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Abstract

3D semantic occupancy has garnered considerable attention
due to its abundant structural information encompassing the
entire scene in autonomous driving. However, existing 3D
occupancy prediction methods contend with the constraint
of low-resolution 3D voxel features arising from the limita-
tion of computational memory. To address this limitation and
achieve a more fine-grained representation of 3D scenes, we
propose OctOcc, a novel octree-based approach for 3D se-
mantic occupancy prediction. OctOcc is conceptually rooted
in the observation that the vast majority of 3D space is left un-
occupied. Capitalizing on this insight, we endeavor to culti-
vate memory-efficient high-resolution 3D occupancy predic-
tions by mitigating superfluous cross-attentions. Specifically,
we devise a hierarchical octree structure that selectively gen-
erates finer-grained cross-attentions solely in potentially oc-
cupied regions. Extending our inquiry beyond 3D space, we
identify analogous redundancies within another side of cross
attentions, 2D images. Consequently, a 2D image feature fil-
tering network is conceived to expunge extraneous regions.
Experimental results demonstrate that the proposed OctOcc
significantly outperforms existing methods on nuScenes and
SemanticKITTI datasets with limited memory consumption.

Introduction
3D scene understanding has been a pivotal and fundamen-
tal task in computer vision and autonomous driving systems
for years. Earlier methodologies predominantly hinged upon
LiDAR sensors to grapple with this challenge, which is lim-
ited to exorbitant hardware costs and the sparse scanned
points clouds. Due to its inherent potential for develop-
ing cost-effective autonomous driving systems, the vision-
centric perception has recently gained remarkable traction
within both industry and academia. Taking multiple sur-
rounding camera image as input, vision-centric models have
evinced promising performance on various 3D scene un-
derstanding tasks such as 3D object detection (Wang et al.
2021b,c; Li et al. 2022b,a; Zhou et al. 2023; Li et al. 2023a),
3D map segmentation (Hu et al. 2021; Akan et al. 2022;
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(a) 25× 25× 2 (b) 50× 50× 4

(c) 100× 100× 8 (d) 200× 200× 16

Figure 1. An illustration of different resolution of a scene
representation: (a) 25 ×25 × 2, (b) 50 × 50 × 4, (c) 100 ×
100×8, and (d) 200×200×16. The lower spatial resolution
is hard to represent complex geometric shapes.

Zhang et al. 2022), and depth estimation (Guizilini et al.
2022; Wei et al. 2022).

Despite the commendable achievements of vision-based
models in the 3D object detection task, a conspicuous ob-
stacle remains in their ability to faithfully encapsulate in-
tricate geometric shapes and complex autonomous driving
scenarios in the real world. This challenge arises from the
conventionally employed coarse-level 3D bounding box rep-
resentation of foreground objects, alongside the neglect of
background elements. Recently, 3D occupancy prediction
has been attended to as a promising fine-grained represen-
tational framework. This framework entails the allocation of
semantic occupancy to each voxel in 3D space, thus engen-
dering the pursuit of a granular depiction of 3D scenes. Sev-
eral pioneering studies facilitate 3D occupancy prediction
through the generation of 3D occupancy labels via LiDAR
points (Tian et al. 2023; Sima et al. 2023; Wang et al. 2023),
coupled with the formulation of baseline models (Huang
et al. 2023; Wei et al. 2023; Zhang et al. 2023).

However, existing approaches are inclined to acquire low-
resolution 3D voxel features, no matter they are network-
based (Wei et al. 2023; Huang et al. 2023; Wang et al. 2023)
or the geometry-based (Zhang et al. 2023). While these
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low-resolution features are employed for producing the fi-
nal high-resolution 3D occupancy predictions, trilinear in-
terpolation or deconvolution operations are widely adopted
in these works, which introduce challenges in terms of ac-
curately predicting object shapes due to the attenuation of
high-frequency details. More critically, it is challenging to
represent the abundant semantic information within a low
spatial resolution, as shown in Fig. 1, in which many impor-
tant semantic details are ignored in low-resolution represen-
tation. Consequently, a substantial portion of prediction er-
rors is traceable to either the insufficient spatial resolution or
3D occupancy supervision itself being performed at a coarse
level. It naturally motivates us to develop a method to pre-
dict high-resolution 3D occupancy directly, which, however,
leads to a rapid increase in computational consumption.

