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Abstract

Image harmonization aims to generate a more realistic ap-
pearance of foreground and background for a composite im-
age. All the existing methods perform the same harmoniza-
tion process for the whole foreground. However, the im-
planted foreground always contains different appearance pat-
terns. Existing solutions ignore the difference of each color
block and lose some specific details. Therefore, we pro-
pose a novel global-local two stages framework for Fine-
grained Region-aware Image Harmonization (FRIH). In the
first stage, the whole input foreground mask is used to make
a global coarse-grained harmonization. In the second stage,
we adaptively cluster the input foreground mask into sev-
eral submasks. Each submask and the coarsely adjusted im-
age are concatenated respectively and fed into a lightweight
cascaded module, refining the global harmonization result.
Moreover, we further design a fusion prediction module to
generate the final result, utilizing the different degrees of har-
monization results comprehensively. Without bells and whis-
tles, our FRIH achieves a competitive performance on iHar-
mony4 dataset with a lightweight model.

Introduction
Image composition plays an essential role in image editing
and generation (Liu et al. 2020; Azadi et al. 2020; Qiu et al.
2020; Cheng et al. 2020; Wang et al. 2020; Guo et al. 2019;
Van den Oord et al. 2016). However, since the source of the
implanted foreground object and the new background image
are different, it is easy to cause an unrealistic perception of
the composite image. Image harmonization is an important
operation to address this issue, aiming to make the implanted
foreground compatible with the background.

Traditional image harmonization methods mainly focused
on low-level feature statistics, such as color distribution
matching (Cohen-Or et al. 2006; Pitié and Kokaram 2007),
gradient-domain compositing (Pérez, Gangnet, and Blake
2003; Jia et al. 2006; Tao, Johnson, and Paris 2013) and
hybrid feature transferring (Sunkavalli et al. 2010). These
methods limit the harmonization performance due to the
lack of high level information. There are also several un-
supervised or self-supervised image harmonization methods
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Figure 1: Case study on the coarse-grained harmonization
problem of different foreground appearance patterns. On the
top line, the implanted foreground is a person with green
shirt and orange hair. The background contains more or-
ange pixels, leading to a better harmony of the orange hair,
while the saturation in the green shirt decreases in RainNet
(Ling et al. 2021). On the bottom line, the implanted fore-
ground is a gray sculpture and a red wreath. The background
is brighter, resulting in a bright overall harmony process in
RainNet (Ling et al. 2021), in which the red wreath looks
good while the gray sculpture becomes too bright. Clearly,
our FRIH could solve all the above problems well.

(Chen and Kae 2019; Zhan et al. 2020; Jiang et al. 2021), not
relying on manual annotation. But they only work better in
specific scenes, such as the portraits harmonization, lack of
universality. Recently, the supervised encoder-decoder har-
monization methods (Tsai et al. 2017; Cong et al. 2020; Ling
et al. 2021) have achieved superior performance based on the
construction of the large training datasets.

However, there is still a major problem of existing solu-
tions. The implanted foreground always contains different
appearance patterns. The similarity between the composite
image and the real ground-truth image varies among differ-
ent sub-regions. Some sub-regions in the composite image
are relatively similar to the real ground-truth image, while
others may be much far away from the target. Thus dif-
ferent sub-regions need different harmonization operations.
Existing methods perform the same harmonization process
for the whole foreground, ignoring the difference of each
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color block and losing some specific details. As shown in
Figure 1, the foreground of the first case is a person with
green shirt and orange hair. The foreground of the second
case is a gray sculpture and a red wreath. If applying the
coarse-grained harmonization method RainNet (Ling et al.
2021), only part of the foreground (the orange hair and the
red wreath) has satisfactory performance, while the other
part (the green shirt and the gray sculpture) is ineffective.

