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Abstract

Denoising Diffusion Probabilistic Models (DDPMs) have
achieved significant success in generation tasks. Neverthe-
less, the exposure bias issue, i.e., the natural discrepancy be-
tween the training (the output of each step is calculated indi-
vidually by a given input) and inference (the output of each
step is calculated based on the input iteratively obtained based
on the model), harms the performance of DDPMs. To our
knowledge, few works have tried to tackle this issue by mod-
ifying the training process for DDPMs, but they still perform
unsatisfactorily due to 1) partially modeling the discrepancy
and 2) ignoring the prediction error accumulation. To address
the above issues, in this paper, we propose a multi-step de-
noising scheduled sampling (MDSS) strategy to alleviate the
exposure bias for DDPMs. Analyzing the formulations of the
training and inference of DDPMs, MDSS 1) comprehensively
considers the discrepancy influence of prediction errors on
the output of the model (the Gaussian noise) and the output
of the step (the calculated input signal of the next step), and 2)
efficiently models the prediction error accumulation by using
multiple iterations of a mathematical formulation initialized
from one-step prediction error obtained from the model. The
experimental results, compared with previous works, demon-
strate that our approach is more effective in mitigating expo-
sure bias in DDPM, DDIM, and DPM-solver. In particular,
MDSS achieves an FID score of 3.86 in 100 sample steps of
DDIM on the CIFAR-10 dataset, whereas the second best ob-
tains 4.78. The code will be available on GitHub.

Introduction
Denoising Diffusion Probabilistic Models (DDPMs) (Sohl-
Dickstein et al. 2015; Ho, Jain, and Abbeel 2020) are gen-
erative models, which first destruct data by progressively
adding noise and then learn the reverse process for sample
generation (Yang et al. 2022). Due to the advantage of un-
restricted model structure and stable training, DDPMs have
swiftly gained substantial attention and become state-of-the-
art approaches in generative tasks, including image genera-
tion (Dhariwal and Nichol 2021), text-to-image generation
(Nichol et al. 2022; Ramesh et al. 2022; Saharia et al. 2022),
text-to-video generation (Singer et al. 2022), and audio gen-
eration (Mittal et al. 2021). Recent researches on DDPMs
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Figure 1: The discrepancy between training and inference
process. In the training process, the input at time step t is
derived from the forward diffusion process of x0. Contrarily,
in the inference process, the input at time step t is obtained
from the output of the previous step.

have been primarily focused on augmenting the classical
method (Ho, Jain, and Abbeel 2020) in three key areas: ef-
ficient sampling (Song, Meng, and Ermon 2021; Kong and
Ping 2021; Lu et al. 2022; Salimans and Ho 2022), improved
likelihood estimation (Nichol and Dhariwal 2021; Bao et al.
2022; Kingma et al. 2021), and handling multi-modal tasks
(Nichol et al. 2022; Mittal et al. 2021). Nevertheless, the ex-
posure bias issue of DDPMs has been generally overlooked.

The exposure bias problem is a prevalent issue, leading
to suboptimal performance, in the domain of recurrent pro-
cesses, such as autoregressive text generation (Ranzato et al.
2016), arising from the disparity between the training and
inference processes (Bengio et al. 2015; Zhang et al. 2019;
Schmidt 2019). As shown in Fig. 1, in the training process
of DDPMs, a real sample x0 is corrupted by introducing
Gaussian noise as a Markov chain. The input to the model
at step t during training is obtained based on the real sample
x0, noise schedule αt, and a random standard Gaussian
noise ϵ: q (xt | x0) = N (xt;

√
ᾱtx0, (1− ᾱt) I). In con-

trast, in the inference process, the input to the model comes
from the output of the previous steps pθ (xt | xt+1) =
N (xt;µθ (xt+1, t+ 1) ,Σθ (xt+1, t+ 1)). The training
process sources its input directly from the ground truth,
while the inference process derives its input from model
predictions with potential errors. The discrepancy between
the training and inference, i.e., the exposure bias issue,
harms the performance of DDPMs (Deng, Kojima, and
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Rush 2022; Ning et al. 2023; Li et al. 2023).
A few works (Ning et al. 2023; Deng, Kojima, and Rush