To address this issue, we propose OctOcc. OctOcc is con-
ceptually rooted in the observation that there is no seman-
tic information in the vast majority of the 3D space of au-
tonomous driving scenarios, which results in a plethora of
redundancy of 3D-2D spatial cross attention. Thus, our key
insight is to reduce such redundancy to achieve a memory-
efficient high-resolution 3D occupancy prediction:
• We first consider diminishing the redundancy in 3D vox-

els by a hierarchical octree structure. At the coarse level
of octree structure, we focus on identifying occupied
regions, regardless of the semantic information. In the
neighbor finer layer, the OctOcc selectively generates oc-
tant sub-tree voxels to those nodes that are detected as
potentially occupied regions only, and then applies finer-
grained cross-attentions to those voxels. Our method out-
puts semantic categories to each voxel in the last layer to
achieve high-resolution 3D occupancy predictions. Such
a paradigm effectively suppresses the hunger for high-
resolution 3D voxel queries for colossal memory con-
sumption, thereby laying the foundation of the OctOcc
to achieve high-resolution 3D occupancy prediction.

• We then further investigate the other side of 3D-2D spa-
tial cross-attention, 2D image features. We found that
there also exists much redundant or irrelevant informa-
tion in 2D images, such as sky or far-away foreground
objects. Therefore, we devise a filter mask prediction net-
work to expunge those obviously irrelevant parts in 2D
surrounding images.

To validate the effectiveness of the proposed method, we
conduct comprehensive experiments on vision-based bench-
marks, the surrounding view dataset nuScenes (Caesar et al.
2020) and monocular view SemanticKITTI (Behley et al.
2019). Experimental results show that the proposed OctOcc
significantly improves the performance of 3D occupancy
predictions(+3.0% mIoU) with a limited increase in memory
consumption(less than 7GB) and computational costs. The
qualitative results indicate that our method generates more
fine-granularity 3D occupancy predictions.

Related Work
Vision-Centric Perception. Vision-centric 3D perception
conducted in bird’s eye-view (BEV) recently emerged as a
promising alternative to the LiDAR-based autonomous driv-

ing solutions. It has achieved promising performance on sev-
eral autonomous-driving related tasks, such as 3D object de-
tection (Wang et al. 2021b,c; Li et al. 2022b,a; Zhou et al.
2023; Li et al. 2023a), map segmentation (Pan et al. 2020;
Roddick et al. 2020; Saha et al. 2021; Zou et al. 2023; Saha
et al. 2022; Gong et al. 2022; Zhou et al. 2022), and lane
segmentation (Garnett et al. 2019; Guo et al. 2020; Chen
et al. 2022; Liu et al. 2022a). These works can be divided
into two main categories based on 3D-2D view transfor-
mation: geometry-based and network-based. The geometry-
based methods (Philion et al. 2020; Huang et al. 2021, 2022;
Li et al. 2023a) fully utilize the geometric relationship of the
camera to lift 2D features to 3D space by explicit or implicit
depth estimation. The network-based methods (Wang et al.
2021b; Liu et al. 2022b; Li et al. 2022b) employ a top-down
strategy by directly constructing BEV queries and searching
corresponding features on front-view images by the cross-
attention mechanism. Though existing works have achieved
competitive performance on 3D object detection tasks, they
still suffer from the coarse-level 3D bounding box represen-
tation, which limits its application on fine-grained 3D scene
representation.
Voxel-Based Scene Reconstruction. 3D scene reconstruc-
tion is a fundamental but challenging task in computer vi-
sion. Voxel-based scene reconstruction voxelized the 3D
space into discretized voxels and described each voxel by
a feature vector. The ability to describe fine-granularity 3D
scenes makes voxel-based scene reconstruction favorable
for 3D scene understanding tasks such as lidar segmenta-
tion (Cheng et al. 2021; Ye et al. 2023) and 3D scene com-
pletion (Yan et al. 2021; Cao et al. 2022). Though these
methods achieved success in 3D scene understanding, they
are usually in a LiDAR-centric paradigm. Besides, 3D scene
reconstruction methods (Murez et al. 2020; Sun et al. 2021;
Bozic et al. 2021) reconstruct accurate 3D geometry and
scene in a vision-centric paradigm. However, most of these
methods are designed for indoor scenes, which is quite dif-
ferent from outdoor settings in autonomous driving scenar-
ios. To the best of our knowledge, MonoScene (Cao et al.
2022) is the first work to reconstruct outdoor scenes, but it
is tailored for monocular image input.
3D Occupancy Prediction. 3D occupancy prediction aims
to reconstruct voxelized 3D scenes, which is similar to Oc-
cupancy Grid Mapping(OGM), a classical task in robotics.
However, 3D occupancy prediction usually utilizes RGB im-
ages from surrounding cameras as input, but OGM often
requires measurement from range sensors like LiDAR and
RADARs. Tesla is the first to project the perspective view
features onto the 3D voxels space to achieve the 3D occu-
pancy prediction network. Subsequent endeavors, exempli-
fied by OpenOccupancy (Wang et al. 2023), SSCBench (Li
et al. 2023b), and Occ3D (Tian et al. 2023), concentrate
on the construction of datasets or benchmarks for 3D occu-
pancy predictions. TPVFormer (Huang et al. 2023) proposes
a tri-perspective view method to predict 3D occupancy. Sur-
roundOcc (Wei et al. 2023) designs a coarse-to-fine archi-
tecture with generated dense 3D occupancy as supervision.
OccFormer (Zhang et al. 2023) employs a geometry-based
paradigm to construct 3D voxel features. Despite the differ-
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ence in 3D-2D view transformation, all existing works learn
the 3D voxel features to depict the corresponding scenes.
Therefore, the spatial resolution of the 3D voxel features is
a non-negligible parameter for 3D Occupancy Prediction.
However, existing works suffer from the low resolution of
3D voxel features due to limited memory and computation
resources.

