
patchDPCC: A Patchwise Deep Compression Framework for Dynamic Point
Clouds

Zirui Pan1, Mengbai Xiao1*, Xu Han1, Dongxiao Yu1, Guanghui Zhang1, Yao Liu2

1Shandong University
2Rutgers University

panzirui@mail.sdu.edu.cn, xiaomb@sdu.edu.cn, hanx@mail.sdu.edu.cn,
dxyu@sdu.edu.cn, gh.zhang@sdu.edu.cn, yao.liu@rutgers.edu

Abstract

When compressing point clouds, point-based deep learning
models operate points in a continuous space, which has a
chance to minimize the geometric fidelity loss introduced
by voxelization in preprocessing. But these methods could
hardly scale to inputs with arbitrary points. Furthermore, the
point cloud frames are individually compressed, failing the
conventional wisdom of leveraging inter-frame similarity. In
this work, we propose a patchwise compression framework
called patchDPCC, which consists of a patch group gen-
eration module and a point-based compression model. Al-
gorithms are developed to generate patches from different
frames representing the same object, and more importantly,
these patches are regulated to have the same number of points.
We also incorporate a feature transfer module in the compres-
sion model, which refines the feature quality by exploiting the
inter-frame similarity. Our model generates point-wise fea-
tures for entropy coding, which guarantees the reconstruc-
tion speed. The evaluation on the MPEG 8i dataset shows
that our method improves the compression ratio by 47.01%
and 85.22% when compared to PCGCv2 and V-PCC with the
same reconstruction quality, which is 9% and 16% better than
that D-DPCC does. Our method also achieves the fastest de-
coding speed among the learning-based compression models.

Introduction
Dynamic point clouds are essential to emerging virtual real-
ity (VR) applications like immersive filmmaking1 and in-
teractive advertising.2 To offer a truly engaging and cap-
tivating experience, millions of points must be rendered,
which challenges storing, transmitting, and processing the
dynamic point cloud. Therefore, effectively compressing dy-
namic point clouds is crucial to deploying these VR applica-
tions in the real world.

A dynamic point cloud could be compressed with
deep learning (DL) in an end-to-end manner. Compared
to the rule-based methods like Moving Picture Experts
Group (MPEG) standards (Schwarz et al. 2019), the DL-
based methods usually achieve higher compression ratios.
The DL-based methods are categorized into voxel-based

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://www.youtube.com/watch?v=iwUkbi4 wWo
2https://www.anayi.com/include html/4d/21ss 4d 11.html

ones (Quach, Valenzise, and Dufaux 2020; Wang et al.
2021b,a), octree-based ones (Huang et al. 2020; Que, Lu,
and Xu 2021; Fu et al. 2022), and point-based ones (Huang
and Liu 2019; Gao et al. 2021). In the voxel-based meth-
ods, the 3D space is split into blocks that are compressed
individually. A block is further voxelized, and the compres-
sion task is turned into a classification task checking if vox-
els are occupied. The octree-based methods convert a point
cloud into an octree (Laboratory and Meagher 1980) first
and focus on optimizing the following entropy coding with
a learning-based model (Mekuria, Blom, and César 2017;
Kammerl et al. 2012). However, such methods have to align
the point coordinates to the voxels or the tree nodes in pre-
processing, leading to geometric information losses. On the
other hand, the point-based methods directly accept point
coordinates and extract latent features to compress. By pro-
cessing points in the continuous space, the geometric fi-
delity losses caused by voxelization could be avoided. How-
ever, the point-based methods can hardly scale to arbitrary
points since a trained model must process fixed-size inputs.
Furthermore, most learning-based methods are designed to
compress static point clouds, failing to exploit the high simi-
larity between consecutive frames in a dynamic point cloud.

In this work, we propose patchDPCC, a deep compres-
sion framework for dynamic point clouds. Our framework
consists of a patch group generation module followed by a
deep compression model, which is point-based so that the
reconstruction quality is guaranteed. The patch group gener-
ation module is designed to separate point cloud frames into
fixed-size patches, enabling our framework to compress ar-
bitrary points. However, it is challenging to divide consecu-
tive point cloud frames into patches while also exploiting the
inter-frame similarity. If we divide point clouds individually,
the patches from different frames can hardly represent the
same part of an object. To solve this, we organize point cloud
frames into groups of frames (GoFs), where there are a lead-
ing I-frame and the following P-frames. The I-frame is split-
ted into fixed-size patches individually. By referencing the
I-frame patches, algorithms are developed to divide the P-
frames into patches with high similarity. More importantly,
all patches have the same number of points, and the ones
representing the same part of an object in different frames
are grouped together. Our deep compression model accepts
a patch group to compress, where a feature transfer module

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4406



is installed to extract patch features by leveraging the fea-
tures from the previous patch. The feature transfer module
both impoves the reconstruction quality and decoding time.
Additionally, since the size of patch groups is controlled,
extracting point-wise features becomes bearable, which fur-
ther speeds up the decoding process as the time-consuming
down-/up-sampling operations are eliminated.

In the evaluation, we compress dynamic point clouds in
the 8i dataset (d’Eon et al. 2017) published by MPEG, which
contains nearly one million points in a point cloud frame.
Our method outperforms the state-of-the-art methods, i.e.,
G-PCC, V-PCC, PCGCv2 (Wang et al. 2021a) (voxel-
based), OctAttention (Fu et al. 2022) (octree-based), and
D-DPCC (Fan et al. 2022) (voxel-based), in rate-distortion
tradeoffs and BD-rate gains. In terms of the decoding time,
patchDPCC is the fastest among learning-based methods.

