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Abstract

Weak supervision has proven to be an effective strategy for re-
ducing the burden of annotating semantic segmentation tasks
in 3D space. However, unconstrained or heuristic weakly su-
pervised annotation forms may lead to suboptimal label effi-
ciency. To address this issue, we propose a novel label rec-
ommendation framework for weakly supervised point cloud
semantic segmentation. Distinct from pre-training and active
learning, the label recommendation framework consists of
three stages: inductive bias learning, recommendations for
points to be labeled, and weakly supervised point cloud se-
mantic segmentation learning. In practice, we first introduce
the point cloud upsampling task to induct inductive bias from
structural information. During the recommendation stage, we
present a cross-scene clustering strategy to generate centers
of clustering as recommended points. Then we introduce a
recommended point positions attention module LabelAtten-
tion to model the long-range dependency under sparse an-
notations. Additionally, we employ position encoding to en-
hance the spatial awareness of the segmentation network.
Throughout the framework, the useful information obtained
from inductive bias learning is propagated to subsequent se-
mantic segmentation networks in the form of label positions.
Experimental results demonstrate that our framework outper-
forms weakly supervised point cloud semantic segmentation
methods and other methods for labeling efficiency on S3DIS
and ScanNetV2, even at an extremely low label rate.

Introduction
Point cloud semantic segmentation is one of the fundamen-
tal tasks in 3D scene understanding and holds significant
importance in applications such as autonomous driving (Li
et al. 2020), AR/VR (Blanc et al. 2020), and robotics (Shan
et al. 2020). With the advent of weakly supervised learning,
the requirement for fine-grained annotation of massive point
cloud datasets for semantic segmentation has been allevi-
ated, garnering considerable attention from researchers.

However, existing works mostly focus on designing net-
work architectures and loss functions to leverage limited
sparse annotations, but impose few constraints on the an-
notation forms. Some works (Zhang et al. 2021a; Hu et al.
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Figure 1: Process comparison of (a) pre-training framework,
(b) active learning framework, and (c) label recommenda-
tion framework.

2022a) require sparse annotations to be as random as possi-
ble, while others (Liu, Qi, and Fu 2021; Wu et al. 2022b)
additionally mandate a one-thing-one-click format. Such
weakly supervised annotation forms are suboptimal. The
constraints of randomness and one-thing-one-click do not
take into account the varying importance of points during
network learning, leading to supervisory information de-
ficiency. Even worse, annotators often exhibit preferences
in practice, leading to an inhomogeneous labeling distribu-
tion (Pan et al. 2023). Consequently, the sparse annotations
may not sufficiently support effective network learning.

Therefore, we propose a novel label recommendation
framework to enhance the annotation efficiency for weakly
supervised point cloud semantic segmentation. As illustrated
in Figure 1 (c), the framework consists of three stages: in-
ductive bias learning, recommendations for points to be la-
beled, and point cloud semantic segmentation learning based
on the recommended annotations. While it shares similari-
ties with pre-training and active learning frameworks, it has
essential differences as shown in Figure 1. The inductive
bias learning stage extracts facilitative inductive bias for la-
bel recommendation in an unsupervised manner. In the an-
notation recommendation generation stage, annotations are
generated based on the point embedding, and then annota-
tors label these recommendation points to produce sparse
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annotations. Finally, in the point cloud semantic segmen-
tation learning stage, the segmentation network is trained
based on the recommended sparse annotations.

Regarding the proposed annotation recommendation
framework, this work addresses and attempts to solve three
key challenges: (1) How to select appropriate pretext tasks
for inductive bias learning in the label recommendation
framework? (2) How to efficiently choose points to be la-
beled based on point embedding? (3) How to fully leverage
the recommended annotations for weakly supervised point
cloud semantic segmentation learning?

For the first challenge, We resort to unsupervised tasks
for inductive bias learning. Surprisingly, we discovered that
inductive bias learning for label recommendation requires
explicit restrictions at the point level rather than inter-point
contrastive supervision. Creating the generative unsuper-
vised tasks necessitates altering the original data distribu-
tion, leading to domain adaptation issues. To address this,
we adopted 2× point cloud upsampling based on the princi-
ple of minimizing divergence as the pretext task. In response
to the second challenge, we employed clustering to use the
cluster centers of features as recommended sparse annota-
tions. Furthermore, we proposed a cross-scene clustering
strategy that can perceive feature information from multiple
scenes and reduce the complexity introduced by cross-scene
scenarios. Regarding the third issue, we proposed an atten-
tion module based on the positions of sparse annotations
named LabelAttention, allowing gradients to be directly
propagated from annotated points to unannotated points dur-
ing backpropagation, thereby alleviating long-range depen-
dency issues caused by sparse annotations. Additionally, we
introduce position encoding to enhance the spatial percep-
tion of models.

