the shortcomings of previous methods. Our CGMGM
models the de facto joint distribution of pixel and category
to provide high-quality results for FSS. Specifically, an ini-
tial segmentation mask is generated via matching the fea-
ture representations of the support images and the query im-
age, and is further refined using a cycle-consistency strategy;
Separate mixtures of Gaussians are then adopted to model
the joint distribution of pixel and category for the novel cat-
egory (i.e., foreground) and others (i.e., background); Af-
terwards, the category posterior probability is evaluated for
each pixel in the query image, serving as the guidance in-
formation of the support images for the query image; Fi-
nally, a parametric decoder takes as input both the poste-
rior probability and the feature representation of the query
image to predict a high-quality segmentation mask for the
query image. In particular, the proposed method optimizes
a generative Gaussians mixture model (GMM) (Reynolds
et al. 2009) uisng the Expectation Maximization (EM) algo-
rithm (Dempter 1977) during training. Besides, we employ
an end-to-end design for the proposed method and the cross-
entropy loss function to maximize the joint distribution and

the representation learning parameters.
The proposed method differs fundamentally from previ-

ous methods in the following ways. First, we exploit the de
facto joint distribution of pixel and category to guide the seg-
mentation, instead of relying on prototypes and cosine simi-
larity, as shown in Figure 1 and Table 1. Second, we use the
information on both background and foreground from the
support images and the query image to overcome the limita-
tion of only involving the support images, which enables a
significant improvement in the performance under the 1-shot
setting. Third, our distribution modeling process is entirely
parameter-free enhancing the generalization of the proposed
method and preventing the overfitting to base categories,
which is particularly crucial to FSS. We conduct extensive
experiments on two datasets (i.e., PASCAL-5i(Shaban et al.
2017) and COCO-20i(Nguyen and Todorovic 2019)), where
our CGMGM can achieve the state-of-the-art performances.

The primary contributions of this paper are three-fold: (1)
To the best of our knowledge, we for the first time introduce
the GMMs, which establish the joint distribution of pixel and
category, to FSS; (2) We propose a novel method to exploit
the information on foreground and background in the sup-
port images and the query image, which guides the segmen-
tation; (3) The proposed method can achieve the state-of-
the-art performances on PASCAL-5i and COCO-20i under
both 1-shot and 5-shot settings.

Related Work
Few-Shot Segmentation
FSS aims to predict the query image’s pixel target in the
condition of a few annotated samples (Shaban et al. 2017).
The primary challenge lies in extracting abundant informa-
tion from the support images to guide the query image seg-
ment. Subsequent studies (Li et al. 2021; Lang et al. 2022a;
Zhang et al. 2019; Tian et al. 2020; Yang et al. 2020) ex-
tract the typical information, called ‘prototype’. For exam-
ple, ASGNet (Li et al. 2021) and PMM (Yang et al. 2020)
construct multiple prototypes using parameter-free meth-
ods such as superpixel-guided clustering or EM algorithm.
PFENet (Tian et al. 2020) uses high-level features with
cosine similarity to generate prior mask and introduces a
feature-enrichment module. BAM (Lang et al. 2022a) pro-
poses a base learner to predict the base category in the query
image and uses the results of base learner to suppress false
segmentation in the meta learner. However, relying solely on
category-wise prototypes and cosine similarity may result in
spatial structural loss. To address this issue, HSNet (Min,
Kang, and Cho 2021) exploits pixel-wise cosine similarity
information from support and query features and constructs
4D correlation tensors to represent dense correspondences.
However, all these methods neglect the joint distribution of
pixel and category in the support images and the query im-
age. In this paper, we propose GMMs to model the de facto
joint distribution to alleviate these issues.

Gaussian Mixture Generative Model
Generative models and discriminative models can be
seem as two contrasting ways of solving deep learning clas-
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sification tasks (Bernardo et al. 2007). Generative models
(i.e., naive Bayes) learn the category conditional probabil-
ity p(x|c), while the discriminative models (i.e., MLP with
softmax) learn the category posterior p(c|x) without con-
sider about the underlying joint distribution. MLP-softmax
is widely used in classification models due to its simplic-
ity and efficiency. However, generative models still have
great potential in fields where accurate modeling of data
distribution and high generalization ability are required.
Consequently, recent Trusty AI-related fields have focused
on generative models, i.e., adversarial defense, explainable
AI (Mackowiak et al. 2021; Schott et al. 2018; Serrà et al.
2019), out-of-distribution recognition (Lu et al. 2022), and
semi-supervised learning (Izmailov et al. 2020).