2022) have recently attempted to address the exposure bias
in the training of DDPMs, but they still suffer from two prob-
lems. First, they partially model the discrepancy between
training and inference of DDPMs. Specifically, the Input
Perturbation (IP) method (Ning et al. 2023) introduces per-
turbation in the ground truth samples to simulate the infer-
ence prediction errors. Nevertheless, IP’s perturbation, e.g.,
Gaussian noise, is predefined and not equal to the true distri-
bution of noise obtained from the model. Deng, Kojima, and
Rush directly employ the scheduled sampling (SS) method
(Bengio et al. 2015), originally proposed for autoregres-
sive text generation tasks. However, the scheduled sampling
method cannot fully depict the discrepancy since the input
of the next step of DDPMs is calculated based on the input
and output of the model (Gaussian Noise). The input of the
next step of SS still contains noise from previous prediction
errors. Second, IP and SS only calculate prediction errors
in one step for efficiency, and they ignore that the prediction
errors would be accumulated through the interaction process
and further side influence the performance (2023; 2023).

In light of the above issues, in this paper, we propose a
multi-step denoising scheduled sampling (MDSS) strategy
to alleviate exposure bias for DDPMs. To comprehensively
alleviate the influence of prediction errors, MDSS consid-
ers the exposure bias from two aspects, requiring the output
of the model in the current step, e.g., the Gaussian noise,
to be accurately predicted, and the noise influence on the
input of the next step to be reduced. To mitigate the pre-
diction error accumulation influence, we model the accumu-
lated prediction errors time-efficiently by using multiple it-
erations of a mathematical formulation initialized from the
one-step prediction error obtained from the model. The pro-
cess starts with a one-step model prediction to introduce
the model noise and uses multiple iterations of the mathe-
matical formulation to model the prediction error accumu-
lation as similarly as possible. In addition, to further reduce
the implementation complexity, we validate that our MDSS
could improve the performance by finetuning a well-trained
DDPM with small retraining steps. We conduct extensive
experiments on CIFAR-10 (Krizhevsky, Hinton et al. 2009),
ImageNet 64×64 (Deng et al. 2009), and LSUN 64×64 (Yu
et al. 2015) datasets. Compared to previous methods: IP and
SS, our MDSS exhibits better generation quality improve-
ments in DDPM, DDIM, and DPM-Solver.

Our contributions are summarised as follows:

• We detailed analyze the discrepancy between training
and inference of DDPMs and propose an effective multi-
step denoising scheduled sampling (MDSS) strategy to
alleviate the exposure bias for DDPMs.

• MDSS comprehensively considers the discrepancy influ-
ence of prediction errors on both the output of the model
and the output of the calculated input signal per step and
efficiently models accumulated prediction error by using
multiple iterations of mathematical formulation initial-
ized from the one-step prediction error of the model.

• Extensive experiments were conducted to compare the

performance of current works for solving exposure bias
in DDPMs. The experimental results demonstrate that
our MDSS performs the best.

Preliminary Knowledge
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models (DDPMs) con-
sist of two processes: the forward process corrupts the data
through the addition of Gaussian noise, and the reverse pro-
cess reverts the forward process and generates data from
standard Gaussian noise (Ho, Jain, and Abbeel 2020; Nichol
and Dhariwal 2021).

Given data distribution q(x0) and the noise schedule
β1, β2, . . . , βT , the forward process corrupts the data as a
Markov chain:

q (xt | xt−1) = N
(
xt;
√

1− βtxt−1, βtI
)

(1)

q (x1:T | x0) =
T∏

t=1

q (xt | xt−1) (2)

When T is large enough, we can achieve xT ∼ N (0, I).
As mentioned in (Ho, Jain, and Abbeel 2020), we can sam-
ple to any time step directly using input x0 ∼ q(x0):

q (xt | x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt) I

)
(3)

where αt = 1 − βt and ᾱt =
∏t

i=1 αi. Utilizing the
reparameter skill, we are able to sample any step xt with
ϵ ∼ N (0, I):

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (4)

Using Bayes theorem, we can obtain the posterior reverse
process distribution q (xt−1 | xt,x0):

q (xt−1 | xt,x0) = N
(
xt−1; µ̃ (xt, x0) , β̃tI

)
(5)

µ̃t (xt,x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt (6)

β̃t :=
1− ᾱt−1

1− ᾱt
βt (7)