Our experiments demonstrated that, at a 0.01% label rate,
the proposed framework achieved over 90% performance
of fully supervised learning on both S3DIS (Armeni et al.
2016) and ScanNetV2 (Dai et al. 2017), surpassing other
competitors. Extensive ablation studies further confirmed
the effectiveness of the proposed module in our framework.

Related Work
Weakly Supervised Point Cloud Semantic Segmenta-
tion. Although weakly supervised point cloud semantic
segmentation is still in its infancy, a large number of well-
established works have emerged. Xu and Lee is the first
to introduce the weakly supervised point cloud semantic
segmentation task. They propose a dual-branch framework
trained with consistency loss, inexact loss, and color space
prior constraints. Subsequent works either improve the dual-
branch input paradigm (Unal, Dai, and Van Gool 2022; Wu
et al. 2022b), introduce information interaction between the
two branches (Zhang et al. 2021b; Cheng et al. 2021), or im-
pose new constraints between the results from branches (Li
et al. 2022a). Some methods (Liu, Qi, and Fu 2021, 2023;
Zhang et al. 2021a) propose single-branch frameworks with
label propagation. These methods usually require designing
a relation metric module to predict the similarity relationship
matrix, which helps propagate labels from annotated points
to unannotated points step by step. Additionally, SQN (Hu

et al. 2022a) and GaIA (Lee, Yang, and Han 2023) provide
solutions from the perspectives of feature queries and infor-
mation gain, respectively. Recently, AAD (Pan et al. 2023)
analyzes weakly supervised point cloud semantic segmenta-
tion under non-uniform distribution annotations.

Indeed, these works are designed for frameworks based
on given sparse annotations but do not explore how to label
sparse annotations that harness the segmentation potential of
subsequent networks.

Pre-training for Point Cloud Understanding. Due to
the ability of unsupervised pretext tasks to learn informa-
tion from any point cloud scene without annotations, pre-
trained networks can significantly enhance point cloud un-
derstanding after fine-tuning the target dataset. Pre-training
can be divided into contrastive learning-based pre-training
and generative-based pre-training. PointContrast (Xie et al.
2020) is an impactful work, which proposes a contrastive
learning-based pre-training framework for point cloud un-
derstanding by view transformations to construct positive
and negative pairs. DepthContrast (Zhang et al. 2021c) and
crosspoint (Afham et al. 2022) utilize geometric transforma-
tion and cross-modal transformations to create positive and
negative pairs, to adapt to single-view point clouds. SegCon-
trast (Nunes et al. 2022) implements contrastive learning us-
ing pre-extracted segments as the basic unit.

Differently, generative pre-training methods construct a
pretext task by applying operations such as masking (Yu
et al. 2022; Wang et al. 2021) and mixing (Sun et al. 2022)
to the original point cloud scene. Subsequently, the corre-
sponding decoder and loss function are designed for a com-
plete pre-training.

Label-efficient Learning for Point Cloud. Currently,
learning for label efficiency on point clouds typically re-
lies on pre-training or active learning frameworks. Pre-
training-based label-efficient learning investigates how to
obtain beneficial point embedding from limited annotations.
ACD (Gadelha et al. 2020) achieves label-efficient learn-
ing by combining Approximate Convex Decomposition with
contrastive loss as self-supervised signals. Hou et al. pro-
poses the Contrast Scene Contexts to integrate spatial con-
texts for pre-training, and efficient annotations are selected
based on the pre-trained features. In contrast, active learn-
ing focuses on how to design the metric function to select
the regions to be labeled online. Shi et al. constructs manual
labeling metrics at point-level, superpoint-level, and shape-
level. ReDAL (Wu et al. 2021) calculates annotation metrics
based on feature entropy, color, and geometric structure with
region density selection strategy. Shao et al. measures spa-
tial and structural diversities via graph reasoning network.
LiDAL (Hu et al. 2022b) considers both inter-frame diver-
gency and entropy to solve region selection for LiDAR point
cloud scenes. Rong, Cui, and Shen chooses 2D rendered im-
ages rather than points or superpoints in 3D space .