Gaussian Mixture Models (GMMs) have been com-
bined with neural networks in the standard supervised classi-
fication tasks in early studies given their capability to model
arbitrary continuous distributions. However, they almost fo-
cus on training the GMMs in a discriminatively way (i.e.,
maximizing the category posterior p(c|x)) (Hayashi and
Uchida 2019; Variani, McDermott, and Heigold 2015; Tüske
et al. 2015; Klautau, Jevtic, and Orlitsky 2003). Recent stud-
ies(Liang et al. 2022; Lu et al. 2022) have instead exploited
the nature of generative models and adopted GMMs to
evaluate the category conditional probability p(x|c). GMM-
Seg (Liang et al. 2022), a semantic segmentation method,
optimizes the GMMs via EM, while the deep representa-
tions are obtained via gradient backpropagation of the dis-
criminative loss. In domain adaptive segmentation tasks,
BiSMAP (Lu et al. 2022) employs GMMs to estimate cat-
egory condition between source and target domains to fit
the de facto distribution of the source domain and estimate
the likelihood of target samples based on probability densi-
ties. However, these methods model the de facto joint dis-
tribution based on massive annotated data and are difficult
to adopt with limited annotations. It is noteworthy that sev-
eral recent studies, including PMM (Yang et al. 2020), DG-
PNet (Johnander et al. 2022), demonstrate somewhat rel-
evance to GMMs but are still essential not GMMs-based
methods. To the best of our knowledge, our work for the first
time introduces GMMs to FSS, especially for modeling the
joint distribution of pixel and category in the support images
and the query image.

Problem Definition
In a FSS task, the dataset can be divided into a train set
Dtrain with base categories Cbase, and a test set Dtest

with novel categories Cnovel, where the categories in Cbase

and those in Cnovel are completely disjoint (i.e., Cbase ∩
Cnovel = ∅). Conventional methods (Zhang et al. 2019;
Tian et al. 2020; Lang et al. 2022a) usually adopt meta-
learning with episodic training that enables the learning of
transferable knowledge on Dtrain for high-quality general-
ization on Dtest. Specifically, each episode in episodic train-
ing works with a support set S = {(xsi ,ms

i )}ki=1 and a
query set Q = {(xq,mq)} for k-shot semantic segmentation
(i.e., k ∈ {1, 5} in our setting), where x∗ and m∗ represent
an image and its corresponding foreground mask on cate-
gory c, respectively. Trained with episodes on Dtrain, a FSS

method aims to segment the objects of a novel category in
a query image xq according to the knowledge of k support
images and support masks from Dtest.

Overview of Generative Models
We provide a brief comparison between discriminative and
generative models theoretically to emphasize the advantages
of adopting generative models for FSS. As discussed above,
recent deep learning-based methods for FSS usually em-
ploy a parametric network for representation learning (i.e.,
fθ :R3 → Rd, where R3 and Rd denote the 3 channels of
a RGB image and its corresponding d-dimensional feature
representation, respectively), and the Softmax function for
label prediction (i.e., p(C|x) = hθ :Rd → R|C|, where R|C|

represents the prediction for categories C = {ci}).
Generative models achieve the predictive results with the

Bayes theorem (Rish et al. 2001), rather than directly ob-
taining the posterior probability p(C|x) over a dataset D.
Specifically, a generative model begins with building the
joint distribution p(x, c) of pixel x and category c. The cat-
egory conditional probability p(x|c) is then estimated with
the category prior probability p(c), and p(c|x) is reached as,

p(c|x) = p(c)p(x|c)∑|C|
i=1 p(ci)p(x|ci)

, (1)

where the category prior probability p(c) is normally set to
a uniform prior (i.e., p(c) = 1/|C|).