Method
OctOcc is a memory-efficient 3D occupancy prediction net-
work. The key insight in our method is to diminish the re-
dundancy in 3D-2D spatial cross-attention. On the 3D side,
we construct a hierarchical octree structure for 3D voxels, in
which we selectively deploy cross-attentions to those octant
sub-tree nodes that detect as potentially occupied regions.
On the 2D side, we design a 2D image feature filter network
to filtrate those irrelevant images formation.

Preliminaries
3D Occupancy Prediction. Given a sequence of sensor in-
puts, the goal of 3D occupancy prediction is to estimate
the state of each voxel, including occupancy(“occupied”,
“free”) and semantics (category or “other”). Formally, the
3D occupancy prediction can be represented as:

Occ = F(I1, I2, ...IN ), (1)

where F is an neural network and IN ∈ RH×W×3 is in-
put surrounding RGB images. Occ ∈ RH×W×L is the 3D
occupancy predictions. Typically, the 3D occupancy task as-
sumes that some sensor intrinsic parameters Ki and extrinsic
parameter [Ri|ti] are known.

3D occupancy is a good representation of multi-camera
3D scene reconstruction. First, 3D occupancy provides more
intricate geometric structures of objects compared to 3D ob-
ject detection. Second, 3D occupancy can easily extend to
further downstream tasks, such as 3D semantic segmenta-
tion and scene flow estimation.
3D-2D View Transformation. To map the homography be-
tween 2D perspective view with 3D feature space, trans-
formers with cross attention is a prevalent choices for the
network-based methods. 3D voxel queries aggregate 2D im-
age features into 3D space via following 3D-2D spatial
cross-attention operation (Li et al. 2022b):

SCA(Ql
p,F) =

Nref∑
j=1

DeformAttn(Ql
p, P(p,i,j),F

i),

(2)
where i and j indexes the camera view and the reference
points, l indexes the layer. Nref is the total reference points
for each queries, and P(p,i,j) is implemented to obtain the
j-th reference point on the i-th view image. F i is the 2D
image features of the i-th camera view.

Octree for 3D Occupancy Predictions
In this section, we introduce our octree-based approach
for memory-efficient high-resolution 3D occupancy predic-
tions. To formalize our approach, we first introduce the defi-
nition of “occupied region” and its statistical analysis. Then,

Resolution 200 100 50 25
Occupied 4.88% 10.81% 12.44% 13.68%

Unoccupied 95.12% 89.19% 85.56% 86.32%

Table 1. Statistical analysis of the occupied regions in dif-
ferent spatial resolutions. 200, 100, 50 and 25 represent the
resolution with 200× 200× 16, 100× 100× 8, 50× 50× 4
and 25× 25× 2, respectively.

we describe the proposed octree-based method to detect oc-
cupied regions and predict fine-grained 3D occupancy.
Occupied Regions. Intuitively, the majority of the semantic
information in an autonomous driving scene concentrates on
the lower half of the surrounding 3D space, close to the driv-
able surfaces. Based on this intuition, we conduct a statisti-
cal analysis on the occupied areas at different resolutions, as
shown in the Table 1. Here, we define the voxel space where
semantic information occupies more than 10% of the space
as occupied area.