In the inference process, x0 is not available and q(xt−1 |
xt) depends on the entire data distribution. Consequently,
the reverse process is defined as a parameterized process:

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) (8)

pθ (x0:T ) = p (xT )
T∏

t=1

pθ (xt−1 | xt) (9)

Instead of learning the mean of reverse process, Ho, Jain,
and Abbeel find that predicting the noise ϵ is a better option.
Empirically, they propose simplifying the loss function as
follows:

Lsimple = Ex0,t,ϵ∼N (0,I)

[
∥ϵ− ϵθ (xt, t)∥2

]
(10)

The training and inference algorithms are described in
Alg. 1 and Alg. 2, respectively.
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Algorithm 1: DDPMs Standard Training Process
1: repeat
2: x0 ∼ q(x0);
3: t ∼ U({1, · · · T});
4: ϵ ∼ N (0, I);
5: Take gradient descent step on

∇θ

∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2 ;
6: until converged

Algorithm 2: DDPM Standard Inference Process

1: XT ∼ N (0, I);
2: for t = T, · · · , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0;
4: xt−1 = 1√

αt

(
xt − 1−αt√

1−ᾱt
ϵθ (xt, t)

)
+ σtz;

5: end for
6: return x0

Fast Inference Methods: DDIM and DPM-Solver
Many methods demonstrate improvement in the outcomes
of fewer steps inference, with DDIM and DPM-Solver be-
ing the most prevalent. DDIM (2021) proposes a more gen-
eralized non-Markov process with the same margianl distri-
bution of xt. The inference process changes such that the
model first predicts the normal sample x0, and then, the nor-
mal sample x0 is used to estimate the next step in the chain.
The reverse process can be sampled as follows:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵ

(t)
θ (xt)√

ᾱt

)

+
√
1− ᾱt−1 − σ2

t · ϵ
(t)
θ (xt) + σtϵt

(11)

where σt =
√
(1− ᾱt−1) / (1− ᾱt)

√
1− ᾱt/ᾱt−1.

DPM-Solver (Lu et al. 2022) proposes an exact formula-
tion of the solution of diffusion ODEs by Taylor expansion
(first order to third order):

xti−1→ti =

√
ᾱti√
ᾱti−1

x̃ti−1
−
√
ᾱti

k−1∑
n=0

ϵ̂
(n)
θ

(
x̂λti−1

, λti−1

)
∫ λti

λti−1

e−λ

(
λ− λti−1

)n
n!

dλ+O
(
hk+1
i

)
(12)

where λt = log(
√
ᾱt/

√
1− ᾱ) (one half of the log-SNR)

and hi = λti − λti−1
.

More introductions of DDIM and DPM-Solver can be
found in Appendix.

Multi-step Denosing Scheduled Sampling
This section presents our multi-step denosing scheduled
sampling (MDSS). As shown in line 5 in Alg. 1 and line 4
in Alg. 2, the inputs of the training and inference are differ-
ent. Specifically, the input of the training process originates
from the forward process. When x0, noise schedule, time

step t, and Gaussian noise ϵ ∼ N (0, I) are deterministic, xt

is obtained by Eq. 4 and is thus also deterministic. However,
the input of the inference process comes from the sampling
results of previous steps, containing non-negligible errors,
and is not exposed to the model during training. Besides,
the subsequent multiple-step inference process will contin-
uously amplify errors, further impacting the final sampling
outcomes. Therefore, we design MDSS to alleviate the ex-
posure bias issue in training by exposing and denoising the
accumulated prediction errors of the inference process.

In the remaining part, we first elaborate on the scheduled
sampling with denoising for DDPMs and then present the
modeling of prediction errors with accumulation. Next, we
introduce our algorithm, and last, we compare our MDSS
with current methods towards exposure bias for DDPMs,
i.e., IP and SS.

Scheduled Sampling with Denoising
We first formulate and analyze the influence of prediction
errors in one step. For simplicity, we suppose the input with
prediction errors is represented as:

x̂t = xt + ξ (13)

where x̂t is the input of the current step with noise, xt is the
ground-truth input without noises, and ξ is the prediction
errors modeling from the inference process. Here, we only
consider additive noise following IP and SS. The discussion
of other types of noises remains a challenge for future work.