The contributions of our work are as follows:

• We design a patch group generation module that gener-
ates fixed-size and temporally correlated patch groups.
This helps the point-based compression model process
point clouds at arbitrary sizes.

• We propose a point-based compression module that
leverages inter-frame correlation and point-wise features
to improve reconstruction quality and decoding speed.

• Our solutions form a practical compression framework
for dynamic point clouds, which outperforms other state-
of-the-art compression methods in the evaluation.

Related Work
Learning-based Point Cloud Compression
Deep learning techniques have been experimented to com-
press point clouds and show their efficacy. The self-
supervised autoencoder structure is noticed well suited for
point cloud compression (Kramer 1991, 1992), where the
latent features are compact, and the decoder could recon-
struct the point cloud. Quach et. al. (Quach, Valenzise, and
Dufaux 2019) for the first time introduce a well-designed
deep learning model for point cloud compression. The fol-
lowing studies (Quach, Valenzise, and Dufaux 2020; Wang
et al. 2021b,a; Huang et al. 2020; Que, Lu, and Xu 2021;
Fu et al. 2022; Huang and Liu 2019; Gao et al. 2021) show
that the learning-based compression methods reach higher
compression ratios than the hand-crafted ones. Some of the
studies (Quach, Valenzise, and Dufaux 2020; Wang et al.
2021b) split the point cloud into small enough blocks and
voxelize these blocks. The voxelized blocks are learned with
3D convolutions, and the decoding process becomes pre-
dicting the occupancy of voxels. The voxel-based meth-
ods achieve high compression ratios but are also time- and
memory-consuming. Moreover, the models are sensitive to
density changes and may fail the compression of sparse
point clouds. The voxelization also introduces precision
losses in reconstruction. With the development of 3D sparse
convolution (Choy, Gwak, and Savarese 2019), Wang et.
al. (Wang et al. 2021a) propose an end-to-end network ac-
cepting an input point cloud at a large scale, which achieves
the state-of-the-art performance in compressing static point

clouds. Another thread of studies (Huang et al. 2020; Que,
Lu, and Xu 2021; Fu et al. 2022) encode a point cloud into
an octree first and employ learning-based entropy coding to
optimize the compression. However, the compression ratio
is bound to the octree, which can hardly be as high as the
voxel-based ones. There are also studies (Huang and Liu
2019; Gao et al. 2021) that directly compress and reconstruct
the point cloud coordinates. Nevertheless, it is not easy to
deploy the point-based methods because the point number
varies significantly in practical point clouds.

Dynamic Point Cloud Compression
A number of rule-based compression methods have been
developed towards dynamic point clouds. The MPEG stan-
dard V-PCC (Schwarz et al. 2019) projects points from the
3D space onto 2D images, and further compress them with
traditional video codecs (Li et al. 2020). Although V-PCC
achieves high compression ratios, the complex pipeline re-
sults in long compression and decompression time. There
are also approaches (Chen et al. 2023; Mekuria and César
2016; Mekuria, Blom, and Cesar 2017) designed to directly
remove inter-frame redundancy in the 3D space. They de-
tect motions by comparing blocks or patches between neigh-
boring frames. Most learning-based compression methods
could be directly applied to compress a dynamic point cloud:
Every point cloud frame in the sequence is compressed in-
dividually. But this fails the conventional wisdom of video
coding that inter-frame similarity should be well leveraged.
D-DPCC (Fan et al. 2022) is the only learning-based com-
pression solution for dynamic point clouds, which exploits
motion estimation and compensation in the feature space.

Methodology
Problem Definition A dynamic point cloud is a sequence
of point sets {Pi}. Pi is the i-th frame with Xi points. To
compress a dynamic point cloud, point features Fi are ex-
tracted followed by quantization and entropy coding, gener-
ating a compact bitstream. At the decoder side, the bitstream
is recovered to quantized features F̂i, which are then recon-
structed to point cloud frames P̂i again.

Overall Architecture Inspired by conventional video
codecs like H.264 (Wiegand et al. 2003), we divide a point
cloud sequence into groups of frames (GoFs), and each
GoF has a leading I-frame and subsequent P-frames. In our
compression framework, a GoF is first separated into patch
groups, and the patch groups are compressed by a compres-
sion model. The compression model is also responsible for
recovering the patch groups from the compression domain,
after which the GoF is trivially synthesized. Figure 1 shows
the overall architecture of our compression framework.

Patch Group Generation
To exploit the inter-frame similarity, we need not only gen-
erate patches from individual frames but also group patches
representing the same part of an object from different frames
in a GoF. More importantly, these patches should contain
the same number of points to align with the following com-
pression model. We generate patch groups among frames of

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4407



Feature
Extraction

Feature 
Transfer

Patch Group Generation

F

Coordinate 
Reconstruction

…

C1
Quantization

Arithmetic 
Encoder

Arithmetic 
Decoder

bitstream

P-frame P-frame

I-patch P-patch P-patch

I-patch P-patch P-patch

I-patch P-patch P-patch

I-frame P-frame P-frame

J patch groups J patch groups

I-frame

Coordinate 
Reconstruction

Coordinate 
Reconstruction I-patch P-patch P-patch

…

…

…

L frames in a GOF

… …

C2

Feature 
TransferCL

F1

F2

FL

…

෡F

෡F1

෡F2

෡FL

… … …

෡C1

෡C2

෡CL

…

…

…

…

…

Compression Model concatenation

N×3

N×3

N×3

N×3

N×3

N×3

Figure 1: The overview of patchDPCC.

a GoF in three stages: generating I-patches, generating P-
patches, and adjusting P-patches.