The closely related work to ours is LESS (Liu et al. 2022),
which introduces a heuristic pre-segmentation for LiDAR
outdoor datasets. It automatically expands sparse annota-
tions into pseudo-labels at the segment level. Their segmen-
tation network incorporates prototype learning and multi-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

4398



LabelAttention

Cluster in Each Scene

Cluster in BatchesℒCD

𝑇(𝐗𝑘)

𝐗𝑘

Network Φ
𝐟𝑘

[𝑁𝑘/2, 𝐷] [𝑁𝑘 , 𝐷/2] ഥ𝐏𝑘

𝜹

ℒ𝑝

Network Ψ ෡𝐘 𝐘

𝑇

Manual Annotations

𝜹 Position Encoding Unlabeled Points
Labeled PointsKeys

(a)

(c)
(b)

𝜹
𝜹

𝜹
𝜹

Figure 2: The proposed label recommendation framework contains three sequential stages: (a) inductive bias learning, (b) rec-
ommendation, and (c) weakly supervised point cloud semantic segmentation learning. In (a), the inductive bias is cultivated via
2× point cloud upsampling. The subsequent stage (b) leverages dual-tier clustering for cross-scene clustering and annotators to
derive the recommendation Y. In (c), the network integrates LabelAttention and position encoding to harness Y for compre-
hensive semantic segmentation learning, culminating in a refined understanding of the point cloud data.

scan distillation to enhance the accuracy of single-scan seg-
mentation. Conversely, our framework adopts an unsuper-
vised task for learning-based label recommendation while
refraining from pseudo-label extension to mitigate noises.

Method
Overview
In this paper, we propose a label recommendation frame-
work to explore label efficiency for weakly supervised point
cloud semantic segmentation. The point cloud dataset on this
framework is defined as X = {X1,X2, ...,XK}, where
K denotes the number of point cloud scenes and Xk =
[Pk,Fk] ∈ RNk×(3+F). Pk ∈ RNk×3 and Fk ∈ RNk×F

represent the 3D spatial coordinate information and other
F -dimensional information (e.g. color, normal vector, etc.)
respectively. Nk denotes the number of points in Xk.

As shown in Figure 2, the whole framework contains three
sequential stages, including inductive bias learning, recom-
mendation, and point cloud semantic segmentation learning.
In the inductive bias learning stage, an unsupervised task is
chosen as a pretext task to obtain high-level feature repre-
sentations fk corresponding to the input Xk, which can be
written as fk = Φ[T (Xk)], where Φ denotes the network
trained on the unsupervised task and T can be a mask opera-
tion in the spatial or feature domain for generative unsuper-
vised tasks. Accordingly, the loss function depends on the
choice of pretext task.

In the recommendation stage, we perform clustering
based on fk obtained from the previous stage, to take the

clustering centroids as recommendation points to be labeled
by Ck = cluster(fk, αNk), where α and αNk denote the
proportion of sparse annotation and the number of clus-
ters, respectively. In particular, we propose a dual-tier cross-
scene clustering strategy that adapts to the distribution of ob-
jects in multiple scenes. The human annotators sparsely an-
notate the point cloud dataset according to the recommended
points, and the sparse annotation Y k = {Yk

i | i ∈ Ck}.
The point cloud semantic segmentation learning stage

performs weakly supervision based on Xk and Yk, with a
partial cross-entropy loss:

Lp =
1

|Ck|
∑
i∈Ck

(
Yk

i log(Ŷ
k
i ) + Ŷk

i log(Y
k
i )
)
, (1)

where Ŷk = Ψ(Xk) denotes the prediction result of seman-
tic segmentation network Ψ with Xk as input.