Generative models focus on estimating and optimiz-
ing the data distribution

∏
(x,c)∈D p(x|c) (i.e., generative

training (Bernardo et al. 2007)). Extensive studies have
explored the optimization of generative training, among
which a representative one is Gaussian mixture models
(GMMs) (Reynolds et al. 2009). In this paper, we intro-
duce GMMs using the Expectation Maximization (EM) al-
gorithm (Dempter 1977) to the optimization of evaluating
p(x|c). Generative models are able to capture the intrinsic
characteristics of categories and then model the de facto dis-
tribution over the unseen data, which suggests their capa-
bility of excellent generalization towards the goal of FSS.
Hence, adopting generative models may become an alterna-
tive to the current FSS paradigm.

Cross Gaussian Mixture Generative Model
In this paper, we present the Cross Gaussian Mixture Gen-
erative Model (CGMGM) as a novel FSS method. As il-
lustrated in Figure 2, the proposed method comprises three
modules on Initial Mask Generating and Refining (IMGR),
Cross Data Gaussian Mixture Generating (CDGMG), and
Query Category Posterior Extracting (QCPE). Suppose k is
set to 1, a shared-weight backbone first extracts the high-
level feature representations Xh

q and Xh
s , and the mid-level

feature representations Xq and Xs, respectively, from a
query image Iq and a support image Is. To begin with, the
IMGR module takes as input Xh

q , Xh
s , Xq , and Xs to gener-

ate and refine the initial segmentation mask Mq on a novel
category c. The CDGMG module then takes as input Mq

and the support mask Ms, Xq , and Xs as input, and adopts
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Figure 2: Architecture of the proposed CGMGM. Following a shared backbone, the IMGR module generates and refines the
initial segmentation mask Mq for the target objects in the query image. The CDGMG module then models the joint distribution
of pixel and category for the novel category regarding foreground θfg and background θbg , using Mq , the support mask Ms,
mid-level feature representations Xs and Xq . Afterwards, the QCPE module evaluates the category posterior p(c|x) to be used
by a parametric decoder as the guidance information to generate the output segmentation mask with Xq .

Gaussian mixtures to model the joint distribution p(x, c) of
pixel x and category c; It outputs the distribution parameters
θfg = {πfg, µfg,Σfg} and θbg = {πbg, µbg,Σbg}. After-
wards, the QCPE module takes as input θfg&θbg and Xq to
extract the guidance information via evaluating the posterior
probability p(c|x) for pixel x in Xq; It employs a parametric
decoder to predict the output segmentation mask M̂q on c
for Xq using both features and guidance information.

Initial Mask Generating and Refining
Inspired by PFENet (Tian et al. 2020), we propose the Initial
Mask Generating and Refining (IMGR) module to extract
information from the query image’s feature representation to
accurately model the joint distribution of pixel and category.
In particular, the IMGR module leverages high-level feature
representations (e.g., Conv5 of ResNet50) to generate and
refine the initial segmentation mask.

In the generating step, a double-branch structure is
adopted to separately establish global and local similari-
ties for the improvement of the accuracy of the initial seg-
mentation mask, which is different from the previous meth-
ods. As shown in Fig. 3, the IMGR module takes input
the high-level feature representation Xh

s ∈ RCh×Hs×Ws of
the support image Is, the high-level feature representation
Xh

q ∈ RCh×Hq×Wq of the query image Iq , and the segmen-
tation mask Ms ∈ R1×Hs×Ws of Is. In the global branch,
the global similarity SG is obtained by calculating the co-
sine similarity between Xh

q and the masked high-level fea-
ture representation of Is as,

SG = MatMul(Xh
s ⊗Ms, X

h
q ), (2)

where ⊗ denotes the element-wise multiplication operation,

and MatMul represents the cosine similarity operation. In the
local branch, we extract the patch representations Rs and Rq

of Is and Iq as,

Rs = PS(xh
s ⊗Ms) ∈ Rhw×Ch×HsWs

hw ,

Rq = PS(xh
q ) ∈ Rhw×Ch×

HqWq
hw ,

(3)

where PS denotes the patch split operation, (h,w) are the
patch height and width. In the experiments, we set h and w
to 2 . The local similarity SL is obtained by calculating the
cosine similarity between Rs and Rq as,

SL = MatMul(Rs, Rq) ∈ Rhw×HsWs
hw ×HqWq

hw . (4)