Generating I-Patches We first generate patches having
exact N points from the I-frame, where N is the input di-
mension our compression model expects to accept. These
patches are named I-patches. For an I-frame containing X
points, we randomly delete (X mod N) points. Then, we
follow the method of generating fixed-size patches described
in a prior study (Guarda, Rodrigues, and Pereira 2021): 1)
the I-frame is divided into patches with roughly the same
size according to local densities, then 2) the points are
moved from patches having points exceeding N to their
neighboring patches with points less than N , which is an
iterative process. 3) While all patches are at the size of N ,
points are exchanged between neighboring patches to avoid
overlapping. To the end, we would generate J = ⌊X/N⌋
I-patches, each having N points.

Generating P-Patches To generate patches in a P-frame,
i.e., P-patches, we apply the iterative closest point (ICP) al-
gorithm from the I-patches to it. As a result, the I-patches
are transformed to fit the P-frame. For each point in the P-
frame, we associate it to the j-th transformed I-patch that
has its nearest neighbor as

argmin
j

d(p,MjP
I
j ), j = 1, . . . , J,

where p is the point, PI
j is a point set representing the j-th I-

patch, and Mj is the transformation matrix calculated by the
ICP algorithm. d(·) calculates the shortest distance between
a given point and a point set P as

d(p,P) = min
p′∈P

∥p− p′∥,

As a result, the P-frame is also divided into J patches,
and each is paired with one of the I-patches. We generate
P-patches for all P-frames. An I-patch and its associated
P-patches form a patch group, and now we have J patch
groups. However, the point number in a P-patch might not
equal N . In order to make the P-patches also have the exact
N points, we need either add points to or delete points from
the P-patches.

Adjusting P-Patches For a P-patch PP having points less
than N , we directly copy points from the transformed I-
patch PIt in the same patch group. Since we adjust the
P-patch only for aligning with the following compression
model, its geometric structure should not be substantially
changed. We follow three principles when copying points:
1) We always select a transformed I-patch point from where
there are also P-patch points, 2) a point with high local den-
sity is preferred, and 3) the points copied should be evenly
distributed. To achieve this, we fuse the P-patch and the
transformed I-patch, and build an octree over them. On any
branch, the tree building stops either there is no point in the
subspace or the leaf node reaches a resolution of r. When
copying a point, we choose the tree node having the most I-
patch points and any P-patch point, and the candidate point
is the one that has the nearest P-patch neighbor. As long as
the point is copied, the point selection will not be carried
out in this node and its neighboring nodes within 2r in the
near future. We repeatedly select and copy points until the
P-patch has N points. The left side of Figure 2 gives an ex-
ample of copying points to the P-patch.

Occasionally, there are not enough points to copy in the
tree nodes having points from both patches. In this case, we
directly copy all I-patch points in these nodes and select the
remaining points from those with only I-patch points. We
check the points in these nodes and copy the one having
the nearest P-patch neighbors until the P-patch has exact N
points. The complete algorithm of copying points to the P-
patch is shown in Appendix3.

For a P-patch with points greater than N , we always select
a leaf node with the most P-patch points and delete one ran-
dom point from it. Also, we will not delete a point from this
node and its neighboring nodes within 2r in the near future.
The deletion is repeated until the P-patch has exact N points.
We present an example of deleting points in the P-patch at
the right side of Figure 2 and the algoirthm in Appendix.
To the end, for a GoF, we generate J patch groups, where
the patches are composed of N points. It is worth noting
that the transformed I-patch is only used to split and adjust

3Our Appendix is at https://github.com/pzrsdu/patchDPCC

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4408



Copy I-patch points to P-patch

20
16

0
0

0
0

0
0

0
0

0
0

29
27

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

Delete P-patch points

step 1: copy a point from the node 
with the most I-patch points and any 
P-patch points

step 3: copy a point from the node with 
the second most I-patch points and any 
P-patch pointsstep 2: skip 

neigboring 
nodes

step 0: delete 2 P-patch points 

step 1: delete a point from the 
node with the most P-patch points

step 3: delete a point from the 
node with the second most P-
patch points step 2: skip 

neigboring 
nodes

5
2

1
0

2
6

0
4

2
2

6
0

5
3

4
2

2
3

4
1

4
2

2
0

1
3

0
4

1
0

0
3

3
2

4
0

2
5

2
4

3
2

4
5

3
2

1
4

1
3

3
3

0
3

3
0

13
12

14
17

27
29

9
11

I-patch points in the node
P-patch points in the node

step 0: copy 2 I-patch points 

the 
nearest 
point

the 
nearest 
point

the 
furthest 
point

the 
furthest 
point

Figure 2: Two examples of adjusting P-patches. The octrees are built upon points fused from a P-patch and the corresponding
transformed I-patch. To align with the point number of I-patch, we either copy 2 points (left) to or delete 2 points from the
P-patch.

the P-patches, and the original I-patch is encapsulated in the
patch group for following compression.

Compression Model
Our compression model is based on the autoencoder struc-
ture, while the encoder accepts a patch group which is repre-
sented by its coordinates C in L×N×3. In the patch group,
the I-patch C1 is digested by a feature extraction module,
and the P-patches Ci, i = 2, . . . , L are sent to a feature
transfer module. Both modules output point-wise features
and they are concatenated to F in L × N × G. F is quan-
tized to F̂ , which is further compressed by entropy coding.
At the decoder side, we decompress the quantized features
and recover the point cloud patches Ĉ in a coordinate recon-
struction module.