As shown in Table 1, it is apparent that a substantial por-
tion of space in the autonomous driving scenes actually are
unoccupied. Furthermore, with the increases in 3D spatial
resolution, fewer voxels are occupied by semantic informa-
tion, even less than 5% in 200 × 200 × 16 resolution. This
revelation led us to consider that a majority of regions in
the 3D space do not require dense and high-resolution 3D
cross-attentions, given the scarcity of semantic information
in those areas. By confining the utilization of high-resolution
cross-attentions to partial regions, we can significantly di-
minish memory consumption. Building upon this observa-
tion, we propose OctOcc, which implements fine-grained
3D-2D cross-attention exclusively within potentially occu-
pied regions.

Octree Definition and Construction. An overview of our
Octree-based 3D occupancy predictions network is shown
in Fig. 2. First, 2D image features are extracted from multi-
view images with an image backbone. The 3D voxel queries
utilize a hierarchical tree-like design, and we define a node
octree to represent a 3D voxel. A gray voxel in Fig. 2 rep-
resents detecting potentially occupied regions. As shown in
Fig. 2, each occupied voxel in the coarse levels has octant
child voxels in its neighboring lower-level voxel queries. Po-
tential occupied regions in each layer are used to construct a
hierarchical octree. Each node query aggregates multi-level
2D image features into 3D space via a 3D-2D spatial cross-
attention operation.

After defining the octree, we start from the roughest layer,
all root nodes in this layer will be used for cross-attentions
queries by default. Next, we can generate updated 3D vox-
els with the coarsest level by feeding these queries into the
3D-2D cross-attentions. We then upsample the updated 3D
voxel features using trilinear interpolation. Different from
SurroundOcc (Wei et al. 2023) supervised with coarse-level
semantic labels, we feed those upsampling 3D voxels fea-
tures into a binary classifier to predict potential occupied re-
gions. Here, we use binary occupancy labels as supervision,
generating these labels according to the definition in Sec.
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Surrounding images

Multi-level 2D
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Figure 2. An overview of the proposed octree-based 3D occupancy prediction network. The octree-based structure identifies
occupied regions at the coarse levels and generates octant sub-tree queries in these regions. By that, these limited sub-tree
queries are subjected to fine-granularity cross attention at the finer level. Finally, our method predicts semantic categories for
each voxel in the last layer to achieve high-resolution 3D occupancy predictions.

Occupied regions. The predicted top K voxels are consid-
ered to be potentially occupied regions, and are selected for
indexing child nodes on the finer layer with higher spatial
resolution:

Ql+1
occupied = SCA(topk(Upsample(Ql),F)), (3)

where Ql and Ql+1 represent two neighbor 3D voxel
queries, and occupied represent the indexes of selected top
K voxels. Once we obtain updated occupied 3D voxel fea-
tures, we proceed to update the whole 3D voxel features with
the following:

Ql+1
unoccupied = Upsample(Ql), (4)

Ql+1 = Concat(Ql+1
occupied,Q

l+1
unoccupied), (5)

where Upsample() represent a trilinear interpolation op-
eration and Concat represent a concatenate operation. Af-
ter obtaining the whole updated 3D voxel features, we ap-
ply a 3D convolutional layer to enhance feature interaction
throughout the entire 3D feature voxels. Finally, we apply
two linear layers with softplus activation (Zheng et al. 2015)
to predict binary or multi-class semantic predictions:

Occl+1 = Linear(Softplus(Linear(Ql+1))). (6)

Here, we regress 3D multi-class semantic predictions in the
last layer only, as shown in Fig. 2.

