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Abstract

Conventional open-world object detection (OWOD) problem
setting first distinguishes known and unknown classes and
then later incrementally learns the unknown objects when in-
troduced with labels in the subsequent tasks. However, the
current OWOD formulation heavily relies on the external
human oracle for knowledge input during the incremental
learning stages. Such reliance on run-time makes this formu-
lation less realistic in a real-world deployment. To address
this, we introduce a more realistic formulation, named semi-
supervised open-world detection (SS-OWOD), that reduces
the annotation cost by casting the incremental learning stages
of OWOD in a semi-supervised manner. We demonstrate
that the performance of the state-of-the-art OWOD detector
dramatically deteriorates in the proposed SS-OWOD setting.
Therefore, we introduce a novel SS-OWOD detector, named
SS-OWFormer, that utilizes a feature-alignment scheme to
better align the object query representations between the orig-
inal and augmented images to leverage the large unlabeled
and few labeled data. We further introduce a pseudo-labeling
scheme for unknown detection that exploits the inherent ca-
pability of decoder object queries to capture object-specific
information. On the COCO dataset, our SS-OWFormer us-
ing only 50% of the labeled data achieves detection perfor-
mance that is on par with the state-of-the-art (SOTA) OWOD
detector using all the 100% of labeled data. Further, our SS-
OWFormer achieves an absolute gain of 4.8% in unknown re-
call over the SOTA OWOD detector. Lastly, we demonstrate
the effectiveness of our SS-OWOD problem setting and ap-
proach for remote sensing object detection, proposing care-
fully curated splits and baseline performance evaluations. Our
experiments on 4 datasets including MS COCO, PASCAL,
Objects365 and DOTA demonstrate the effectiveness of our
approach. Our source code, models and splits are available
here https://github.com/sahalshajim/SS-OWFormer.

1 Introduction
Conventional object detectors are built upon the assumption
that the model will only encounter ‘known’ object classes
that it has come across while training (Girshick et al. 2014;
Carion et al. 2020; Zong, Song, and Liu 2023). Recently,
the problem of open-world object detection (OWOD) has
received attention (Joseph et al. 2021; Gupta et al. 2022),
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Figure 1: Comparison of our SS-OWOD with other closely
related object detection problem settings.

where the objective is to detect known and ‘unknown’ ob-
jects and then incrementally learn these ‘unknown’ objects
when introduced with labels in the subsequent tasks. In
this problem setting, the newly identified unknowns are
first forwarded to a human oracle, which can label new
classes of interest from the set of unknowns. The model
then continues to learn and update its understanding with
the new classes without retraining on the previously known
data from scratch. Thus, the model is desired to iden-
tify and subsequently learn new classes of objects in an
incremental way when new data arrives.

As shown in Fig.1 Semi-supervised (SS) object detection
learns a set of known classes (••••), while being fed labeled
and unlabeled (#) data. In incremental learning, classes are
learned in steps, as illustrated, the model learns • in task 1,
then fed (•) in the next task and learns to detect (•) without
forgetting previously learned class (•), repeating the same
process for the subsequent tasks. Open-world object detec-
tion aims at detecting unknowns (⋆⋆⋆) along with known
classes (•). Unknown classes labeled by a human oracle are
learned by the model in the next task as illustrated: the un-
known (⋆) is learned as a known (•) in the next task while
continuing to detect remaining unknowns (⋆,⋆). The same
procedure is repeated in the subsequent tasks, where the un-
known (⋆) is learned as a known (•). In contrast, we propose
the SS-OWOD setting that aims to reduce the labeling cost
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of the incoming data of detected unknowns (⋆⋆⋆),by lever-
aging the unlabeled data (#).

Open-world object detection (OWOD) provides a more
realistic setting in two ways: (i) It assumes that not all the
data in terms of semantic concepts are available during the
model training and (ii) it assumes that the data points are
non-stationary. Although standard OWOD provides flexibil-
ity to detect unknown object categories and then incremen-
tally learn new object categories, the general problem of in-
cremental learning of new classes comes with the need to be
trained in a fully supervised setting (Fini et al. 2022). To this
end, current OWOD approaches rely on strong oracle sup-
port to consistently label all the identified unknowns with
their respective semantics classes and precise box locations.