Feature Extraction The feature extraction module takes
an I-patch as the input, and outputs its point-wise feature F0

in N ×G. We adopt a network structure (Wang et al. 2019)
that extracts features with four densely connected blocks. In
each block, data are processed via feature-based k-nearest
neighbors (k-NN), a chain of densely connected multilayer
perceptrons (MLPs), and max pooling. This structure is
proved effective and efficient compared to downsampling-
based networks (Li, Chen, and Lee 2018; Qi et al. 2017),
in which costly search for point correspondences between
layers is required.

Feature Transfer In a patch group, patches from adjacent
frames are highly similar, so we propose to transfer features
of a patch to the subsequent one. To generate the feature Fi

of a P-patch in N × G where i = 2, . . . , L, the inputs of
the feature transfer module are the P-patch coordinates Ci,
the coordinates of the previous I-/P-patch in Ci−1, and the
previous patch feature Fi−1.

The design of our feature transfer module is presented in
Figure 3. We consider Fi−1 from the previous frame as a
template that could be fine-tuned to obtain Fi. To achieve
this, Fi−1 is concatenated with Ci, and they are fed to an
MLP of three layers, extracting the initial feature F̃i. On the
other hand, for each point in the current patch Ci, we con-
duct k-NN search in Ci−1 and group them to capture more
local information from the previous patch, which expands

N×3

Ci−1

KNN Ci
K

KN×3
IDX

∆Ci
K MLP

KN×G
Fi
E

N×G
Fi−1 MLPMLPMLP

N×G
෩Fi

Grouping

MLP

KN×G

෩Fi
K

MLPMLPMLPMLP

N×G
FiN×K

concatenation

N×3 KN×3
Ci

Figure 3: The network structure of feature transfer module

the coordinates to CK
i in KN × 3 and gets the neighboring

indices IDX in N×K. With IDX , we duplicate and group
features in F̃i to KN ×G as F̃K

i .
We further refine F̃K

i with the absolute and relative co-
ordinates in local fields. For each point in Ci, its nearest
neighboring points in the previous patch have been grouped
in CK

i , so the coordinate residuals of neighbors from this
point could be calculated in ∆CK

i . By concatenating ∆CK
i ,

Ci, and CK
i and sending them to an MLP, we generate fea-

tures FE
i in KN ×G that encode positional information of

the current patch. To the end, we concatenate FE
i to F̃K

i and
generate the final P-patch feature Fi. Refining features of a
P-patch with positional coding could be expressed as

Fi = MLP3(MLP1(Ci ⊕∆CK
i ⊕ CK

i )⊕MLP2(F̃
K
i )),

where MLP1 and MLP2 are single-layered, MLP3 are
four-layered, and ⊕ is the concatenation operation. As the
feature quality of P-patches have been improved by the fea-
ture transfer, we need not distinguish them from the I-patch
in reconstruction.

Entropy Coding The features of patches in a patch group
could be further compressed. The extracted features are con-
catenated to F , which is then quantized to F̂ . The quantiza-
tion is simply rounding floating-point numbers in the fea-
tures to the nearest integers. After quantization, we apply an
arithmetic coder to encode F̂ with the probability distribu-
tion estimated by a factorized entropy model (Ballé, Laparra,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4409



0.1 0.2 0.3 0.4 0.5
Bpp

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Ch
am

fe
r D

ist
an

ce
Longdress

0.1 0.2 0.3 0.4 0.5
Bpp

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Ch
am

fe
r D

ist
an

ce

Loot

patchDPCC PCGCv2 V-PCC OctAttention G-PCC

0.1 0.2 0.3 0.4 0.5
Bpp

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Ch
am

fe
r D

ist
an

ce

Redandblack

0.1 0.2 0.3 0.4 0.5
Bpp

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Ch
am

fe
r D

ist
an

ce

Soldier

Figure 4: Chamfer Rate-distortion curves of different compression methods on MPEG 8i

0.1 0.2 0.3 0.4 0.5
Bpp

60
62
64
66
68
70
72
74
76
78

D1
-P
SN

R

Longdress

0.1 0.2 0.3 0.4 0.5 0.6
Bpp

60
62
64
66
68
70
72
74
76
78

D1
-P
SN

R
Loot

patchDPCC D-DPCC PCGCv2 V-PCC OctAttention G-PCC

0.1 0.2 0.3 0.4 0.5
Bpp

60
62
64
66
68
70
72
74
76
78

D1
-P
SN

R

Redandblack

0.1 0.2 0.3 0.4 0.5
Bpp

60
62
64
66
68
70
72
74
76
78

D1
-P
SN

R

Soldier

Figure 5: D1-PSNR Rate-distortion curves of different compression methods on MPEG 8i

and Simoncelli 2017), where one entropy bottleneck layer is
used and all patch groups share the same entropy model. At
the decoder side, the encoded bitstream is decompressed into
F̂ again, which is prepared for patch group reconstruction.

Coordinate Reconstruction With the decompressed fea-
tures, MLPs could be used to reconstruct the point coordi-
nates. However, the reconstructed points of P-patches often
deviate from their proper positions because of the feature
transfer. So we adopt the self-attention mechanism (Vaswani
et al. 2017) to explore inter-feature dependencies and reserve
the most suitable ones. Specifically, we first individually re-
construct the coarse coordinates of patches Ĉ ′

i from F̂i via a
three-layered MLP. For each patch, we further concatenate
Ĉ ′

i and F̂i and feed them into a self-attention unit (Zhang
et al. 2019), extracting the refined point-wise features F̂ ′

i in
N × G. F̂ ′

i is expected to regress attention weights of all
points for long-range context dependencies. We reconstruct
the final patch Ĉi via a three-layered MLP from F̂ ′

i .

Loss Function We employ the rate-distortion joint loss
function for end-to-end optimization as follows

L = R+ λD,

where R is the rate measured in bits per point (bpp), and D
is the distortion that is jointly defined by multiple metrics
measuring the quality fidelity between the input point cloud
and the reconstructed one.