In order to solve the above problems, we propose a sim-
ple, novel and effective global-local framework for Fine-
grained Region-aware Image Harmonization (FRIH), which
is a two-stage network. The first stage includes the base net-
work, i.e. a simple U-Net (Ronneberger, Fischer, and Brox
2015) alike network, in which the composite image and the
whole input foreground mask are used to make a global
coarse-grained harmonization. In the second stage, we ad-
just the global harmonization result according to the region-
aware local feature. Specifically, we adaptively cluster the
input foreground mask into several submasks by the cor-
responding pixel RGB values in the composite image. The
number of the submasks is adaptive for different input im-
ages. Each submask and the coarsely adjusted image are
concatenated respectively and fed into a lightweight cas-
caded module. Moreover, to utilize the different levels of
the harmonization results comprehensively, we further de-
sign a fusion prediction module by fusing features from all
the cascaded decoder layers together to generate the final re-
sult. Our two-stage network is trained end-to-end. If the two
stages are trained separately, the submasks information can
not affect the training of the first stage, not able to maximize
the optimization of the overall performance.

Our FRIH method achieves a competitive performance in
iHarmony4 (Cong et al. 2020) dataset with a lightweight
model. The PSNR of our method is 38.19 dB. Specifically,
the sub-regions details of the two cases in Figure 1 are both
handled well by our method. Besides, our model has only
11.98 M parameters. The main contributions of this paper
are as follows:

1. We propose a novel global-local framework for fine-
grained region-aware image harmonization. The local sub-
masks are generated adaptively to adjust the global coarse-
grained harmonization result.

2. We design a lightweight cascaded module to integrate
the global coarsely adjusted image and the region-aware lo-
cal feature, refining the harmonization performance. And the
fusion prediction module is further proposed to utilize the
different degrees of harmonization results comprehensively.

3. Our FRIH achieves a competitive PSNR (38.19 dB) on
iHarmony4 dataset. Besides, the parameters of our model
are only 11.98 M.

Related Works
Statistics-based Harmonization Methods
Traditional image harmonization methods mainly focused
on low-level feature statistics, such as color distribution
matching (Pitie, Kokaram, and Dahyot 2005; Cohen-Or
et al. 2006; Pitié and Kokaram 2007; Song et al. 2020),
gradient-domain compositing (Pérez, Gangnet, and Blake

2003; Jia et al. 2006; Tao, Johnson, and Paris 2013) and
hybrid feature transferring (Sunkavalli et al. 2010). These
methods did not consider the realism of the composite im-
ages. Several other methods (Lalonde and Efros 2007; Xue
et al. 2012; Zhu et al. 2015) further applied high-level im-
age feature to design the visual reality assessment mecha-
nism. Despite the better optimization standards, the basis of
these methods is still statistics methods, limiting the harmo-
nization performance. While our FRIH follows the currently
mainstream supervised encoder-decoder framework, which
has the potential for better harmonization performance.

Encoder-decoder Harmonization Methods
Comparing with traditional statistics-based methods, re-
cent encoder-decoder harmonization methods have achieved
superior performance. The pioneering end-to-end CNN
method DIH (Tsai et al. 2017) encoded the input image and
foreground mask, which was then decoded to the harmo-
nized image and scene parsing image. Based on the encoder-
decoder framework, several methods (Cun and Pun 2020;
Hao et al. 2020; Cong et al. 2021) applied the attention
mechanism to learn foreground and background appearance
feature separately for harmonization. Moreover, RainNet
(Ling et al. 2021) designed a region-aware adaptive instance
normalization module to transfer the visual style from back-
ground to foreground. IIH (Guo et al. 2021b) proposed in-
trinsic image harmonization framework by disentangling the
composite image into reflectance and illumination for fur-
ther separate harmonization. Guo et. al (Guo et al. 2021a)
integrated the transformer structure (Vaswani et al. 2017;
Dosovitskiy et al. 2021) to the encoder-decoder harmoniza-
tion network. Several recent methods (Ke et al. 2022; Liang
et al. 2022) focused on high resolution image harmonization.
However, all these methods only divided the foreground and
background as different regions. They did not make a finer
region division inside the foreground. Differently, our FRIH
is the first method to propose the fine-grained region-aware
harmonization framework, which could get more precise
harmonization results.