Differences from pretraining. (1) Different Objectives:
The purpose of pre-training is to achieve general parame-
ters for the encoder, whereas label recommendation aims to
recommend annotation regions for point cloud understand-
ing. (2) Different Datasets: Pre-training typically utilizes
large-scale point cloud datasets, entailing numerous training
epochs. In contrast, label recommendation is performed on
a given segmentation dataset with fewer training iterations.
(3) Different Network Requirements: Pre-training necessi-
tates maintaining the same encoder structure before and after
the pre-training. Conversely, label recommendation trans-
mits information through the points to be labeled, allowing
different structures.
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Differences from active learning. (1) Different Annota-
tion Recommendation Stage: In active learning, the recom-
mendation stage occurs during task training. In contrast, the
recommendation stage predates task training in label rec-
ommendation learning, preventing disruption to the process.
(2) Different Frequency of Annotation Recommendations:
Active learning requires multiple and continuous provisions
of new annotations during the training process, while label
recommendation requires only one overall recommendation
step. (3) Different Task: Active learning operates within the
context of the given task training, whereas the recommenda-
tion stage in label recommendation is before network train-
ing, involving the selection of an unsupervised pretext task.

Inductive Bias Learning Stage
We investigate several mainstream unsupervised learning
tasks including generative and contrastive learning unsuper-
vised methods. Generative unsupervised methods first uti-
lize a sampling function T to mask information from the
point cloud scene as input. Subsequently, the original point
cloud scene serves as the supervisory signal to guide the gen-
eration of concealed information. Contrastive learning as an-
other solution transforms the point cloud scene using the bi-
jection function T and then constructs positive and negative
pairs to provide constraints. Based on the theoretical analy-
sis and experimental results, we choose the 2× point cloud
upsampling as the pretext task, then T denotes the uniform
2× downsampling function, and the Chamfer Distance func-
tion used for supervision is defined as:

LCD =
1

Nk

∑
i

min
j

||Pk
i−P̄k

j ||22+
1

Nk

∑
i

min
j

||P̄k
i−Pk

j ||22,

(2)
Inspired by the single point cloud object upsampling meth-
ods (Yu et al. 2018; Li et al. 2022b), we define the predic-
tions P̄k on point cloud scene upsampling as:

P̄k = MLPs
(
reshape(fk, [Nk/2, D] → [Nk, D/2])

)
, (3)

where D denotes the channel dimension of fk.

Discussion of pretext tasks. Table 3 showcases our eval-
uation of diverse methods, including two contrastive learn-
ing methods (Hardest-Contrastive (Choy, Park, and Koltun
2019) and PointInfoNCE (Xie et al. 2020)) and two gener-
ative methods (point cloud upsampling and point cloud col-
orize). Despite the commendable performance of contrastive
learning within the pre-training domain, its efficacy within
the label recommendation framework appeared relatively di-
minished compared to generative methods. We attribute this
observation to the label recommendation framework focus
on point-level feature acquisition, demanding distinct super-
vision for individual points. In contrast, contrastive learning
draws upon features from multiple points and lacks explicit
point-level guidance.

In generative unsupervised methods (Yu et al. 2022;
Cheng et al. 2023), the sampled point cloud as input intro-
duces a distribution discrepancy between the training data
T (Pk) and the target data Pk. The mitigation of distri-
bution disparities constitutes a foundational pursuit in the

(a) Single-scene Clustering (b) Cross-scene Clustering 

Figure 3: Schematic comparison of single-scene clustering
and cross-scene clustering.

realm of domain adaptation. Drawing inspiration from di-
vergence minimization-based domain adaptation (Zhang, Li,
and Ogunbona 2017), we elect the 2× point cloud upsam-
pling as our pretext task. This selection stems from its rel-
atively subdued influence on distribution when juxtaposed
with alternative generative tasks. While the variational au-
toencoder (Doersch 2016) theoretically exerts the least dis-
tribution impact, it grapples with training stability issues due
to posterior collapse (He et al. 2019). Therefore, we ulti-
mately settle upon the 2× point cloud upsampling, guided
by its favorable equilibrium between distributional influence
and training stability.

Recommendation Stage
An effective recommendation should furnish more holistic
guidance for subsequent semantic segmentation learning,
encompassing a wider spectrum of the scene’s intricacies.
In light of this perspective, we regard clustering centers as
the foremost candidates for representative point recommen-
dations. Nevertheless, employing clustering solely within a
singular scene may yield insufficient annotations for intri-
cate scenes, juxtaposed with redundant annotations for sim-
pler scenes, as depicted in Figure 3 (a). By adopting a cross-
scene clustering strategy, we facilitate the automated allo-
cation of annotation quantities, taking into account the in-
tricacies inherent to different scenes. Moreover, harnessing
features across diverse scenes augments the precision of an-
notation region recommendations and the breadth of super-
visory information coverage.