As the rounding operation before entropy coding is not
differentiable, we replace it with adding a uniform noise
N ∼ (−0.5, 0.5) during the training, which simulates the
loss caused by quantization. The compression rate R in bpp
is derived from the probabilities of features estimated by an
entropy model (Ballé, Laparra, and Simoncelli 2017).

In a compression task, the decompressed point cloud
should be identical to the input one. Thus, the distortion D
is a metric that reflects the quality fidelity between the input
and the output. We use two point-to-point metrics, Cham-
fer Distance (CD) (Fan, Su, and Guibas 2017) and Haus-
dorff Distance (HD) (Berger et al. 2013), in the distortion
definition. Additionally, we also incorporate quality fidelity
between the input point cloud and the coarse reconstruction
result Ĉ ′

i, which would also benefit the final reconstruction
quality. The distortion D is thus defined as

D = CD(Ci, Ĉ
′
i)+HD(Ci, Ĉ

′
i)+α(CD(Ci, Ĉi)+HD(Ci, Ĉi)),

where CD(·) and HD(·) evaluate CD and HD between two
point clouds, respectively. We gradually scale up the coeffi-
cient α during training so that the model pays more attention
to reconstruction details in later epochs.

Experiment
Experimental Setup
Baselines. We compare patchDPCC with the peer com-
pression methods. For the rule-based ones, we set up the
MPEG standards G-PCC test model v14.0 and V-PCC test
model v18.0 (Schwarz et al. 2019). For the learning-based
ones, patchDPCC is compared with PCGCv2 (Wang et al.
2021a), OctAttention (Fu et al. 2022), and D-DPCC (Fan
et al. 2022). For methods designed to compress static point
clouds, i.e., G-PCC, PCGCv2, OctAttention, they are used
to compress the point cloud frames in the experiments in-
dividually. D-DPCC is a model also designed to compress
dynamic point clouds. While the source code of D-DPCC is
not publicly available, we keep our experimental setup con-
sistent with theirs and compare our results with the numbers
reported in the paper (Fan et al. 2022).
Training Dataset. We train patchDPCC, PCGCv2, OctAt-
tention with the Owlii dataset (Xu, Lu, and Wen 2017),

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4410



0.1 0.2 0.3 0.4 0.5
Bpp

64
66
68
70
72
74
76
78
80
82

D2
-P
SN

R
Longdress

0.1 0.2 0.3 0.4 0.5
Bpp

64
66
68
70
72
74
76
78
80
82

D2
-P
SN

R

Loot

patchDPCC PCGCv2 V-PCC OctAttention G-PCC

0.1 0.2 0.3 0.4 0.5
Bpp

64
66
68
70
72
74
76
78
80
82

D2
-P
SN

R

Redandblack

0.1 0.2 0.3 0.4 0.5
Bpp

64
66
68
70
72
74
76
78
80
82

D2
-P
SN

R

Soldier

Figure 6: D2-PSNR Rate-distortion curves of different compression methods on MPEG 8i

patchDPCC D-DPCC
PCGCv2 V-PCC PCGCv2 V-PCC

D1-PSNR D2-PSNR D1-PSNR D2-PSNR D1-PSNR D2-PSNR D1-PSNR D2-PSNR

Longdress -37.65% -33.19% -81.11% -76.12% -22.31% -17.91% -78.92% -72.89%
Loot -53.35% -50.69% -85.03% -86.83% -36.15% -29.73% -71.76% -70.92%

Redandblack -39.32% -39.32% -84.96% -79.08% -25.68% -20.56% -68.97% -76.71%
Soldier -57.72% -45.59% -89.76% -91.31% -39.48% -36.47% -85.71% -73.08%

Average -47.01% -42.21% -85.22% -83.33% -31.14% -26.39% -76.66% -74.43%

Table 1: RD-Rate gains of patchDPCC (D-DPCC) against PCGCv2 and V-PCC

which contains 4 point cloud sequences. Each sequence is at
30 frames per second and lasts 20 seconds, thus comprising
600 frames in total. Following the setting of D-DPCC, we
quantize the dataset that decreases the precision from 11-bit
to 9-bit for saving time and memory.
Testing Dataset. We test the learning-based and hand-
crafted rule-based models both with the MPEG 8i
dataset (d’Eon et al. 2017), which includes 4 point cloud
sequences with the precision of 10-bit. Each point cloud se-
quence renders a moving person at 30 frames per second and
lasts 10 seconds.
Training Strategy. To obtain different tradeoffs between the
compression ratio and the reconstruction quality, we set λ in
the loss function as one of {1, 1.5, 2, 2.5, 3} and train
multiple compression models. The training parameter α lin-
early increases from 0.001 to 1, so the reconstruction fo-
cuses more on details at later epochs. In the training stage,
the batch size is 5, and we use Adam optimizer (Kingma
and Ba 2015) with a learning rate decaying from 10−3 to
10−6. We set K to 16 in neighbor searching, N to 2048 as
the patch size, and G to 256 as the feature dimension. The
training and testing of all methods are carried out on a sin-
gle server equipped with an NVIDIA RTX3090 GPU with
24GB GDDR memory. GoF size L is 5.
Evaluation Metrics. We measure bits per point (bpp) repre-
senting the compression ratio, which is calculated by divid-
ing the bitstream size after entropy coding by the input point
number. As for the distortion, we follow MPEG common
test condition (CTC) that defines point to point PSNR (D1-
PSNR) and point to plane PSNR (D2-PSNR), which quan-
tifies how much a point cloud is modified from a reference.
We also measure Chamfer Distance (CD) to evaluate the re-
construction quality. For D1-PSNR and D2-PSNR, we set
PSNR peak value to 1023 following D-DPCC.