The objective of this paper is to decrease the aforemen-
tioned reliance on the human oracle to provide annotations
at run time for the unknown classes (see Fig.1). We argue
that it is less realistic to assume that an interacting oracle
is going to provide annotations for a large amount of data.
The annotation problem becomes extremely laborious in do-
mains like satellite object detection requiring a much higher
number of dense oriented box annotations, in the presence of
background clutter and small object size. Moreover, existing
OWOD methods rely on naive heuristics such as simple av-
eraging across backbone feature channels (Gupta et al. 2022)
or clustering of latent feature vectors (Joseph et al. 2021) to
pseudo-label unknown objects, thereby struggling to accu-
rately detect the unknowns. To this end, we propose a novel
transformer-based method, named SS-OWFormer, that col-
lectively addresses both the issues of improving unknown
detection and reducing the annotation cost for identified un-
knowns during the life span of model learning.
Contributions: The primary contributions of this research
encompass the following aspects:
(i) We introduce a novel Semi-supervised Open-World Ob-
ject Detection (SS-OWOD) problem setting that reduces
the strong dependence on external human oracles to pro-
vide annotations for all incoming data in incremental learn-
ing stages. We further propose a Semi-supervised Open-
World object detection Transformer framework, named,
SS-OWFormer, designed to detect a newly introduced set
of classes in a semi-supervised open-world setting. SS-
OWFormer utilizes a feature alignment scheme to effec-
tively align the object query representations between the
original and augmented copy of the image for exploiting the
large unlabeled and fewer labeled data.
(ii) We introduce a pseudo-labeling scheme to better dis-
tinguish the unknown objects by exploiting the inherent
capability of the detection detector object queries to cap-
ture object-specific information. The resulting modulated
object queries provide multi-scale spatial maps to obtain
the objectness confidence scores which in turn are used for
the pseudo-labeling process.
(iii) Comprehensive experiments on OWOD COCO split
(Joseph et al. 2021) are performed to demonstrate the ef-
fectiveness of our approach. Our SS-OWFormer achieves
favorable detection performance for both the ‘known’ and
‘unknown’ classes in all the tasks, compared to the state-
of-the-art OW-DETR (Gupta et al. 2022). SS-OWFormer
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Figure 2: Comparison of our object query guided pseudo-
labeling with feature averaging used in OW-DETR base-
line. The baseline framework performs a channel averaging
over single-scale features from the backbone, spatially crops
them at the predicted bounding box positions, and selects
the top-k to obtain pseudo-labels. In contrast, our approach
strives to leverage object-specific information from multi-
scale encoder features and decoder object queries. We mod-
ulate the decoder object queries with multi-scale encoder
feature maps and perform multi-scale box pooling at pre-
dicted box locations to obtain objectness scores and select
the top-k bounding box proposals as pseudo labels.

achieves superior overall detection performance when us-
ing only 10% of the labeled data, over OW-DETR using
50% labeled data. In terms of ‘unknown’ detection, SS-
OWFormer achieves an absolute gain of 4.8%, in terms of
unknown recall, over OW-DETR.
(iv) Lastly, we explore for the first time the SS-OWOD prob-
lem for remote sensing domain. We show the effectiveness
of our SS-OWFormer on satellite images, where the label-
ing task is even more laborious and time-consuming. More-
over, we have proposed open world splits for the Object365
dataset having large number of categories. Our experiments
on 4 datasets including MS COCO, PASCAL, Objects365
and DOTA demonstrate the effectiveness of our approach.

2 Preliminaries
Let Dt = {It,Yt} be a dataset containing N im-
ages It = {I1, I2, ..., IN} with corresponding labels
Yt = {Y1, Y2, ..., YN}. Here, each image label Yi =
{y1, y2, ..., yk} is a set of box annotations for all k ob-
ject instances in the image. The open-world object detec-
tion (OWOD) follows the incremental training stages on the
progressive dataset Dt having only Kt = {C1, C2, ..., Cn}
known object classes at time t. A model trained on these Kt

known classes is expected to not only detect known classes
but also detect (localize and classify) objects from unknown
classes U = {Cn+1, ...} by predicting an unknown class la-
bel for all unknown class instances. An overview of closely
related object detection settings is shown in Fig.1.
Proposed SS-OWOD Problem Setting: Here, each image
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label Yi = {y1, y2, ..., yk} is a set of box annotations for
all k object instances in the image. The instance annotation
yk = [lk, o