Cascade Mechanism
Cascade mechanism is a direct but useful strategy in many
computer vision tasks (Cai and Vasconcelos 2018; Chen
et al. 2019). The key idea is to use an extra cascaded mod-
ule to refine the results from the previous stages. Cascade
R-CNN (Cai and Vasconcelos 2018) used a sequence of de-
tectors trained with increasing IoU thresholds to gradually
refine the detection results from the previous detectors. CU-
Net (Liu et al. 2019) connected two U-Net networks and
used two stage loss supervision for more accurate segmen-
tation. Cascade EF-GAN (Wu et al. 2020) decomposed the
expression editing task into three steps and applied three
cascaded GANs to solve each of them. Most of these meth-
ods used the same architecture of base network to design
their cascaded module, leading to a large increase of model
size. Different from those methods, our cascaded module is
lightweight and effective. The lightweight module together
with the embedded fusion prediction module only accounts
for 22.4% of the parameters of the whole FRIH network.
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Figure 2: Our proposed FRIH framework. In the first stage, we feed the composite image and the foreground mask into the base
network to obtain the coarsely adjusted image. In the second stage, the coarsely adjusted image and the extracted submasks
are concatenated and fed into the lightweight cascaded module together with the embedded fusion prediction module, which
adjusts the sub-regions and generates final refined harmonious images. Note that to keep the figure clean, we omit the skip
connections between the encoder and the decoder, both in the base network and the lightweight cascaded module.

Proposed Method
Overview
The definition of image harmonization is to input a compos-
ite image Ic with the corresponding foreground mask and
output the harmonious image Î . If there is a ground-truth
image I of the composite image Ic, the optimization direc-
tion of the harmonization model is to make Î close to I .

Our proposed fine-grained region-aware image harmo-
nization framework is illustrated in Figure 2, which is a two-
stage network. We use a simple U-Net (Ronneberger, Fis-
cher, and Brox 2015) alike network as the base network in
the first stage. In this stage, we feed the composite image
and the foreground mask into the encoder-decoder network
to obtain the global coarsely adjusted image. In the second
stage, we first cluster the foreground mask into several sub-
masks adaptively. Then, each submask and the coarsely ad-
justed image generated in the first stage are concatenated
respectively and fed into the lightweight cascaded module,
which makes full use of the region-aware local feature ac-
cording to the submasks. Finally, we embed the fusion pre-
diction module into the decoder of the lightweight cascaded
module, to ultilize the different levels of the harmonization
results comprehensively and generate the final harmonious
images. The whole FRIH network is trained end-to-end.

Base Network
The base network inputs the composite image and the fore-
ground mask, and outputs the global coarsely adjusted im-
age. The base network is a simple U-Net (Ronneberger, Fis-
cher, and Brox 2015) alike network, including an encoder
and a decoder. The encoder has been downsampled for 7

times and the decoder has 7 deconvolution layers corre-
spondingly. There is a skip connection between each con-
volution layer in the encoder and the corresponding decon-
volution layer with the same feature map size in the decoder.

Submask Extraction
A significant step of FRIH is to extract the submasks of
the global mask. The number K of the submasks needs to
be adaptive for different input images. Therefore, We apply
CFSFDP clustering algorithm (Rodriguez and Laio 2014)
to extract K submasks for each global mask. The original
CFSFDP algorithm has two basic ideas, which are that clus-
ter centers have a higher density than their neighbors, and
are at a relatively large distance from points with higher den-
sities (Rodriguez and Laio 2014). In our method, we cluster
the pixels in the global mask by their corresponding pixel
RGB values in the composite image. The local density ρi of
pixel pi is measured as:

ρi =
∑
j

χ(dij − dc) (1)

where dij is the normalized euclidean distance between the
(r, g, b) vectors of pixels pi and pj . dc is the cutoff distance.
We will introduce the setting of dc in the experiments sec-
tion. χ(x) = 1 if x < 0 and χ(x) = 0 otherwise. The
minimum distance δi between pixel pi and any other pixel
pj with higher density is defined as:

δi = min
j:ρj>ρi

(dij) (2)

Note that if pi has the highest density in the image, then
δi = maxj(dij). In our method, according to the statisti-
cal observations on a large number of images, we find that
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Composite / Mask Submasks