Rate vs. Distortion

To plot RD-curves of various compression methods, we have
to collect multiple performance points. For PCGCv2, we ad-
just a parameter in their loss function that controls the rate-
distortion tradeoffs. The parameter is similar to λ of our
model. We set it as 2, 3, 4, 7, 10, and train compression
models accordingly. For V-PCC, we set the quantization pa-
rameter (QP) as 11, 12, 13, 15, 18. In G-PCC, the position
quantization scale parameter is set to 0.5, 0.55, 0.6, 0.65,
0.7 to reflect the tradeoffs between rate and distortion. We
set the quantization step parameter as 1.4, 1.5, 1.6, 1.7, 1.8
for OctAttention.

For distortion measured by CD, D1-PSNR, D2-PSNR, we
plot the RD-curves of various compression methods in Fig-
ure 4, 5 and 6 respectively. To give a sense of how patchD-
PCC is compared with D-DPCC, we also plot the data points
of D-DPCC in Figure 5, which are roughly estimated by ob-
serving figures in the original paper (Fan et al. 2022) (the
RD-curves of CD and D2-PSNR are not presented in the
original paper of D-DPCC). We notice that patchDPCC out-
performs all other schemes in both the compression ratio
and the reconstruction quality. While OctAttention and G-
PCC are octree-based methods, their compression ratios are
bound to the octrees built over the point clouds. Only by sac-
rificing reconstruction quality to a quite low level, their com-
pression ratio in bpp could approximate the other methods.
As a hand-crafted rule-based method, V-PCC achieves lower
bitrates and higher reconstruction quality than the octree-
based ones since it effectively takes advantage of the inter-
frame redundancy in point cloud sequences with conven-
tional video codecs. PCGCv2 gains superior performance
than V-PCC with the assistance of a deep learning structure.
For D-DPCC, another learning-based compression model

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4411



CD D1-PSNR (dB) D2-PSNR (dB) Enc. Time (s) Dec. Time (s)
w/ FT. w/o FT. w/ FT. w/o FT. w/ FT. w/o FT. w/ FT. w/o FT. w/ FT. w/o FT.

Longdress 0.12 0.18 76.31 74.58 80.54 76.74 4.49 4.56 1.22 1.21
Loot 0.08 0.17 76.93 74.26 80.92 78.51 4.74 4.82 1.24 1.24

Redandblack 0.09 0.14 75.57 73.96 78.41 74.24 4.35 4.48 1.23 1.22
Soldier 0.09 0.11 77.47 75.62 80.53 77.84 6.66 6.82 1.70 1.69

Average 0.11 0.15 76.56 74.61 80.10 76.83 5.06 5.17 1.34 1.34

Table 2: Ablation study for feature transfer module in patchDPCC

Average Bpp Time (s)
N λ = 1 λ = 2 λ = 3 Enc. Time Dec. Time

1024 1.04 1.59 2.85 5.12 1.41
2048 0.13 0.25 0.38 5.06 1.34
4096 0.52 1.27 2.13 5.02 1.29
8192 1.24 1.58 2.51 4.97 1.25

10240 1.84 2.72 3.23 4.88 1.19

Table 3: Impacts of Patch Size N in patchDPCC

that also exploits inter-frame similarity, it is slightly worse
than our method when measuring D1-PSNR of four test
videos.

We also calculate the quantitative results in BD-rate gains
by comparing our method with PCGCv2 and V-PCC. We
do not report the BD-rate gains against G-PCC and Oc-
tAttention because the performance gap between them and
patchDPCC is too large that the BD-rate gains cannot be
effectively calculated. The results are shown in Table 1,
where we also list the results reported by D-DPCC aside
for comparison. We can see that when compared with V-
PCC, patchDPCC reduces the average compression sizes by
85.2% and 83.3% with the same D1-PSNR and D2-PSNR,
respectively. For the same dataset, D-DPCC reduces the
compression sizes by 76.66% and 74.43% against V-PCC.
When comparing with PCGCv2, patchDPCC improves the
BD-Rate gains by 47% (PSNR-D1) and 42.2% (PSNR-D2),
while D-DPCC improves the compression ratios by 31.14%
(PSNR-D1) and 26.39% (PSNR-D2). Comparing the BD-
rate gains reported by D-DPCC against PCGCv2 and V-
PCC, we can find that patchDPCC is 9% and 16% better.

Ablation Study
Effectiveness of Feature Transfer. To evaluate the effec-
tiveness of the feature transfer module, we replace all fea-
ture transfer modules with feature extraction modules. The
results are presented in Table 2. Without the feature transfer
module, the average CD is increased from 0.1004 to 0.1538
(34.72% higher). The other two quality metrics, average D1-
PSNR and average D2-PSNR, are lowered by 2.6% and
4.25%, respectively. This verifies that our feature transfer
module helps improve the feature quality by using the fea-
ture from the previous frame. We also report the time of en-
coding and decoding a frame by our compression model. We
accumulate the time used to encoding and decoding patch

groups of a GoF individually, and average them by the GoF
size L. Replacing the feature transfer module with the fea-
ture extraction module increases the encoding time by 2.1%,
which shows that the feature transfer operation is more effi-
cient than the normal feature extraction.