According to the equation of inference process in line 4 of
Alg. 2, we can obtain subsequent inference step with noise:

x̂t−1 =
1

√
αt

(
x̂t −

1− αt√
1− ᾱt

ϵθ (x̂t, t)

)

=
1

√
αt

 xt + ξ︸ ︷︷ ︸
Input Signal

− 1− αt√
1− ᾱt

ϵθ (xt + ξ, t)︸ ︷︷ ︸
Model Prediction

 (14)

where we ignore the variance item for simplicity since it is
given directly and devoid of model prediction noise in most
of works (Ho, Jain, and Abbeel 2020).

It can be observed from Eq. 14 that there are two types of
influence for the output of current step: the model prediction
and the input signal. Previous methods only consider model
prediction. In contrast, we comprehensively mitigate both
influences in the sampling process.

For influence within the model prediction, we mitigate it
by training with noise-free training objective. We utilize xt,
which contains no noise, to obtain the training objective. xt

can be derived by sampling from the posterior distribution
q (xt−1 | xt,x0). By replacing x0 using ground truth ϵt+1

in Eq. 6, we can obtain:

xt = µ̃t+1 (xt+1,x0)

=

√
αt+1 (1− ᾱt)

1− ᾱt+1
xt+1 +

√
ᾱtβt+1

1− ᾱt+1
x0

=
1

√
αt+1

(
xt+1 −

βt+1√
(1− ᾱt+1)

ϵt+1

) (15)
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The meaning of posterior distribution is sampling to next
step, when the model prediction ϵθ equals the ground truth ϵ.
Hence, xt derived from the posterior distribution represents
the noise-free sampling result. Utilizing the variant of Eq. 4,
we obtain the noise-free training object with xt and x0:

ϵt =
xt −

√
ᾱtx0√

1− ᾱt
(16)

For influence within the input signal, we incorporate an
extra denoising channel into the model’s output to achieve
the denoising task. During the training process, the addi-
tional channel is trained to predict the noise from the input
containing noise. The training objective is the different be-
tween input from model prediction and posterior distribution
calculation:

ξt = x̂t − xt (17)
During the inference process, the input signal is denoised by
subtracting the output of the denoising channel.

In summary, the loss function for the entire training pro-
cess is given as:

∥ϵt − ϵθ (x̂t, t)∥2 + ∥ξt − ξθ (x̂t, t)∥2 (18)

More details of scheduled sampling with denoising can be
found in Appendix.

Prediction Errors with Multi-step Accumulation
Previous methods (Ning et al. 2023; Deng, Kojima, and
Rush 2022) generally ignore the accumulation of predic-
tion errors: IP uses Gaussian noise, and SS only considers
one-step prediction error for time efficiency. Our proposed
MDSS tries to model the prediction errors with multi-step
accumulations. One possible solution is to obtain the sig-
nal of time t based on the iteration process of Alg. 2. How-
ever, such an intuitive manner requires much calculation and
is ineffectively applied to the training process. Therefore,
MDSS models the accumulated prediction errors as simi-
larly as possible by using multiple iterations of mathemat-
ical formulation initialized from one-step prediction error
obtained from the model. Here, the one-step prediction er-
ror from the model is used to introduce model noises, and
the multiple iterations of the mathematical formulation are
used to model the accumulation quickly.

Specifically, we first obtain the one-step prediction error
from the model by using:

xt+k+1 =
√
ᾱt+k+1x0 +

√
1− ᾱt+k+1ϵ (19)

xt+k =
1

√
αt+k+1

(xt+k+1

− 1− αt+k+1√
1− ᾱt+k+1

ϵθ (xt+k+1, t+ k + 1)

(20)

Then, we simulate the error accumulation by using the
posterior distribution, which conducts the reverse process
without model prediction. For further simulating of one step,
we can sample by posterior directly. In order to calculate
multi-step sample of posterior, we can sample as:

xt = γtxt+k + ωtx0 +

√
ᾱtβt+1

1− ᾱt+1
x0 (21)

Algorithm 3: Multi-step Denoising Scheduled Sampling
1: repeat
2: x0 ∼ q(x0);
3: t ∼ U({1, · · · T − k − 1});
4: ϵ ∼ N (0, I);
5: xt+k+1 =

√
ᾱt+k+1x0 +

√
1− ᾱt+k+1ϵ;