Figure 3: A representative case of the submask extraction.
The origin mask (left) is divided into 4 submasks (right).

the appropriate number of submasks for the foreground will
not exceed 10 in the vast majority of cases. Therefore, we
sort all pixels by δ. The 10 RGB values with the highest δ
are considered to be the candidate cluster centers. Note that
the RGB values of different candidate cluster centers should
be different. For example, if all the pixels in the foreground
have the same RGB value, there will be only 1 candidate
cluster centers. The candidate cluster centers whose densi-
ties ρ do not exceed 10 will be considered as isolated out-
liers. Only the candidate cluster centers whose densities are
higher than 10 are considered as the final cluster centers.
Thus the cluster centers of each foreground mask are ob-
tained adaptively. The number of the cluster centers K is in
the range of 1 to 10.

When all the cluster centers are obtained, the remaining
pixels are assigned to the same cluster as their nearest pixel
of higher density. In this way, all the pixels in the foreground
mask Mf are assigned into K clusters. For each composite
image, we obtain K submasks Subm1,Subm2,...,Submk.
Figure 3 displays a representative set of the generated sub-
masks. In this case, K = 4.

Lightweight Cascaded Module
In this module, we concatenate the global coarsely ad-
justed image generated in the first stage and each submask
respectively. All the concatenated pairs are fed into the
lightweight cascaded module. We imitate the structure of
U-Net (Ronneberger, Fischer, and Brox 2015) to construct
the lightweight cascaded module. In the cascaded encoder,
seven 4 × 4 convolution layers are used to extract different
level features of the coarsely adjusted image. In the cascaded
decoder part, different from the original decoder in U-Net,
at each layer, we use a 1 × 1 convolution layer to fuse the
features from three sources: the previous decoder layer, the
corresponding encoder layer in the first stage (the yellow
arrow in Figure 2), the corresponding encoder layer in the
cascaded module. In this way, we not only further harmo-
nize the image based on the results from first stage network,
but also utilize the features from the original composite im-
age. The details of this module are shown in Figure 2. Thus
the output of the i-th cascaded decoder layer DCi can be
calculated by the following equation:

ETi = Convtrans(Ei) (3)

Concatenation

Upsample

C

Cascaded Decode Features

C

Fused Feature

CNN
Blocks

Figure 4: The fusion prediction module. Features from all
the cascaded decoder layers are used to predict results.

Fi = Convfuse([DCi−1, ETi, ECi]) (4)

DCi = Convup(Fi) (5)

where Ei denotes the features from the first stage encoder.
We use two 3 × 3 convolution layers as transfer function
Convtrans to transfer Ei into ETi to make it suitable for
the cascaded module. ECi denotes the output of the i-th
layer in the cascaded encoder, which contains the informa-
tion from the coarsely adjusted image. The operator [] means
the concatenation operation and Convfuse is a 1× 1 convo-
lution layer to fuse the features from three different sources.
Convup is a 4 × 4 transpose convolution layer to upsam-
ple and decode the fused feature Fi. In this way, we ob-
tain the cascaded adjust features from the last layer of our
cascaded module. Note that the channels of the features are
much smaller than those in the original U-Net. The cascaded
module together with the following embedded fusion predic-
tion module has only 2.68 M parameters, only accounting
for 22.4% of the parameters of the whole FRIH network.
Therefore, our cascaded module is lightweight.

Fusion Prediction Module
In order to utilize the different levels of harmonization re-
sults comprehensively, we further design a fusion prediction
module. In the previous image harmonization methods and
traditional U-Net, they only use the features from the last
decoder layer to predict the generated images, since the fea-
tures from the former decoder layers have not been adjust
to be close to the target enough. However, in our cascaded
module, the input is the coarsely adjusted image. All the cas-
caded decoder layers have already fuse the information of
the coarsely harmonized image. The outputs from different
cascaded decoder layers are the features of images adjusted
to different degrees. The similarity between the composite
image and the ground-truth image varies among different
sub-regions. Some sub-regions in the composite image are
relatively similar to the ground-truth image, while others
may be much far away from the target. Thus different sub-
regions need different degrees of harmonization. As shown
in Figure 4, we fuse features from all the cascaded decoder
layers together to predict the harmonized result, which en-
ables the prediction head to utilize features from different
harmonization levels. Since the resolution of the features
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from different cascaded decoder layers are different, we up-
sample all these feature maps to the resolution 256×256 and
concatenate them together. Then we use two 3 × 3 and one
1× 1 convolution layers to convert these fused feature maps
to a 3-channel RGB image. As shown in Figure 2, we obtain
K refined images from the input K pairs. The final output
image is generated by combining these images according to
the corresponding submasks.