Each pixel is represented by the mean of all pixels in its
corresponding patch to maintain consistency in local fea-
tures and reduce the incorrect pixel matching. Afterwards,
SL is reshaped and upsampled, followed by the concate-
nation with SG. The concatenated global and local simi-
larities are averaged to reach the coarse segmentation mask
M0

q ∈ R1×Hq×Wq .
In the refining step, we improve the confusing feature

representation of Iq in the way similar to the use of cycle-
consistency by CyCTR (Zhang et al. 2021). As shown in
Figure 3, Xh

q is first masked with M0
q , and the affinity map

A ∈ RHsWs×HqWq between Xh
s and the masked high-level

feature representation of Iq is then calculated as,

A = MatMul(Xh
q ⊗M0

q , X
h
s ). (5)

For a query pixel j, its most similar support pixel i∗ and most
similar query pixel j∗ are obtained by Argmax operation as,

i∗ = ArgmaxA(i,j), j∗ = ArgmaxA(i∗,j). (6)
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Figure 3: Structure of the IMGR module that comprises a generating step (left) and a refining step (right).

With the coarse segmentation mask M0
q , cycle-consistency

is satisfied if M0
q(j) = M0

q(j∗) and M0
q(j) = 1. Due to the

complexity of the background pixels, we only focus on the
consistency of the foreground pixels in the mask and obtain
the initial segmentation mask Mq as,

Mq =

{
1, if M0

q(j) = M0
q(j∗)&M0

q(j) = 1,

0, otherwise .
(7)

Cross Data Gaussian Mixture Generating
We devise the Cross Data Gaussian Mixture Generating
(CDGMG) module to model the joint distribution p(x, c)
of pixel x and category c for the novel category (i.e., fore-
ground) and others (i.e., background). As illustrated in Fig-
ure 2, each episode adopts GMMs using the EM algo-
rithm taking as input the mid-level feature representations
Xs and Xq of Is and Iq along with Ms and Mq . Specifi-
cally, each GMM employs a weighted mixture of M multi-
variate Gaussians θc to model the conditional probability of
x ∈ {Xs, Xq} for c in the d-dimensional embedding space
as,

p(x|c; θc) =
∑M

m=1p(m|c;πc)p(x|c,m;µc,Σc)

=
∑M

m=1πcmN (x;µcm,Σcm),
(8)

where m|c = πcm is the prior probability, µcm ∈ Rd and
Σcm ∈ Rd×d are the mean vector and the covariance matrix
of Gaussian component m for c, and θc = {πc, µc,Σc}. The
mixture design of the model enables accurate approximation
of data densities. Notably, each Gaussian component m has
an independent covariance structure, which allows flexibly
measuring the importance across feature dimensions.

Then, the EM algorithm maximizes the log likeli-
hood over the feature representations with label masks
(xn, cn)

N
n=1 using the initial parameters θ0c . The optimal pa-

rameters θ∗c can be reached as,

θ
∗
c = argmax

θc

∑
xn:cn=c

logp = argmax
θc

∑
xn:cn=c

log
M∑

m=1

p(xn,m|c; θc).

(9)
The EM algorithm iteratively calculates the intermediate pa-
rameters θtc. In each iteration t, the probability of x that be-
longs to m is repeatedly optimized (p[m] = p(m|x, c; θc))

in the E-step as,

pt
cn[m] =

πt−1
cm N (xn|µ(t−1)

cm ,Σ
(t−1)
cm )∑M π

(t−1)
cm N (xn|µ(t−1)

cm ,Σ
(t−1)
cm )

, (10)

and the parameters are then updated in the M-step as fol-
lows:

πt
cm =

N t
cm

Nc
, µt

cm =

∑
xn:cn=c p

t
cn[m]xn

N t
cm

,

Σt
cm =

∑
xn:cn=c p

t
cn[m](xn − µt

cm)(xn − µt
cm)T

N t
cm

,

(11)

where Nc denotes the number of the training samples la-
beled c and Ncm =

∑
n:cn=c pcn [m]. Because of to the set-

ting of FSS, we adopt foreground and background as the
labels regarding the novel category. Therefore, the final dis-
tribution parameters θfg = {πfg, µfg,Σfg} and θbg =
{πbg, µbg,Σbg} are obtained at the end of the loop to rep-
resent the joint distribution of the novel category.