6:
x̂t+k =

1
√
αt+k+1

(xt+k+1

− 1− αt+k+1√
1− ᾱt+k+1

ϵθ (xt+k+1, t+ k + 1)

7: xt+k = 1√
αt+k+1

(
xt+k+1 − 1−αt+k+1√

1−ᾱt+k+1
ϵ

)
;

8: if k > 0 then
9: x̂t = γtx̂t+k + ωtx0 +

√
ᾱtβt+1

1−ᾱt+1
x0

10: xt = γtxt+k + ωtx0 +
√
ᾱtβt+1

1−ᾱt+1
x0

11: end if
12: ξt = x̂t − xt;
13: ϵt =

xt−
√
ᾱtx0√

1−ᾱt
;

14: Take gradient descent step on
∇θ(∥ϵt − ϵθ (x̂t, t) ∥2 + ∥ξt − ξθ (x̂t, t) ∥2)

15: until converged

γt =
t+k−1∏
i=t

√
αi+1(1− ᾱi)

1− ᾱi+1
(22)

ωt =
t+k−2∑
j=t

∏j
n=t

[√
αn+1(1− ᾱn)

]√
ᾱj+1βj+2∏j+2

m=t+1 (1− ᾱm)
(23)

Through above process, step t + k with model errors is
quickly simulated for k steps errors accumulation to obtain,
step t, the inputs for training. The disparity between the in-
put with noise and the ground truth expends, mimicking the
noise accumulation observed in the sampling process.

Algorithm
The training process by introducing the prediction errors
with multi-step accumulation in the scheduled sampling
with denoising, the algorithm of MDSS is described in
Alg. 3. The training process still follows scheduled sam-
pling, which introduces prediction errors by the scheduled
ratio. For brevity, the algorithm only outlines the steps of
introducing errors. More details can be found in Appendix.
k represents the number of accumulation using mathmati-
cal formulation. When k = 0, it defaults to a Single-step
denoising scheduled sampling (SDSS).

Furthermore, we validate our MDSS could be applied to a
well-trained model. In such a manner, only requiring a small
number of retraining steps, MDSS can improve the perfor-
mance of a given DDPM, saving a lot of time and computa-
tional resources when compared with training from scratch.

Discussion
In this subsection, we compare our proposed approach with
IP and SS, two state-of-the-art methods for addressing ex-
posure bias for DDPMs, highlighting the reasons behind the
superior sampling outcomes achieved by our method.
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Input Denoise model prediction Denoise input signal
IP x̂t =

√
ᾱtx0 +

√
1− ᾱt (ϵ+ γtε) (✕) Given ϵ (✓) ✕

SS x̂t =
1√

αt+1

(
xt+1 − 1−αt+1√

1−ᾱt+1
ϵθ (xt+1, t)

)
(✓) ϵ = x̂t−

√
ᾱtx0√

1−ᾱt
(✕) ✕

MDSS x̂t = γx̂t+k + ωx0 +
√
ᾱtβt+1

1−ᾱt+1
x0 (✓) ϵ = xt−

√
ᾱtx0√

1−ᾱt
(✓) ξ = x̂t − xt

Table 1: The comparison of MDSS with IP and SS. The symbol ✓denotes that the process is analytically accurate and involved,
while ✕ indicates that the process is either analytically incorrect or not covered.

(a) Input without errors (b) Input with one-step errors (c) Input with previous accumu-
lated errors

Figure 2: The Mean Squared Errors between the model prediction and the ground truth for different methods.

Table. 1 presents the comparison. For the training input,
IP uses Gaussian noise to emulate model prediction noise,
which may be different from the actual noise in the infer-
ence process. For the model prediction, SS ignores the influ-
ence of the input signal, as shown in Eq. 14, and only such
a model prediction cannot fully address the exposure bias
and may introduce new noises. Only MDSS considers the
influence of input signal and prediction error accumulation.