However, cross-scene clustering introduces heightened al-
gorithmic complexity. To address this, we propose a dual-
tier clustering algorithm for the recommendation stage.
Firstly, we execute clustering within a single scene with
the label rate α and the expansion coefficient β. Following
this, the second clustering is executed across the aggregation
of clustering centers extracted from numerous point cloud
scenes. This process can be represented as follows:

{Ck}k∈B = cluster
({

cluster(fk, αβNk)
}
, α

∑
k∈B

Nk

)
,

(4)
where B denotes the index set of point cloud scenes in one
batch and β denotes the expansion coefficient of the first
clustering. In practice, we choose Kmeans as the clustering
algorithm. Finally, the human annotators provide sparse an-
notations Y based on the location of the clustering centers.
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Figure 4: LabelAttention effectively shortens the informa-
tion interaction link between labeled and unlabeled points.
BP and FP denote backward propagation and forward prop-
agation, respectively.

Algorithm complexity analysis. For the sake of com-
parison, we assume that each scene has the same number
of points, i.e.

∑
k∈B Nk = |B|Nk. Since the maximum

number of iterations of Kmeans and the feature dimen-
sion are constants, the conventional cross-scene clustering
has a time complexity of O(α|B|2N2

k ), while our proposed
dual-tier cross-scene clustering has a time complexity of
O(αβ|B|N2

k + α2β|B|N2
k ). Since the label rate α≪ 1, the

time complexity can be simplified to O(αβ|B|N2
k ). When

the expansion coefficient β < |B|, the dual-tier cross-scene
clustering can effectively reduce the time complexity of the
algorithm. Correspondingly, the space complexity can be re-
duced from O(|B|Nk) to O(Nk).

Weakly Supervised Learning Stage
Effectively harnessing the limited supervision inherent in
sparse annotations constitutes a pivotal factor in enhancing
segmentation performance. The paucity of annotated points
intensifies the complexity of modeling long-range depen-
dencies. In this context, unlabeled points solely glean super-
vision from labeled points through multiple feature extrac-
tions, devoid of direct interaction with unlabeled points. The
applicability of local and global attention mechanisms, inte-
gral for capturing long-range dependencies within fully su-
pervised networks, is constrained within the context of weak
supervision. Local attention predominantly concentrates on
neighborhood regions, commonly comprising a substantial
pool of unlabeled points, while global attention diffuses su-
pervision efficacy attributed to annotated points, given the
significant prevalence of unlabeled counterparts.

To address this issue, we propose the LabelAttention
module to consciously impose attention at labeled locations.
The features f ′i after LabelAttention can be defined as: (For
a clear presentation, we simplify fi to fki )

f ′i = fi +
∑
j∈C

ρ(φ(fi)− ψ(fj))⊙ ϕ(fj + δ), (5)

where φ,ψ, ϕ are point-level linear transformations, ρ con-
sists of a softmax and a mapping function, δ is a positional

encoding, and ⊙ donates the Hadamard product. We use
the attention module to aggregate the features from {fj}j∈C ,
which allows the sparsely supervised gradient at the labeled
points to propagate quickly to all positions. According to the
analysis of self-attention in AFGCN (Zhang et al. 2023), our
utilization of LabelAttention is only concentrated within the
last encoder block. In the inference phase, we similarly use
the positions of the labeled points in the test set to construct
LabelAttention.

In set abstract and downsampling layers, we further utilize
position encoding to enhance the perception of the network
to the geometric space, which is formulated as:

δ = MLPs(pj − pi). (6)
Relative position-based encoding facilitates the spatial po-
sitional alignment between unlabeled and labeled points
within the feature aggregation process, and local topologi-
cal capture during feature downsampling, resulting in more
robust representations.

Experiments and Analysis
Experiment Settings
Dataset. S3DIS (Armeni et al. 2016) covers six large-
scale indoor areas, totaling about 271 rooms, with vary-
ing room layouts, furniture arrangements, and object place-
ments. Area 5 is used for validation and the remaining areas
are allocated for network training. ScanNetV2 (Dai et al.
2017) encompasses 1,513 scanned scenes originating from
707 diverse indoor environments. Our study adheres to the
official ScanNetV2 partition, employing 1,201 scenes for
training and allocating 312 scenes for validation.