2D Image Feature Filtering

The hierarchical octree is designed to diminish redundant
3D voxel queries in 3D-2D cross attention (Li et al. 2022b).
Additionally, we further investigate another side of the
3D-2D spatial cross attention, 2D image features. BEV-
Former (Li et al. 2022b) and the following works idiomati-
cally consider all 3D voxels which are initially projected in
the 2D image with perspective transformation. However, we
find the 2D RGB image also contains much redundant infor-
mation, as shown in the upper left corner of Fig. 3, which
includes much irrelevant background information (sky, etc.)
and far-away foreground objects (over 51.2 meters). To ad-
dress this, we propose a 2D image feature filter to eliminate
redundant 3D-2D cross-attention which initially projected
on these irrelevant regions:

P(p,i,j) ∈ Filter(Fi), (7)

where P(p,i,j) is the reference points in Equation (2).
As shown in Fig. 3, we found that these irrelevant regions

in 2D images are strongly related to the projection depth of
LiDAR due to the installation location and operating mech-
anism of the LiDAR. Therefore, we directly apply a bina-
rization and dilation operation to generate the corresponding
dilated depth masks as supervision. We utilize a 2D convo-
lution layer to predict a binary filter mask.
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Figure 3. An illustration of 2D Feature Mask Filtering. To
generate 2D mask labels, we binarize and dilate the pro-
jected LiDAR depth information. By learning from these di-
lated masks, the filter network effectively filters out irrele-
vant 2D regions in the images.

Training Loss
Existing works widely utilize cross-entropy loss as super-
vision for 3D occupancy predictions. To reduce the in-
fluence of the class-imbalance, the class-weighted cross-
entropy loss is further utilized in (Zhang et al. 2023; Li
et al. 2023c). Although effective, the class-weighted cross-
entropy loss has its inherent shortcomings, and performance
improvement is also limited. Thus, we consider Generalized
Dice loss (Sudre et al. 2017) as extra supervision in this pa-
per:

Ldice = 1− 2

∑n
l=1wl

∑
nrlnpln∑n

l=1wl

∑
n(rln + pln)

, (8)

where rln represents the ground truth of class l in position
n, and pln represents the prediction softmax probability of
class l in position n. wl represent the weight of class l. We
experimentally found that the original implementation of wl

is not ideal since the original implementation in medical
scenes (Sudre et al. 2017) tends to underweight those se-
mantic classes with high frequency in autonomous driving.
Therefore, we modified the wl as:

wl =
1∑n

i=1 rln
, (9)

where the weight wl is inversely proportional to the sum of
ground truth pixels rather than squared. The semantic occu-
pancy training loss consists two parts:

Locc = λceLce + Ldice, (10)

where λce is balancing coefficients, and we set λce = 2 in
this paper. We use binary cross-entropy loss for coarse bi-
nary occupancy prediction and feature mask filtering loss.
The final loss is formulated as follows:

L = λoccLocc + λfilterLfilter + Lbin, (11)

where λocc and λfilter are balancing coefficients, both set to
2 in this paper.

Experiments
Experimental Setting
Datasets and Evaluation Metric. Following existing
works (Huang et al. 2023; Wei et al. 2023; Zhang
et al. 2023), we conduct experiments on the nuScenes
dataset (Caesar et al. 2020), a large-scale autonomous driv-
ing dataset. We use the surrounding 6 RGB images of
nuScenes as the input, and the input image resolution is re-
sized to 1280 × 720. We utilize the 3D occupancy labels
generated from Occ3D(Tian et al. 2023). The occupancy
prediction range is set as [−40m, 40m] for the X and Y axis
and [−1m, 5.4m] for the Z axis. The final output occupancy
has the resolution with 200× 200× 16, and the voxel size is
0.4m.

To further demonstrate the effectiveness of our method,
we conduct a monocular semantic scene completion ex-
periment on SemanticKITTI (Behley et al. 2019). Se-
manticKITTI has annotated outdoor LiDAR scans with 21
semantic labels. The ground truth is voxelized as 256×256×
32 grid with 0.2m voxel size. We evaluate our model on the
validation set.

For 3D semantic occupancy prediction, we use mean In-
tersection over Union (mIoU) to evaluate the performance
of a model. For the monocular scene semantic completion
task, we follow (Li et al. 2023c) to use mIoU and Intersec-
tion over Union (IoU) as metrics.
Implementation Details. For the 3D occupancy prediction
task in nuScenes dataset (Caesar et al. 2020), we utilize fea-
ture maps C3 ∼ C5 (i.e., three scales) from the backbone
network following SurroundOcc (Wei et al. 2023). For a
fair comparison, we use ResNet101-DCN (He et al. 2015)
with initial weight from FCOS3D (Wang et al. 2021a) as the
backbone to extract image features. The whole network ar-
chitecture is set to 4 levels, and the resolution of 3D voxel
queries is set to 25 × 25 × 2, 50 × 50 × 4, 100 × 100 × 8,
200 × 200 × 16. The first three layers are supervised with
binary 3D occupancy labels, and the last layer is supervised
with 3D semantic occupancy labels. The values of top k be-
tween four 3D voxel features layers are set to 625, 3000, and
15000, respectively.