Query Category Posterior Extracting
The proposed Query Category Posterior Extracting (QCPE)
module takes as input the mid-level feature representation
Xq of Iq and distribution parameters θfg and θbg to extract
the category posterior p(c|x) that serves as guidance infor-
mation. To begin with, the conditional probability of pixel
xq ∈ Xq for category c is calculated as,

p(xq|c; θc) = log(
∑M

m=1πcmN (xq ;µcm,Σcm)),

N (xq ;µc,Σc) =
exp{− 1

2 (xq − µcm)TΣ−1
cm(xq − µcm)}

(2π)d/2∥ Σcm ∥1/2
.

(12)

As mentioned in CDGMG, the category posterior of xq pix-
els can be regarded as the foreground posterior of the novel
category in FSS. Based on the Bayes theorem, the guidance
information is obtained as,

p(c|x) = p(fg|xq) =
p(xq|cfg; θfg)

p(xq|cfg; θfg) + p(xq|cbg; θbg)
, (13)

where cfg and cbg denote the labels of fore- and background.
Finally, both Xq and p(c|x) are fed to a parameter de-

coder, which consists of an ASPP module to obtain multi-
scale information, and a series of convolutional layers fol-
lowed by the ReLU function to generate the output segmen-
tation mask M̂q . The parameter decoder network is opti-
mized with the cross-entropy loss function.
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Methods Backbone 1-shot 5-shot
Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

PFENet (Tian et al. 2020)

VGG-16

56.90 68.20 54.40 52.40 58.00 59.00 69.10 54.80 52.90 59.00
HSNet (Min, Kang, and Cho 2021) 59.60 65.70 59.60 54.00 59.70 64.90 69.00 64.10 58.60 64.10
DPCN (Liu et al. 2022a) 58.90 69.10 63.20 55.70 61.70 63.40 70.70 68.10 59.00 65.30
NTRENet (Liu et al. 2022b) 57.70 67.60 57.10 53.70 59.00 60.30 68.00 55.20 57.10 60.20
BAM †(Lang et al. 2022a) 63.18 70.77 66.14 57.53 64.41 67.36 73.05 70.61 64.00 68.76
CGMGM (Ours) 66.54 69.79 68.01 59.87 66.04 68.03 73.95 71.84 64.79 69.65
PFENet (Tian et al. 2020)

ResNet50

61.70 69.50 55.40 56.30 60.80 63.10 70.70 55.80 57.90 61.90
ASGNet (Li et al. 2021) 58.84 67.86 56.79 53.66 59.29 63.66 70.55 64.17 57.38 63.94
CyCTR (Zhang et al. 2021) 65.70 71.00 59.50 59.70 64.00 69.30 73.50 63.80 63.50 67.50
HSNet (Min, Kang, and Cho 2021) 64.30 70.70 60.30 60.50 64.00 70.30 73.20 67.40 67.10 69.50
DCAMA (Shi et al. 2022) 67.50 72.30 59.60 59.00 64.60 70.50 73.90 63.70 65.80 68.50
NTRENet (Liu et al. 2022b) 65.40 72.30 59.40 59.80 64.20 66.20 72.80 61.70 62.20 65.70
DPCN (Liu et al. 2022a) 65.70 71.60 69.10 60.60 66.70 70.00 73.20 70.90 65.50 69.90
IPMT (Liu et al. 2022c) 72.80 73.70 59.20 61.60 66.80 73.10 74.70 61.60 63.40 68.20
BAM †(Lang et al. 2022a) 68.97 73.59 67.55 61.13 67.81 70.59 75.05 70.09 67.20 70.91
CGMGM (Ours) 71.14 74.99 69.62 63.65 69.85 71.77 78.89 69.11 68.59 72.09

Table 2: Comparison of our CGMGM and other FSS methods in mIoU (%) on PASCAL-5i under 1-shot and 5-shot settings.
Best scores are in bold and second best scores are in italics. †: baseline method.

Experiments
Datasets, Metrics, and Implementation Details
We evaluated the performance of our CGMGM for FSS on
two benchmark datasets: PASCAL-5i (Shaban et al. 2017)
and COCO-5i (Nguyen and Todorovic 2019). PASCAL-5i is
generated from the PASCAL VOC 2012 (Everingham et al.
2010) dataset with external annotation from SDS (Hariharan
et al. 2014), which consists of 20 categories. COCO-20i is
constructed based on the MSCOCO (Lin et al. 2014) dataset,
which consists of 80 categories. Following previous stud-
ies(Shaban et al. 2017; Tian et al. 2020; Yang et al. 2021),
we grouped the categories in both datasets into four folds for
cross-validation. During training, three folds were used for
training and the remaining one for validation.