Various Patch Sizes
We also evaluate how different patch sizes impact the perfor-
mance of our model. In the experiments, we alter the patch
size N and train our compression model accordingly. The
patch size is selected from one of 1024, 2048, 4096, 8192
and 10240 points. For each patch size, we also vary λ in the
loss function to observe different rate-distortion tradeoffs.
The experimental results are shown in Table 3. We can see
that when N is 2048, patchDPCC reaches the lowest aver-
age bpp, which are 0.13, 0.25 and 0.38, respectively. Though
increasing the patch to 10240 helps save the encoding time
by 3.6% and the decoding time by 11.2%, it also leads to 8
times higher bpp. As a result, we always set the patch size
N as 2048 in other experiments.

Coding Time
patchDPCC implements a single-threading version of the al-
gorithm in the prior study (Guarda, Rodrigues, and Pereira
2021), and it takes about 10 minutes to split an I-frame
into I-patches. Generating P-patches takes around 1.5 sec-
onds for each P-frame. While focusing on the encoding
time of compression models only, patchDPCC takes 5.06s
per frame. Other methods use 64.79s (V-PCC), 1.27s (G-
PCC), 1.27s (PCGCv2) and 0.74s (OctAttention). For de-
coding a frame from the compression domain, patchDPCC
needs 1.34s, while other methods spend 2.41s (V-PCC),
0.87s (G-PCC), 5.91s (PCGCv2) and 793.06s (OctAtten-
tion). patchDPCC is only slower than G-PCC, and achieves
the fastest decoding time among learning-based methods.

Conclusion
In this paper, we propose patchDPCC, a novel deep com-
pression framework comprising a patch group generation
module and a deep compression model. The patch group
generation module splits point cloud frames into fixed-size
patches and groups the ones representing the same object.
This enables the compression model to exploit inter-frame
similarity and process frames with arbitrary points. Eval-
uation shows that patchDPCC outperforms state-of-the-art
compression methods in BD-rate gains and decoding speed.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4412



Acknowledgments
This work was supported by National Natural Science Foun-
dation of China (No. 62102229), Natural Science Foun-
dation of Shandong Province, China (No. ZR2022ZD02),
Shandong Excellent Young Scientists Fund Program (Over-
seas) (No. 2023HWYQ-045), Natural Science Foundation
of Qingdao (No. 23-2-1-127-zyyd-jch) and National Natu-
ral Science Foundation of China (No. 62302268).

References
Ballé, J.; Laparra, V.; and Simoncelli, E. P. 2017. End-to-
end Optimized Image Compression. In Proceedings of the
5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017.
Berger, M.; Levine, J. A.; Nonato, L. G.; Taubin, G.; and
Silva, C. T. 2013. A benchmark for surface reconstruction.
ACM Trans. Graph., 32(2): 20:1–20:17.
Chen, R.; Xiao, M.; Yu, D.; Zhang, G.; and Liu, Y.
2023. patchVVC: A Real-time Compression Framework for
Streaming Volumetric Videos. In Proceedings of the 14th
Conference on ACM Multimedia Systems, MMSys 2023,
Vancouver, BC, Canada, June 7-10, 2023, 119–129.
Choy, C. B.; Gwak, J.; and Savarese, S. 2019. 4D Spatio-
Temporal ConvNets: Minkowski Convolutional Neural Net-
works. In Proceedings of the 32nd IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019, 3075–3084.
d’Eon, E.; Harrison, B.; Myers, T.; and Chou, P. A. 2017. 8i
Voxelized Full Bodies - A Voxelized Point Cloud Dataset.
ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) in-
put document WG11M40059/WG1M74006.
Fan, H.; Su, H.; and Guibas, L. J. 2017. A Point Set Gen-
eration Network for 3D Object Reconstruction from a Sin-
gle Image. In Proceedings of the 30th IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017, 2463–2471.
Fan, T.; Gao, L.; Xu, Y.; Li, Z.; and Wang, D. 2022. D-
DPCC: Deep Dynamic Point Cloud Compression via 3D
Motion Prediction. In Proceedings of the 31st International
Joint Conference on Artificial Intelligence, IJCAI 2022, Vi-
enna, Austria, July 23-29, 2022, 898–904.
Fu, C.; Li, G.; Song, R.; Gao, W.; and Liu, S. 2022. Oc-
tAttention: Octree-Based Large-Scale Contexts Model for
Point Cloud Compression. In Proceedings of the 36th AAAI
Conference on Artificial Intelligence, AAAI 2022, 34th Con-
ference on Innovative Applications of Artificial Intelligence,
IAAI 2022, 12nd Symposium on Educational Advances in
Artificial Intelligence, EAAI 2022, Virtual Event, February
22-March 1, 2022, 625–633.
Gao, L.; Fan, T.; Wan, J.; Xu, Y.; Sun, J.; and Ma, Z. 2021.
Point Cloud Geometry Compression Via Neural Graph Sam-
pling. In Proceedings of the 28th IEEE International Con-
ference on Image Processing, ICIP 2021, Anchorage, AK,
USA, September 19-22, 2021, 3373–3377.
Guarda, A. F. R.; Rodrigues, N. M. M.; and Pereira, F. 2021.
Constant Size Point Cloud Clustering: A Compact, Non-
Overlapping Solution. IEEE Trans. Multim., 23: 77–91.