Training Loss
Since we use base network to predict coarse results and a
cascaded module to obtain refined images, for each image,
the loss function Ltotal consists of two parts, Lcoarse and
Lrefine. We use the following equation to calculate Ltotal:

Ltotal = Lcoarse + Lrefine (6)

Lcoarse =
∑
h,w

||Ih,w − Îh,w||22
max(Areamask, Amin)

(7)

Lrefine =

K∑
i=1

∑
h,w

||Ih,w − Îh,w||22 · Submi
h,w

max(AreaSubmi , Amin)
(8)

where Î is the prediction result. In equations 7 and 8, Î rep-
resents the coarsely adjusted image in the first stage and the
final output image in the second stage, respectively. It should
be noted that in Lrefine, we only focus on the submask area,
so the loss is multiplied by the submask. Furthermore, We
find that the images with small foreground masks are always
hard examples and we want our model to learn more infor-
mation from them. Therefore, we divide the loss by the area
of the foreground mask. Amin is a constant, which is set
to 100 in all the experiments. For those masks or submasks
whose areas are smaller than Amin, we treat them as Amin.

Experiments
Datasets and Evaluation Metrics
To demonstrate the effectiveness of our FRIH, we con-
duct experiments on the public image harmonization dataset
iHarmony4 (Cong et al. 2020). This dataset consists of four
sub-datasets, including HCOCO, HAdobe5k, HFlickr and
Hday2night. There are totally 65,742 training image pairs
and 7,407 test image pairs in iHarmony4. All the image pairs
are generated by modifying the specific foreground regions
of the normal images, which are converted to corresponding
inharmonious images in this way. We follow the same train-
test split as DoveNet (Cong et al. 2020) in the experiments.

Following prior work (Tsai et al. 2017), we use Mean
Squared Error (MSE) score and Peak Signal-to-Noise Ra-
tio (PSNR) score on RGB channels to evaluate the image
harmonization performance. To eliminate the influence of
the foreground area size on the metric, we also introduced
the foreground Mean Squared Error (fMSE) score (Cong
et al. 2020). In addition, to make the evaluation criteria more
aligned with human subjective standards, we also used the
LPIPS metric (Zhang et al. 2018) for assessment. All the
metrics are calculated based on the 256 × 256 resolution.

Implementation Details
We use Adam Optimizer with β1 = 0.9 and β2 = 0.999 to
train our model for 180 epochs on 8 Tesla V100 GPUs. The
initial learning rate is 0.008, which decays by 10 at epoch
160 and 175. The batchsize is 128. All the images are re-
sized to 256× 256 in both training and test process. We use
horizontal flip and random size crop to augment the data dur-
ing training. The whole FRIH network is trained end-to-end.
The cutoff distance dc is set to 0.1.

Comparison with the State-of-the-Art Methods
We compare our FRIH with other image harmonization
methods on iHarmony4. Table 1 and Table 2 separately show
the results in each sub-dataset and each foreground ratio
range. From Table 1 and Table 2 we can find that:

(1) Our method achieves 38.19 PSNR and 23.98 MSE
on iHarmony4 test set, which performs better than all the
other image harmonization methods on iHarmony4 test set
in a large margin. Compared to previous hamonization meth-
ods, the PSNR of FRIH has a certain improvement, prov-
ing that the fine-grained region-aware framework works
well. It should be noted that iDIH (Sofiiuk, Popenova,
and Konushin 2021) obtains higher performance than 37.08
dB when adding extra pre-trained semantic segmentation
model, which all other methods do not use. It is unfair to
make comparison so that we only show their results without
the extra model.