For the metrics, we adopted mean intersection over union
(mIoU) and foreground-background IoU (FB-IoU) to con-
duct the evaluation under 1-shot and 5-shot settings.

In our experiments, we used VGG-16 (Simonyan and Zis-
serman 2014) and ResNet-50 (He et al. 2016) pre-trained
on ImageNet (Deng et al. 2009) as the backbones. Using
BAM (Lang et al. 2022a) as the baseline, we adopted its ini-
tialization weights and the dataset setting. It is noteworthy
that the BAM dataset setting can refine the mask output from
the IMGR module in our CGMGM by reducing the proba-
bility of novel categories being categorized as background.
Besides, we froze the weights of the backbones and the
base learner in BAM. For fine-tuning parameters, we used
the SGD optimizer with cosine learning rate decay, where
the learning rate, momentum, and weight decay were set to
0.05, 0.9, and 0.0001, respectively. our method was trained
for 200 epochs with the batch size of 8 and the image size
of 473 × 473 on PASCAL-5i, and for 50 epochs with the
batch size of 8 and the image size of 641 × 641 on COCO-
20i. The number of Gaussian components M was set to 3
on PASCAL-5i, and to 6 on COCO-20i. In our evaluation,
1000 support-query pairs were randomly sampled from each
of both datasets.
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Figure 4: Qualitative comparison between our CGMGM and
baseline under 1-shot setting on Pascal-5i. From top to bot-
tom: support images, baseline segmentation, CGMGM seg-
mentation, query images.

Comparison with the State-of-the-Art Methods
As shown in Table 2 and 3, the proposed method outper-
formed all the methods for comparison and achieved the
state-of-the-art results on both datasets. Specifically, our
CGMGM with ResNet-50 as the backbone on PASCAL-5i
achieved an increase of up to 2.04 under the 1-shot setting
and 1.18 under the 5-shot setting in mIoU. Additionally,
it reached an increase of up to 1.63 under the 1-shot set-
ting and 0.89 under the 5-shot setting in mIoU when using
the VGG-16 as the backbone. On COCO-20i, our CGMGM
outperformed baseline by 1.17 and 0.85 in mIoU under 1-
shot and 5-shot settings, respectively, with ResNet-50 as the
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Methods Backbone 1-shot 5-shot
Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

PFNet (Tian et al. 2020)

ResNet50

36.80 41.80 38.70 36.70 38.50 40.40 46.80 43.20 40.50 42.70
CyCTR (Zhang et al. 2021) 38.90 43.00 39.60 39.80 40.30 41.10 48.90 45.20 47.00 45.60
HSNet (Min, Kang, and Cho 2021) 36.30 43.10 38.70 38.70 39.20 43.30 51.30 48.20 45.00 46.90
DCAMA (Shi et al. 2022) 41.90 45.10 44.40 41.70 43.30 45.90 50.50 50.70 46.00 48.30
DPCN (Liu et al. 2022a) 42.00 47.00 43.20 39.70 43.00 46.00 54.90 50.80 47.40 49.80
NTRENet (Liu et al. 2022b) 36.80 42.60 39.90 37.90 39.30 38.20 44.10 40.40 38.40 40.30
IPMT (Liu et al. 2022c) 41.40 45.10 45.60 40.00 43.00 43.50 49.70 48.70 47.90 47.50
BAM †(Lang et al. 2022a) 43.31 50.59 47.49 43.42 46.23 49.26 54.20 51.63 49.55 51.16
CGMGM (Ours) 47.05 49.34 48.84 44.35 47.40 50.33 54.59 51.28 51.80 52.01

Table 3: Comparison of our CGMGM and other FSS methods in mIoU (%) on COCO-5i under 1-shot and 5-shot settings. Best
scores are in bold and second best scores are in italics. †: baseline method.