Huang, L.; Wang, S.; Wong, K.; Liu, J.; and Urtasun, R.
2020. OctSqueeze: Octree-Structured Entropy Model for Li-
DAR Compression. In Proceedings of the 33rd IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR
2020, Seattle, WA, USA, June 13-19, 2020, 1310–1320.
Huang, T.; and Liu, Y. 2019. 3D Point Cloud Geometry
Compression on Deep Learning. In Proceedings of the 27th
ACM International Conference on Multimedia, MM 2019,
Nice, France, October 21-25, 2019, 890–898.
Kammerl, J.; Blodow, N.; Rusu, R. B.; Gedikli, S.; Beetz,
M.; and Steinbach, E. G. 2012. Real-time compression of
point cloud streams. In Proceedings of the 29th IEEE In-
ternational Conference on Robotics and Automation, ICRA
2012, St. Paul, Minnesota, USA, May 14-18, 2012, 778–785.
Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In Proceedings of the 3rd Interna-
tional Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015.
Kramer, M. 1992. Autoassociative neural networks. Com-
puters & Chemical Engineering, 16(4): 313–328.
Kramer, M. A. 1991. Nonlinear principal component anal-
ysis using autoassociative neural networks. Aiche Journal,
37: 233–243.
Laboratory, R. P. I. I. P.; and Meagher, D. 1980. Octree En-
coding: a New Technique for the Representation, Manipula-
tion and Display of Arbitrary 3-D Objects by Computer.
Li, J.; Chen, B. M.; and Lee, G. H. 2018. SO-Net: Self-
Organizing Network for Point Cloud Analysis. In Proceed-
ings of the 31st IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA,
June 18-22, 2018, 9397–9406.
Li, L.; Li, Z.; Zakharchenko, V.; Chen, J.; and Li, H. 2020.
Advanced 3D Motion Prediction for Video-Based Dynamic
Point Cloud Compression. IEEE Trans. Image Process, 29:
289–302.
Mekuria, R.; Blom, K.; and César, P. 2017. Design, Imple-
mentation, and Evaluation of a Point Cloud Codec for Tele-
Immersive Video. IEEE Trans. Circuits Syst. Video Technol.,
27(4): 828–842.
Mekuria, R.; Blom, K.; and Cesar, P. 2017. Design, Im-
plementation, and Evaluation of a Point Cloud Codec for
Tele-Immersive Video. IEEE Transactions on Circuits and
Systems for Video Technology, 27(4): 828–842.
Mekuria, R.; and César, P. 2016. MP3DG-PCC, Open
Source Software Framework for Implementation and Eval-
uation of Point Cloud Compression. In Proceedings of
the 24th ACM Conference on Multimedia Conference, MM
2016, Amsterdam, The Netherlands, October 15-19, 2016,
1222–1226.
Qi, C. R.; Yi, L.; Su, H.; and Guibas, L. J. 2017. Point-
Net++: Deep Hierarchical Feature Learning on Point Sets in
a Metric Space. In Proceedings of the 31st Advances in Neu-
ral Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, NeurIPS
2017, Long Beach, CA, USA, December 4-9, 2017, 5099–
5108.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4413



Quach, M.; Valenzise, G.; and Dufaux, F. 2019. Learning
Convolutional Transforms for Lossy Point Cloud Geome-
try Compression. In Proceedings of the 26th IEEE Interna-
tional Conference on Image Processing, ICIP 2019, Taipei,
Taiwan, September 22-25, 2019, 4320–4324.
Quach, M.; Valenzise, G.; and Dufaux, F. 2020. Improved
Deep Point Cloud Geometry Compression. In Proceedings
of the 22nd IEEE International Workshop on Multimedia
Signal Processing, MMSP 2020, Tampere, Finland, Septem-
ber 21-24, 2020, 1–6.
Que, Z.; Lu, G.; and Xu, D. 2021. VoxelContext-Net: An
Octree Based Framework for Point Cloud Compression. In
Proceedings of the 34th IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2021, virtual, June 19-
25, 2021, 6042–6051.
Schwarz, S.; Preda, M.; Baroncini, V.; Budagavi, M.; César,
P.; Chou, P. A.; Cohen, R. A.; Krivokuca, M.; Lasserre,
S.; Li, Z.; Llach, J.; Mammou, K.; Mekuria, R.; Nakagami,
O.; Siahaan, E.; Tabatabai, A. J.; Tourapis, A. M.; and Za-
kharchenko, V. 2019. Emerging MPEG Standards for Point
Cloud Compression. IEEE J. Emerg. Sel. Topics Circuits
Syst., 9(1): 133–148.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is All you Need. In Proceedings of the 31st Ad-
vances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems
2017, NeurIPS 2017, Long Beach, CA, USA, December 4-9,
2017, 5998–6008.
Wang, J.; Ding, D.; Li, Z.; and Ma, Z. 2021a. Multiscale
Point Cloud Geometry Compression. In Proceedings of the
31st Data Compression Conference, DCC 2021, Snowbird,
UT, USA, March 23-26, 2021, 73–82.
Wang, J.; Zhu, H.; Liu, H.; and Ma, Z. 2021b. Lossy Point
Cloud Geometry Compression via End-to-End Learning.
IEEE Trans. Circuits Syst. Video Technol., 31(12): 4909–
4923.
Wang, Y.; Wu, S.; Huang, H.; Cohen-Or, D.; and Sorkine-
Hornung, O. 2019. Patch-Based Progressive 3D Point Set
Upsampling. In Proceedings of the 32nd IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019, 5958–5967.
Wiegand, T.; Sullivan, G. J.; Bjøntegaard, G.; and Luthra, A.
2003. Overview of the H.264/AVC video coding standard.
IEEE Trans. Circuits Syst. Video Technol., 13(7): 560–576.
Xu, Y.; Lu, Y.; and Wen, Z. 2017. Owlii Dynamic human
mesh sequence dataset. 120th MPEG Meeting, ISO/IEC
JTC1/SC29/WG11 m41658.
Zhang, H.; Goodfellow, I. J.; Metaxas, D. N.; and Odena,
A. 2019. Self-Attention Generative Adversarial Networks.
In Proceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, Long Beach, California, USA,
June 9-15 , 2019, 7354–7363.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4414