(2) In Table 1, our method performs much better than ex-
isting methods on all the 4 sub-datasets, proving the robust-
ness of our cascaded module and fusion prediction strategy.

(3) In Table 2, our method performs better than all the ex-
isting methods on the composite images with different fore-
ground ratio, demonstrating that our submask extraction is
well adaptive regardless of the foreground area size.

Sometimes the PSNR and MSE can not represent the im-
pressions of humans. To prove FRIH can generate more har-
monious images when evaluated by humans, we conduct a
qualitative analysis and an user study in the supplementary.

Ablation Study
We compare the following models on iHarmony4 dataset to
show the effectiveness of FRIH’s parts:

• Input composite. We use the input composite image as
the final output result, without harmonization operation.

• Baseline. We only use the base network (the first stage)
to make a coarse-grained harmonization.

• Baseline+Cascade Globalmask. We add the lightweight
cascaded module, but instead of the submasks, we feed
the concatenation of the global mask and the coarsely
adjusted image into the lightweight cascaded module.

• Baseline+Cascade Submask. We extract submasks adap-
tively for each foreground mask and feed the concate-
nation of each submask and the coarsely adjusted image
into the lightweight cascaded module.

• Baseline+Cascade Submask+Fusion (FRIH). This is the
full version of our algorithm, including the submask ex-
traction, lightweight cascaded module together with the
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Sub-dataset HCOCO HAdobe5k HFlickr Hday2night All
Metric MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑

Input composite 69.37 33.94 345.54 28.16 264.35 28.32 109.65 34.01 172.47 31.63
Lalonde (Lalonde and Efros 2007) 110.10 31.14 158.90 29.66 329.87 26.43 199.93 29.80 150.53 30.16

Xue (Xue et al. 2012) 77.04 33.32 274.15 28.79 249.54 28.32 190.51 31.24 155.87 31.40
Zhu (Zhu et al. 2015) 79.82 33.04 414.31 27.26 315.42 27.52 136.71 32.32 204.77 30.72
DIH (Tsai et al. 2017) 51.85 34.69 92.65 32.28 163.38 29.55 82.34 34.62 76.77 33.41

S2AM (Cun and Pun 2020) 41.07 35.47 63.40 33.77 143.45 30.03 76.61 34.50 59.67 34.35
DoveNet (Cong et al. 2020) 36.72 35.83 52.32 34.34 133.14 30.21 54.05 35.18 52.36 34.75

ADFM (Hao et al. 2020) - 36.87 - 34.99 - 33.36 - 34.31 - 35.86
BargainNet (Cong et al. 2021) 24.84 37.03 39.94 35.34 97.32 31.34 50.98 35.67 37.82 35.88

IIH (Guo et al. 2021b) 24.92 37.16 43.02 35.20 105.13 31.34 55.53 35.96 38.71 35.90
RainNet (Ling et al. 2021) - 37.08 - 36.22 - 31.64 - 34.83 - 36.12

iDIH (Sofiiuk, Popenova, and Konushin 2021) 19.29 38.44 30.87 36.09 84.10 32.61 55.24 37.26 30.56 37.08
D-HT (Guo et al. 2021a) 16.89 38.76 38.53 36.88 74.51 33.13 53.01 37.10 30.30 37.55

S2CRNET (Liang et al. 2022) 23.22 38.48 34.91 36.42 98.73 32.48 51.67 36.81 35.58 37.18
Harmonizer (Ke et al. 2022) 17.34 38.77 21.89 37.64 64.81 33.63 33.14 37.56 24.26 37.84

FRIH (ours) 15.05 39.35 23.61 37.69 68.93 33.48 42.78 37.89 23.98 38.19

Table 1: Comparison of image harmonization results in each sub-dataset on iHarmony4 test set.