Method Supervision mIoU (%)

PointNet++ (Qi et al.) 100% 33.9
PointCNN (Li et al.) 100% 45.8
PointNeXt (Qian et al.) 100% 71.2
PTV2 (Wu et al.) 100% 75.2

Zhang et al. 2021a 1% 51.1
PSD (Zhang et al.) 1% 54.7
HybirdCR (Li et al.) 1% 56.8
GaIA (Lee, Yang, and Han) 1% 65.2
AADNet (Pan et al.) 1% 66.8
Ours 1% 67.4
SQN (Hu et al.) 0.01% 35.9
PointMatch† (Wu et al.) 0.01% 57.1
OTOC++† (Liu, Qi, and Fu) 0.01% 60.6
Hou et al. 2021 20 pts/scene 55.5
MILTrans (Yang et al.) 20 pts/scene 54.4
OTOC† (Liu, Qi, and Fu) 20 pts/scene 59.4
PointMatch† (Wu et al.) 20 pts/scene 62.4
AADNet (Pan et al.) 20 pts/scene 62.5
Ours† 20 pts/scene 63.7

Table 1: Quantitative results of semantic segmentation on
the test set of ScanNetV2. † denotes the super-voxel setting.
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Figure 5: Visual comparison on S3DIS Area 5 at 0.01% label rate. Red circle for highlighting.

Method Supervision mIoU (%)

PointNet++ (Qi et al.) 100% 53.5
PointCNN (Li et al.) 100% 57.3
PointNeXt (Qian et al.) 100% 70.5
PTV2 (Wu et al.) 100% 71.6

Π Model (Laine and Aila) 0.2% 44.3
MT (Tarvainen and Valpola) 0.2% 44.4
Xu and Lee 2020 0.2% 44.5
SQN (Hu et al.) 0.1% 61.4
PointMatch† (Wu et al.) 0.1% 63.4
AADNet (Pan et al.) 0.1% 67.2
Ours 0.1% 68.9
Zhang et al. 2021a 0.03% 45.8
PSD (Zhang et al.) 0.03% 48.2
HybirdCR (Li et al.) 0.03% 51.5
OTOC† (Liu, Qi, and Fu) 0.02%⋆ 50.1
MILTrans (Yang et al.) 0.02%⋆ 51.4
GaIA (Lee, Yang, and Han) 0.02%⋆ 53.7
DAT (Wu et al.) 0.02%⋆ 56.5
OTOC++† (Liu, Qi, and Fu) 0.02%⋆ 56.6
SQN (Hu et al.) 0.01% 45.3
PointMatch† (Wu et al.) 0.01% 59.9
AADNet (Pan et al.) 0.01% 60.8
Ours 0.01% 62.9

Table 2: Quantitative results of semantic segmentation on
S3DIS Area 5. 0.02%⋆ denotes the one-thing-one-click an-
notation. † denotes the super-voxel setting.

Implementation. In inductive bias learning stage, we use
pointnet++ (Qi et al. 2017) as the backbone with an initial
learning rate of 10−3, adamw optimizer (weight decay is
10−4) for 30 epochs. For S3DIS, we first utilize the entire
voxel-downsampled strategy to sample 24,000 points from
the original point cloud as the ground truth and downsam-
ple ground truth to 12,000 points as inputs to the induc-
tive bias learning network. For ScannetV2, the input reso-
lution of the upsampling network is 32,000. Inductive bias
learning is trained with one NVIDIA V100 GPU on S3DIS
and four NVIDIA V100 GPUs on ScanNetV2, respectively.
For the recommendation stage, we use Kmeans as the clus-
tering algorithm, where cross-scene clustering is computed
separately for the training and test sets. The maximum num-
ber of iterations is 100. The expansion coefficient β = 1

2B
with B = 8. In the weakly-supervised point cloud seman-
tic segmentation learning stage, we use PointNeXt-L (Qian
et al. 2022) as the backbone and follow the official settings
of PointNeXt. Following AAD (Pan et al. 2023), the label-
aware downsampling (LaDS) is imposed to fully utilize the
sparse annotation. mIoU is used as the evaluation metric.