We conduct three experiments with well-trained models
to demonstrate the efficacy of our method further. In our ex-
periments, we employ various inputs and measure the Mean
Squared Error (MSE) between the model prediction and
ground truth at every step. Firstly, the model’s input is calcu-
lated by ground truth and does not include errors. Fig. 2(a)
shows that all methods perform nearly the same when the
model inputs are free of noise. Secondly, the input of the
model comes from one step of sampling of the previous step
through the model. Fig. 2(b) reveals that when the input in-
corporates one step of model prediction noise, MDSS yields
the most accurate results. Last, the input of the model comes
from the sample of previous steps, which contains the accu-
mulation errors. Fig. 2(c) shows that the error is prominent
in the initial stages, likely due to the data distribution being
close to standard. As the sampling process progresses, the
model error diminishes rapidly. After hundreds of steps, the
errors of prediction increase due to the exposure bias prob-
lem. However, using MDSS, the model prediction error did
not show a trend of increasing during the sampling process,
which reflects that we have well-alleviated exposure bias.

Experiment
Experimental Setup
We evaluate our method across unconditional image gener-
ation tasks on three datasets: CIFAR-10 (Krizhevsky, Hin-

ton et al. 2009), ImageNet 64×64 (Deng et al. 2009), and
LSUN tower 64×64 (Yu et al. 2015). For the CIFAR-10
and ImageNet 64×64 datasets, we fine-tune on the well-
trained iDDPM (Nichol and Dhariwal 2021) models, and for
LSUN tower 64×64, we keep training on the ADM (Ho and
Salimans 2022) model. We employ the Frechet Inception
Distance (FID) (Heusel et al. 2017) to evaluate the quality
of the generated images. In order to visually show the ef-
fect of MDSS on image synthesis, we set the same random
seed in the sampling phase to ensure a similar trajectory for
all methods. More details regarding training hyperparame-
ters, network architecture, FID evaluating settings, CLIP-
FID (Kynkäänniemi et al. 2022; Rangwani et al. 2023) re-
sults and qualitative comparison can be found in Appendix.

Main Comparison
In this section, we compare MDSS with IP and SS on
DDPM, DDIM, and DPM-Solver. For DDPM and DDIM,
we sample 30, 100, and 250 steps. For DPM-Solver, we sam-
ple 10, 20, and 50 steps. In the following results, we high-
light the best result and underline the second-best result.

The results of DDPM are shown in Table. 2. We can draw
the following conclusions: 1) Exposure bias drops the gen-
eration performance of DDPMs, and MDSS outperforms
SS and yields competitive results with IP. 2) We find that
SDSS outperforms MDSS when sampling steps are larger,
while MDSS performs exceptionally well with fewer sam-
pling steps. This may be because the noise accumulation in
multi-step is more effective at mitigating the fewer-step sam-
pling process, which is prone to more significant errors.

The results of DDIM are shown in Table. 3. We can draw
conclusions that: 1) Our method significantly enhances the
sampling results and achieves a greater FID improvement
than DDPM sampling. It is important to note that the IP
method yielded subpar results in DDIM. This validates that
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Dataset Steps DDPM IP SS SDSS MDSS

CIFAR-10
30 7.81 6.40 7.95 7.92 5.54
100 3.72 3.25 3.62 3.47 3.49
250 3.23 3.02 3.17 3.08 3.62

ImageNet
30 34.35 34.52 32.60 32.32 31.76
100 25.32 24.88 23.86 23.22 24.28
250 24.88 24.24 22.82 22.48 23.69

LSUN
30 5.98 5.52 5.76 5.72 5.57
100 2.32 2.27 2.25 2.24 2.26
250 2.22 1.95 1.93 1.90 1.92

Table 2: DDPM results on CIFAR-10, ImageNet, and LSUN
tower with varying inference steps.

Dataset Steps DDPM IP SS SDSS MDSS

CIFAR-10
30 7.47 5.35 7.02 6.92 5.25
100 4.99 6.95 4.78 4.53 3.86
250 4.48 8.60 4.11 3.94 3.92

ImageNet
30 28.11 43.74 27.82 27.47 27.18
100 25.33 49.73 24.81 24.75 24.96
250 24.29 55.22 23.69 23.44 23.86

LSUN
30 4.26 37.38 4.01 3.94 3.84
100 2.96 27.20 2.79 2.61 2.67
250 4.48 32.92 4.38 4.56 4.13

Table 3: DDIM results on CIFAR-10, ImageNet, and LSUN
tower with varying inference steps.

a predefined noise, such as the Gaussian Noise of IP, may
contain a gap when compared with prediction errors of the
inference process. MDSS and SDSS perform better than SS,
partly because MDSS and SDSS model more accurately the
prediction errors. 2) MDSS achieves better sampling results
than SDSS partly because the non-markov process of DDIM
might make it more susceptible to error accumulation.