Foreground ratios 0%-5% 5%-15% 15%-100% All
Metric MSE↓ fMSE↓ MSE↓ fMSE↓ MSE↓ fMSE↓ MSE↓ fMSE↓

Input composite 28.51 1208.86 119.19 1323.23 577.58 1887.05 172.47 1387.30
Lalonde (Lalonde and Efros 2007) 41.52 1481.59 120.62 1309.79 444.65 1467.98 150.53 1433.21

Xue (Xue et al. 2012) 31.24 1325.96 132.12 1459.28 479.53 1555.69 155.87 1411.40
Zhu (Zhu et al. 2015) 33.30 1297.65 145.14 1577.70 682.69 2251.76 204.77 1580.17
DIH (Tsai et al. 2017) 18.92 799.17 64.23 752.86 228.86 768.89 76.77 773.18

S2AM (Cun and Pun 2020) 15.09 623.11 48.33 540.54 177.62 592.83 59.67 594.67
DoveNet (Cong et al. 2020) 14.03 591.88 44.90 504.42 152.07 505.82 52.36 549.96

BargainNet (Cong et al. 2021) 10.55 450.33 32.13 359.49 109.23 353.84 37.82 405.23
RainNet (Ling et al. 2021) 11.66 550.38 32.05 378.69 117.41 389.80 40.29 469.60

iDIH (Sofiiuk, Popenova, and Konushin 2021) 8.38 366.32 25.39 287.02 89.44 297.94 30.56 330.45

FRIH (ours) 6.89 305.28 19.88 226.45 70.05 205.83 23.98 252.63

Table 2: Comparison of image harmonization results in each foreground ratio range on iHarmony4 test set.

fusion prediction strategy. We use features from all the
cascaded decoder layers to predict the final results.

The ablation study results in each sub-dataset and each
foreground ratio range on iHarmony4 are presented in Table
3 and Table 4 respectively, showing that:

(1) Both the lightweight cascaded module and fusion
prediction strategy can increase PSNR and decrease MSE.
Baseline+Cascade Submask performs significantly bet-
ter than Baseline with the gain of 1.08 dB in PSNR.
Baseline+Cascade Submask+Fusion outperforms Base-
line+Cascade Submask with the gain of 0.29 dB in PSNR.
It proves the effectiveness of the lightweight cascaded mod-
ule together with the fusion prediction strategy. Compared to
Baseline, our FRIH has a gain of 1.37 dB in PSNR and a de-
crease of 11.40 in MSE, demonstrating that our global-local
framework is effective and all modules are reciprocal.

(2) Baseline+Cascade Globalmask only performs slightly
better than Baseline with the gain of 0.16 dB in PSNR.
While Baseline+Cascade Submask performs much better
than Baseline with the gain of 1.08 dB in PSNR. It proves

that our submask extraction strategy plays an key role in the
lightweight cascasded module.

(3) Both the effectiveness of the lightweight cascaded
module and the fusion prediction module is not obvious
on Hday2night sub-dataset. By analysis, we find that the
foreground areas in Hday2night are always sky, water sur-
face or other similar categories with single and pure color.
These areas are homogeneous. Therefore, it is hard to sepa-
rate these foreground areas into different sub-regions, which
reduces the effect of our cascaded module together with
the lightweight cascaded module. From another perspective,
it further proves the effectiveness of our method on fore-
grounds with different appearance patterns.

(4) The increase of PSNR between Baseline and Base-
line+Cascade Submask on HAobe5k sub-dataset achieves
1.63, which is the largest among 4 sub-datasets in Table
3. We think the reason is that the foreground masks in
HAdobe5k are much bigger than other three sub-datasets,
which means these bigger foreground masks are more likely
to contain disparate sub-regions or different appearance pat-
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Sub-dataset HCOCO HAdobe5k HFlickr Hday2night All
Metric MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑

Input composite 69.37 33.94 345.54 28.16 264.35 28.32 109.65 34.01 172.47 31.63
Baseline 21.38 38.24 37.15 35.79 90.12 32.25 50.12 37.45 35.38 36.82

Baseline+Cascade Globalmask 20.05 38.39 35.52 35.98 87.29 32.40 48.91 37.53 33.82 36.98
Baseline+Cascade Submask 16.52 39.09 26.21 37.42 75.82 33.05 44.21 37.78 26.31 37.90

Baseline+Cascade Submask+Fusion 15.05 39.35 23.61 37.69 68.93 33.48 42.78 37.89 23.98 38.19

Table 3: Ablation study in each sub-dataset on iHarmony4 test set.