Methods Backbone FB-IoU
1-shot 5-shot

PFENet (Tian et al. 2020)

ResNet50

73.30 73.90
HSNet (Min, Kang, and Cho 2021) 76.70 80.60
DCAMA (Shi et al. 2022) 75.70 79.50
DPCN (Liu et al. 2022a) 78.00 80.70
NTRENet (Liu et al. 2022b) 77.00 78.40
IPMT (Liu et al. 2022c) 77.10 81.40
BAM †(Lang et al. 2022a) 79.71 82.18
CGMGM (Ours) 80.51 83.05

Table 4: Comparison of our CGMGM and other FSS meth-
ods in FB-IoU on PASCAL-5i under 1-shot and 5-shot set-
tings. †: baseline method.

(a) CS (b) IMGR (c) GT

Figure 5: Visualization of initial masks with Cosine Similar-
ity (CS) and IMGR, compared to Ground Truth (GT).

backbone. These results suggest the efficacy of the proposed
method. In particular, our CGMGM obtained a more signif-
icant improvement under the 1-shot setting, demonstrating
that it could extract the useful information from the feature
representation of the query image given a more limited sup-
port set. Table 4 shows the comparison with several other
state-of-the-art methods in FB-IoU, which also validates the
superiority of our CGMGM. Quantitative Result We vi-
sualized some segmentation examples output from our CG-
MGM and baseline on PASCAL-5i in Figure 4. It is note-
worthy that our method obtained more complete target ob-
jects because of the de facto distribution between query im-
age and support images.
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Figure 6: Effects of the number of Gaussian components and
the type of covariance matrix on mIoU and floating point of
operations (FLOPs) on PASCAL-5i under 1-shot setting.

IMG IMR C&Q mIoU
67.81

✓ 66.95
✓ ✓ 68.27
✓ ✓ 68.58
✓ ✓ ✓ 69.85

Table 5: Comparison of different configurations of parts
from our CGMGM on PASCAL-5i under 1-shot setting.
C&Q denotes the coupled CDGMG and QCPE.

Ablation Studies
We conducted a series of ablation experiments under the 1-
shot setting on PASCAL-5i, and adopted BAM (Lang et al.
2022a) with ResNet-50 as the baseline.

Effectiveness of Parts As mentioned in Section , our CG-
MGM consists of IMGR, CDGMG, and QCPE modules.
Since the QCPE module relies on the output of the CDGMG
module, they were coupled as a CDGMG&QCPE (C&Q)
part in the ablation experiments. Besides, we regarded the
two steps in the IMGR module as an Initial Mask Generating
(IMG) part and an Initial Mask Refining (IMR) part. There-
fore, the ablation experiments were conducted with these
three parts. As shown in Table 5, only using the C&Q part
caused a decrease of 0.86 in mIoU, while adding the IMG
achieved an improvement of 0.46 in mIoU, compared to the
baseline. These results are regarded as reasonable since the
inconsistency of the background information exists between
the support images and the query image, and relying solely
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on the information from the support images is likely to result
in incorrect distribution modeling. Overall, our CGMGM
achieved the state-of-the-art performance for FSS because
of combining all three modules.

Effectiveness of Double-Branch IMGR module As
mentioned in Section , we innovatively proposed the double-
branch initial mask generating module. We visualized the
initial masks of previous methods and our double-branch
IMGR module in Figure 5. It demonstrated that our IMGR
can generate a higher quality initial mask by keeping the lo-
cal pixels consistent.

Ablation on the CGMGM We varied the number of
Gaussian components from 1 to 5 and adopted both diag-
covariance and full-covariance matrices to set the GMMs to
be either independent or correlated. As shown in Figure 6,
using 3 multivariate Gaussians with the diag-covariance ma-
trix led to a better accuracy-efficiency trade-off. We also per-
formed experimental and theoretical analyses on computa-
tional complexity of our CGMGM, compared to other FSS
methods.

Conclusions
The limitations of existing FSS methods are characterized
by neglecting valuable information from the query image
and struggling to extract effective guidance information be-
tween support and query images. In this paper, we proposed
the Cross Gaussian Mixture Generative Model (CGMGM),
a novel FSS method that models the de facto joint distri-
bution of pixel and category in the support images and the
query image. Our CGMGM exploits this distribution to eval-
uate the category posterior probability of pixels in the query
image and exploits it as guidance information. Extensive ex-
periments showed that our parameter-free generative method
achieved state-of-the-art performance on two datasets, high-
lighting its effectiveness in pushing the boundary of FSS.
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