For the semantic scene completion task in SemanticKITTi
dataset (Behley et al. 2019), we follow MonoScene (Cao
et al. 2022) and use the ResNet-50 (He et al. 2015) as the
backbone. We adopt FPN (Lin et al. 2017) to further fuse
the feature of different levels for both tasks.

Main Results
3D Occupancy Predictions. We first compare the proposed
OctOcc with other methods on the 3D semantic occupancy
prediction task. Due to the differences in the 3D occupancy
labels of existing methods, we re-trained BEVFormer (Li
et al. 2022b), TPVFormer (Huang et al. 2023), and Sur-
roundOcc (Wei et al. 2023) under the same 3D occupancy
labels (Tian et al. 2023) for a fair comparison. As shown in
Table 2, the proposed OctOcc outperforms all other compet-
ing methods with a large margin(almost +3.0). We also show
some qualitative results in Fig. 4. The first and second rows
of Fig. 4 demonstrate the superiority of the proposed method
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BEVFormer (Li et al. 2022b) 24.97 6.58 36.4 14.12 37.46 42.33 13.33 20.29 17.76 16.35 16.2 29.99 52.95 30.53 31.68 25.85 16.94 15.77
TPVFormer (Huang et al. 2023) 23.25 7.25 37.19 19.47 39.19 43.61 15.39 21.42 22.31 22.98 20.35 30.68 55.92 28.04 33.03 27.79 15.83 17.0
SurroundOcc (Wei et al. 2023) 27.03 6.24 36.98 17.13 41.0 43.97 15.67 19.85 15.16 11.51 24.57 31.12 56.94 31.48 36.92 32.61 19.51 18.89

Occ3D (Tian et al. 2023) 28.53 8.09 39.33 20.56 38.29 42.24 16.93 24.52 22.72 21.05 22.98 31.11 53.33 33.84 37.98 33.23 20.79 18.0
OctOcc 31.52 11.1 42.83 20.9 37.63 44.26 12.6 25.57 23.07 25.38 26.95 31.25 66.64 36.05 40.57 38.98 25.24 23.87

Table 2. 3D semantic occupancy prediction results on nuScenes validation set. Due to the differences in the 3D occupancy
labels of existing methods, we re-trained other models under the same 3D occupancy labels for a fair comparison.
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MonoScene (Cao et al. 2022) 11.08 36.86 56.5 26.7 14.3 0.5 14.1 23.3 7.0 0.6 0.5 1.5 17.9 2.8 29.6 1.9 1.2 0.0 5.8 4.1 2.3
TPVFormer (Huang et al. 2023) 11.36 35.61 56.5 25.9 20.6 0.9 13.9 23.8 8.1 0.4 0.0 4.4 16.9 2.3 30.4 0.5 0.9 0.0 5.9 3.1 1.5

VoxFormer (Li et al. 2023c) 13.35 44.15 53.6 26.5 19.7 0.4 19.5 26.5 7.3 1.3 0.6 7.8 26.1 6.1 33.0 1.9 2.0 0.0 7.3 9.2 4.9
OccFormer (Zhang et al. 2023) 13.46 36.50 58.9 26.9 19.6 0.3 14.4 25.1 25.5 0.8 1.2 8.5 19.6 3.9 32.6 2.8 2.8 0.0 5.6 4.3 2.9

OctOcc 14.59 44.02 55.1 27.9 22.6 0.5 20.3 27.8 6.0 2.6 2.0 6.8 26.6 6.8 33.8 2.7 0.0 0.0 8.9 9.3 5.6

Table 3. 3D Semantic scene completion results on SemanticKITTI validation set. All experiments are conducted under the
resolution with 256× 256× 32, and the results are reported in VoxFormer (Li et al. 2023c) and OccFormer (Zhang et al. 2023).