Foreground ratios 0%-5% 5%-15% 15%-100% All
Metric MSE↓ fMSE↓ MSE↓ fMSE↓ MSE↓ fMSE↓ MSE↓ fMSE↓

Input composite 28.51 1208.86 119.19 1323.23 577.58 1887.05 172.47 1387.30
Baseline 10.21 421.53 29.68 336.32 109.21 345.19 35.38 380.12

Baseline+Cascade Globalmask 9.89 401.18 27.85 319.47 99.35 320.71 33.82 366.23
Baseline+Cascade Submask 7.28 322.86 21.42 244.15 77.82 230.47 26.31 268.52

Baseline+Cascade Submask+Fusion 6.89 305.28 19.88 226.45 70.05 205.83 23.98 252.63

Table 4: Ablation study in each foreground ratio range on iHarmony4 test set.

dc 0.01 0.05 0.1 0.2 0.3 0.4

MSE↓ 25.26 24.49 23.98 24.76 25.41 25.90
PSNR↑ 38.09 38.17 38.19 38.15 38.08 38.02

Table 5: Comparative experiment for dc on iHarmony4.

terns. The baseline model treats them in the same way while
the cascaded module can adjust them adaptively, leading to
a significantly increase of PSNR and decrease of MSE.

(5) The increase between Baseline and Baseline+Cascade
Submask of images whose foreground mask sizes are larger
than 15% is also the biggest in Table 4. The reason is the
same as why the increase in the sub-dataset HAdobe5k is
the biggest. Both (4) and (5) prove that our submasks-based
cascaded module is efficient for image harmonization task,
especially for those images with large foreground masks.

Moreover, the cutoff distance dc in the submask extraction
module is an important hyper-parameter in FRIH. It deter-
mines the granularity of the submasks division. We conduct
comparative experiment for dc on iHarmony4. As shown in
Table 5. dc is set to 0.01, 0.05, 0.1, 0.2, 0.3 and 0.4, respec-
tively. When dc = 0.1, our FRIH achieves the best perfor-
mance. Thus we set dc = 0.1 in all the other experiments
in this paper. When dc = 0.01, the performance is lower
than dc = 0.1, because the clustering is so fine-grained that
many noisy isolated outliers are generated and have negative
effect on the selection of cluster centers. When dc = 0.3
and dc = 0.4, the performance also drops compared with
dc = 0.1, which is caused by the too coarse-grained cluster-
ing. Several color blocks, which are not similar, are clustered
into a same cluster. However, The PSNR in all these experi-
ments exceeds 38, proving the robustness of our method.

DoveNet IIH RainNet FRIH (ours)

PSNR↑ 34.75 35.90 36.12 38.19
Param (M)↓ 54.76 40.83 54.75 11.98

Table 6: Comparison of performance and efficiency between
our FRIH and other methods on iHarmony4.

Comparison of Model Size and Computation

We also compare the model size and computation of our
FRIH with existing methods. In Table 6, compared to other
methods, our FRIH achieves much higher performance in
PSNR. However, the model size of our FRIH (11.98 M) is
lower than other methods. In these experiments, our FRIH
achieves the best performance with the smallest model size,
demonstrating the effectiveness and efficiency.

Conclusion

We propose a two-stage fine-grained region-aware image
harmonization framework, which is simple, novel and ef-
fective. In the first stage, the whole input foreground mask
is used to make a global coarse-grained harmonization. In
the second stage, we adaptively cluster the input foreground
mask into several submasks by the corresponding pixel RGB
values. Each submask and the coarsely adjusted image are
concatenated respectively and fed into the lightweight cas-
caded module. Moreover, we further design a fusion predic-
tion module by fusing features from all the cascaded decoder
layers to generate the final result. It addresses the problem
that existing methods ignore the difference of each color
block and lose some specific details. Extensive experiments
demonstrate the effectiveness and efficiency of our FRIH
and its superiority over the state-of-the-art competitors.
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