We conducted experiments using DPM-Solver-1, 2, and
3 for the DPM-Solver sampling method. The CIFAR-10 re-
sults are shown in Table. 4, while results for ImageNet and
LSUN are available in Appendix. We can draw the following
observations: 1) DPM-Solver-1 is fundamentally similar to
DDIM; therefore, our method can achieve superior sampling
results compared to other approaches. 2) In DPM-Solver-2
and 3, while our approach outperforms IP and SS, there is
minimal or no improvement compared to the DDPM base-
line. One reason could be that DDPM and DDIM require
a single model prediction during sampling, whereas DPM
Solver undergoes two or three model predictions. The mod-
eling of prediction errors should be adjusted based on DPM
Solver inference, which is one of our future works.

Ablation Study
In this subsection, we conduct extensive ablation studies on
the CIFAR-10 dataset to elucidate the impact of method-
ological components within our method.

The effect of denosing. We first assess the impact of
denoise the input signal. We compare the performance of
SDSS and SDSS without denoising the input signal (SDSS
w/o). The results of DDPM and DDIM are shown in Ta-

Methods Steps DDPM IP SS SDSS MDSS

DPM-Solver-1
10 26.08 41.96 25.39 24.96 12.11
20 11.46 20.79 11.17 11.04 5.41
50 6.03 14.43 5.99 5.89 4.84

DPM-Solver-2
10 10.43 42.03 13.04 11.98 12.149
20 3.55 7.43 4.65 4.48 5.319
50 3.28 11.39 4.04 4.02 4.845

DPM-Solver-3
10 5.99 33.22 6.43 6.34 7.80
20 4.07 13.32 4.23 4.01 5.51
50 4.01 12.36 4.00 3.94 5.33

Table 4: DPM-Solver-1,2,3 on CIFAR-10 with varying in-
ference processes.

DDPM DDPM DDIM DDIM
SDSS w/o SDSS SDSS w/o SDSS

30 steps 7.93 7.92 6.93 6.92
100 steps 3.55 3.47 4.60 4.53
250 steps 3.09 3.08 4.05 3.94

Table 5: Comparison of denoising input signal on DDPM
and DDIM.

ble. 5. We can conclude that using an additional model chan-
nel to remove noise from the input signal can further mit-
igate exposure bias and enhance generated results. Never-
theless, the improvement is slight compared with the model
prediction denoising effect. This might be because expo-
sure bias predominantly stems from the noise introduced
by model prediction. The input containing noise can lead
to large deviations in model predictions.

The effect of multi-step training. We discuss the effec-
tion of prediction error accumulation by conducting experi-
ments with varying steps, k: 4, 10, 20, and 50. The DDPM
and DDIM inference results are presented in Table. 6 and
Table. 7. In DDPM, the multi-step training approach only
offers improvements at fewer inference steps. This might be
due to the accumulation of errors in fewer inferences is more
significant and can be mitigated by MDSS. Incorporating
more steps in MDSS also leads to worse DDPM results. For
DDIM, performance is enhanced using multi-step training.
Significant results can also be obtained at certain sampling
steps using longer multi-steps. This indicates that there is
more significant noise in DDIM, and therefore MDSS can be
used for more sampling steps and longer error accumulation.
Choosing the number of multi-step training steps requires
careful consideration to prevent exacerbating exposure bias.
We advise beginning with a conservative number of steps,
such as four steps, and incrementally increasing it.

Number of iterations in continue training. In our ex-
periments, we fine-tune a well-trained DDPM using MDSS.
In this section, we conduct experiments on the CIFAR-10
dataset, assessing the result of different training iterations.
We calculate the FID of 250 sampling steps on every 5,000
iterations, and the result is shown in Fig. 3. The FID ex-
periences a sharp decline in the initial phases of training
and begins to converge after approximately 20,000 itera-
tions, but we do not notice a decline if MDSS is not used.
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single-step 4 steps 10 steps 20 steps 50 steps
30 steps 7.92 5.54 5.92 6.70 8.31

100 steps 3.47 3.49 4.20 3.64 4.12
250 steps 3.08 3.62 3.75 3.58 3.32

Table 6: Comparison of multi-step training using different
steps on DDPM.

single-step 4 steps 10 steps 20 steps 50 steps
30 steps 6.92 5.25 4.45 4.52 6.98

100 steps 4.53 3.86 4.04 4.05 4.61
250 steps 3.94 3.92 3.96 3.79 4.09

Table 7: Comparison of multi-step training using different
steps on DDIM.