Method Resolution Memory mIoU↑
BEVFormer (Li et al. 2022b) 200× 200 14.4G 24.97

TPVFormer (Huang et al. 2023) 100× 100× 8 23.9G 23.25
SurroundOcc (Wei et al. 2023) 100× 100× 8 16.4G 27.03
OccFormer (Zhang et al. 2023) 100× 100× 8 Over 32G -

w/o Octree 100× 100× 8 16.6G 29.51
w/o Octree 200× 200× 16 Over 32G -

OctOcc 200× 200× 16 23.4G 31.52

Table 4. Ablation studies on the Octree structure design. The
proposed octree design significantly reduces the memory
consumption of high-resolution 3D occupancy predictions
and brings a considerable performance improvement at the
same time.

in the more accurate detection of foreground objects, such
as cars and traffic cones. Besides, Fig. 4 also shows that our
method has a fine-grained geometric shape on background
information, an obvious advantage of high-resolution repre-
sentation.
Semantic Scene Completion. To further demonstrate the
effectiveness of our method, we also conduct monocular 3D
semantic scene completion on SemanticKITTI (Behley et al.
2019). As shown in Table 3, our method also achieves state-
of-the-art performance on this benchmark, even though our
method is not designed for monocular perception.

More visualization results and videos can be found in the
supplementary material.

Method mIoU(8 epoch)↑ mIoU(24 epoch)↑
w/o 2D Feature Filtering 29.8 31.23

OctOcc 31.1(+1.3) 31.52(+0.3)

Table 5. Ablation studies on the 2D Image feature filter-
ing. The proposed 2D Feature Filtering converges obviously
faster while improving the performance of 3D occupancy
prediction.

Method mIoU↑
CE loss only 29.32

CE + Sem&Geo loss (Cao et al. 2022) 31.06
CE + Gene. Dice loss (Sudre et al. 2017) 30.64

CE + modified Gene. Dice loss 31.52

Table 6. Ablation studies on the loss design. The proposed
modified Generalized Dice loss performs best, and the origi-
nal design of Generalized Dice loss (Sudre et al. 2017) even
degrades the performance.

Ablation Studies
The ablation is conducted on nuScenes dataset (Caesar et al.
2020) and from three perspectives: the octree structure de-
sign, the 2D image feature filtering, and the loss design.
Octree Structure Design. Table 4 ablates the octree struc-
ture design for 3D occupancy predictions. As shown in Ta-
ble 4, the octree design can effectively reduce memory con-
sumption to generate high-resolution 3D voxel features. As
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Front Left Front Front Right Back Right Back Back Left

(a) BEVFormer (Li et al. 2022b) (b) SurroundOcc (Wei et al. 2023) (c) OctOcc(Ours) (d) Ground Truth

Figure 4. Qualitative results of our method and others. The odd rows represent the six surrounding input images, and the even
rows represent the corresponding 3D occupancy predictions. The OctOcc better captures foreground objects, such as cars,
pedestrians, and traffic cones. Furthermore, OctOcc shows finer-granularity geometric shapes on the whole scene.

a comparison, previous methods could not generate high-
resolution 3D voxel features with less than 32G memory,
no matter the network-based (Huang et al. 2023; Wei et al.
2023) or the geometry-based (Zhang et al. 2023). The pro-
posed octree design produces +2.01 improvement with 6.8G
extra memory consumption.

2D Image Features Filtering. In Table 5, we ablate the
proposed filtering mechanism for 2D image features, which
aims to eliminate redundant 3D-2D spatial cross-attention
further. Thanks to the 2D image feature filtering design, the
proposed method can achieve faster convergence with 1/3
of training epochs. At the same time, this design can also
slightly enhance the performance.

Loss Design. Table 6 compares different loss designs for the
3D occupancy predictions. As shown in Table 6, using naive
cross-entropy loss obviously lag behind others due to the
imbalance of semantic information. The proposed modified
Generalized Dice loss achieves the best performance, even

compared with scene-class affinity loss in MonoScene (Cao
et al. 2022). Table 6 also shows the original design of Gen-
eralized Dice (Sudre et al. 2017) cannot work ideally in 3D
occupancy predictions.

Conclusion
In this paper, we have presented OctOcc, a high-resolution
3D occupancy prediction method with Octree. With the
insight for diminishing those redundant 3D-2D cross-
attentions, we propose a hierarchical octree structure to de-
ploy finer-granularity cross-attentions exclusively in those
potentially occupied regions, which significantly reduces
memory consumption. Additionally, we design a filtering
network to reduce redundancy in 2D image features. OctOcc
has achieved state-of-the-art performance for 3D occupancy
predictions on nuScenes and semantic scene completion on
SemanticKITTI. We hope that the proposed octree structure
and the findings about redundancy in cross-attentions will
be helpful to other 3D voxel prediction tasks.
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