Comparsion Results
Figures 1 and Figures 2 illustrate that our framework
achieves SOTA on both ScanNetV2 and S3DIS compared to
label-efficient learning and weakly-supervised point cloud
semantic segmentation methods. Our label recommendation
framework achieves more than 90% of fully-supervised seg-
mentation performance at the 0.01% label rate. Compared
to the baseline using randomly sampled sparse annotations,
our method improves 4.5% and 1.8% mIoU at 0.01% and
0.1% label rates on S3DIS, respectively.
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Method mIoU (%)

Hardest-Contrastive Loss Contrastive 43.7
PointInfoNCE Loss 42.6

Point Colorize

Generative

45.1
2× Point Upsampling 49.6
4× Point Upsampling 42.9
8× Point Upsampling 43.2
2× Point Completion 48.2

Table 3: Ablation study for pretext task in the inductive bias
learning stage.

Figure 5 demonstrates that the label commendation
framework has a significant accuracy improvement in de-
tailed categories (e.g., doorframes with slender shapes) and
confusing categories (e.g., columns and walls, sofas and
chairs).

Ablation Study
We perform ablation experiments without LaDS on S3DIS
Area 5. The baseline denotes label recommendation based
on features obtained in the inductive bias learning stage with
single-scene Kmeans, followed by PointNeXt-L for point
cloud semantic segmentation learning.

The choice of pretext task. Table 3 provides a com-
prehensive comparison of the two unsupervised learning
paradigms, revealing the notable superiority of the gener-
ation task over the contrastive learning task. Furthermore,
it elucidates that the point-generation task significantly out-
performs the color-generation task. Our exploration extends
to investigating the impact of generation distribution unifor-
mity (upsampling versus completion) and generation com-
plexity (upsampling rates) on the point cloud label recom-
mendation framework. Our findings underscore that the 2×
upsampling, which minimizes perturbations to the original
distribution, emerges as the most efficacious pretext task.

Scene Batch Size 1 4 8 16 32
mIoU (%) 49.6 50.3 51.2 48.6 47.8

Table 4: Ablation study for scene batch size in the recom-
mendation stage.

The cross-scene clustering. Table 4 provides an analy-
sis, evaluating the influence of cross-scene clustering across
varying scene batch sizes. Our observations illustrate that
the performance shows a trend of increasing and then de-
creasing with increased scene size. A small scene batch size
leads to insufficient cross-scene information, while a large
scene batch size leads to complex clustering features. In ad-
dition, we visualize the recommendation results after single-
scene and cross-scene clustering in Figure 6, and cross-scene
clustering focuses more on long-tail categories with variable

Point Cloud

Ground Truth

SC

CC

Recommended Points by SC

Recommended Points by CC

Figure 6: Cluster results and recommended points by single-
scene clustering (SC) and cross-scene clustering (CC).

shapes (e.g., windows with variable perspectives) and less
on sample head categories (e.g., walls).

Method mIoU (%) P. (M) GFLOPs

PointNeXt-L 51.2 7.13 24.4
+δ 55.0 7.54 33.0
+δ +RandomAttention 54.4 7.42 30.0
+δ +LocalAttention 55.7 7.42 31.6
+δ +GlobalAttention 55.8 7.42 28.7
+δ +LabelAttention 56.1 7.42 30.0

Table 5: Ablation Study for LabelAttention and position en-
coding in the weakly supervised learning stage. P. is an ab-
breviation for network parameters.

The LabelAttention and position encoding. In Table 5,
we perform an ablation study on position encoding and var-
ious attention modules. It can be found that position en-
coding is significantly helpful within the realm of weakly
supervised learning. In addition, LabelAttention mitigates
the long-range dependence issue by explicitly aggregat-
ing feature information with labeled points, resulting in
optimal performance. While GlobalAttention similarly ad-
dresses the long-range dependence, it simultaneously in-
creases the computational demands as well as introduces
susceptibility to non-robust features beyond labeled points.
However, our method can effectively improve performance
without significantly increasing the computational cost.

Conclusion
In this paper, we design a novel labeled recommendation
framework to address weakly-supervised point cloud seman-
tic segmentation and explore each stage under this frame-
work. Empirical experiments demonstrate that our frame-
work outperforms conventional weakly-supervised semantic
segmentation methods and other generalized label-efficient
learning frameworks. We expect the label recommendation
framework to be a compelling alternative in the field of
weakly-supervised point cloud semantic segmentation and
provide a new perspective for the point cloud community.
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