This demonstrates that our method can achieve convergence
results with fewer training iterations. Compared to training
from scratch, which requires around 200,000 iterations, our
method reduces the training time by approximately a factor
of 10. More results and explanations of training from scratch
can be found in Appendix.

Discussion of Modifying MSDD Based on DDIM
Many methods modify the inference process to achieve im-
proved results when utilizing fewer sampling steps. For ex-
ample, while DDIM and DDPM undergo identical training
process, their inference methods are a little distinct. Ana-
lytically, by utilizing DDIM in Eq. 11 instead of DDPM in
scheduled sampling, we can achieve a noise distribution that
more closely mirrors the actual DDIM inference process. We
compare the effect of SDSS and MDSS with the DDIM re-
vised version, and the results are shown in Table. 8. It can
be observed that with a modification, the performance of
SDSS/MDSS is further improved when sampling steps are
few. We suggest that When leveraging DDIM for quick sam-
pling with minimal steps, we can employ the DDIM sched-
uled sampling to boost the quality of the results. We can
adopt a similar approach with the DPM-Solver and we leave
this as our feature work.

Related Work
Denoising Diffusion Probabilistic Models Several en-
hancements have been proposed based on the Denoising Dif-
fusion Probabilistic Model (DDPM) (2020). For instance,
Nichol and Dhariwal introduced the cosine noise sched-
ule and a method for learning variances Σθ. Dhariwal and
Nichol proposed additional classifier guidance and an im-
proved U-net model, demonstrating that the diffusion model
can achieve superior image sample quality compared to
GANs. Ho and Salimans proposed a classifier-free guidance
that can achieve state-of-the-art results without necessitating
the training of an additional classifier.

Exposure bias Exposure bias is a prevalent issue in re-
current processes, arising due to the teacher-forcing training
method (2015; 2016; 2019; 2019). Throughout the entire
training process, the model is not exposed to its own pre-

Figure 3: FID scores with respect to the number of training
iterations. Each FID result is computed with 250 inference
steps.

SDSS DDIM SDSS MDSS DDIM MDSS
30 steps 6.92 5.42 5.25 4.82
100 steps 4.53 4.21 3.86 3.94
250 steps 3.94 4.51 3.92 4.63

Table 8: Comparison of SDSS/MDSS with/without modifi-
cation based on DDIM sampling.

dictions but given ground truth. However, during the sam-
pling phase, the word predicted at a previous moment is
used to predict the subsequent word. This discrepancy be-
tween training and sampling leads to inaccurate sampling.
The Data As Demonstrator (DAD) (2015) approach tack-
les this issue by feeding both ground truth words and pre-
dicted words during the training process. Scheduled sam-
pling (2015), on the other hand, replaces the teacher-forcing
training method with a biased sampling approach that emu-
lates the sampling process based on its own predictions. This
paper discusses the Exposure bias in DDPMs.

To avoid the exposure bias problem caused by autoregres-
sive factorization, another potential way is switching to non-
autoregressive generation which has been validated in the
field of natural language processing (2018; 2021b; 2021a;
2022) and will be explored in the future.

Conclusion
In this paper, we propose a novel training method called
multi-step denoising scheduled sampling (MDSS) to miti-
gate the exposure bias issue. Specifically, MDSS 1) compre-
hensively denoises the errors in model prediction and input
signal and 2) efficiently models the prediction error accu-
mulation by mathematical formulation. Our method can be
plugged into any existing DDPMs, requiring merely a few
additional training iterations on the well-trained model. The
experiments showcase that MDSS achieves better results in
alleviating exposure bias problems compared with state-of-
the-art works: IP and SS.

Even though our method achieves excellent results in both
DDPM and DDIM inference, it is not well-compatible with
the DPM-Solver method. Besides, we assume that the noise
of model prediction is additive. We leave the discussion of
DPM-Solver and other types of noises as our future work.
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