x
k, o

y
k, hk, wk] consists of lk ∈ Kt is the class

label for a bounding box having a center at (oxk, o
y
k), width

wk, height hk. In this work, we argue that it is laborious
and time-consuming for the human oracle to obtain bound-
ing box annotations for all training images used for learn-
ing. Hence, we propose a new semi-supervised open-world
object detection problem setting, where only a partial set
of images (Ns) are annotated by the human oracle and the
remaining Nu images are unlabeled (see Fig.1). This aims
to reduce the strong dependence on the human oracle for
adding knowledge to the model’s learning framework. Here,
during learning stages in an open-world setting, the model is
expected to utilize both labeled and unlabeled sets of train-
ing images (Ns+Nu) to learn about the new Kt+1 classes,
without forgetting previously known Kt classes, thereby en-
abling detection of unknown objects at the same time.

2.1 Baseline Framework
We base our approach on the recently introduced OW-DETR
(Gupta et al. 2022). It comprises a backbone network, trans-
former encoder-decoder architecture employing deformable
attention, box prediction heads, objectness, and novelty clas-
sification branches to distinguish unknown objects from
known and background regions. Here, the transformer de-
coder takes a set of learnable object queries as input and
employs interleaved cross- and self-attention modules to ob-
tain a set of object query embeddings. These object query
embeddings are used by the prediction head for box predic-
tions as in (Zhu et al. 2020). It selects bounding boxes of po-
tential unknown objects through a pseudo-labeling scheme
and learns a classifier to categorize these potential unknown
object query embeddings into a single unknown class as in
(Gupta et al. 2022). Here, potential unknown objects are
identified based on average activations at a selected layer
(C4 of ResNet50) of the backbone feature map at regions
corresponding to predicted box locations (see Fig.2). Among
all potential unknown object boxes, only boxes that are non-
overlapping with the known ground-truth boxes are consid-
ered pseudo-labels for potential unknowns. It learns a binary
class-agnostic objectness branch to distinguish object query
embeddings of known and potential unknown objects from
background regions. In addition, it learns a novelty classifi-
cation branch having unknown as an additional class along
with Kt known classes as in (Gupta et al. 2022). We refer to
this as our baseline framework.
Limitations: As discussed above, the baseline framework
employs a heuristic method for pseudo-labeling with a sim-
ple averaging across channels of a single-scale feature map
to compute objectness confidence where only single-scale
features from the backbone are utilized. However, such a
feature averaging to identify the presence of an object at that
spatial position is sub-optimal for the accurate detection of
unknown objects. To improve unknown object detection, it is
desired to leverage the object-specific information available
in both deformable encoder and decoder features (see Fig.2).
Existing state-of-the-art OWOD frameworks, including our
baseline, typically require bounding box supervision for all

images used during the incremental learning of novel classes
in the OWOD tasks. However, this makes the OWOD model
strongly dependent on an external human oracle to provide
dense annotations for all the data in the subsequent tasks.
Next, we introduce our SS-OWFormer approach that collec-
tively addresses the above issues in a single framework.

3 Method
3.1 Overall Architecture
Fig.3 shows the overall architecture of our Semi-supervised
Open-World object detection Transformer (SS-OWFormer)
framework. It comprises a backbone network, deformable
encoder, deformable decoder, object query-guided pseudo-
labeling, and prediction heads.

The backbone takes an input image of spatial resolution
H ×W and extracts multi-scale features for the deformable
encoder-decoder network having M learnable object queries
at the decoder. The decoder employs interleaved cross- and
self-attention and outputs M object query embeddings (z).
These query embeddings are used in the box prediction
head, objectness and novelty classification branches. In ad-
dition, these query embeddings (z) are used in our semi-
supervised learning framework to align the current network
(Mcur/z) with a detached network from the previous task
(M̄prev/z̄). We take augmented images as input to the cur-
rent network and corresponding query embeddings (za) are
transformed to the latent space of the detached network us-
ing a mapping network (G). These transformed embeddings
are aligned with the embeddings (z̄) obtained for the same
images from the detached network using a feature-aligning
strategy detailed in Sec.3.3.

We employ fully supervised learning for the first task
(task-1) where the object detector is trained with initial
known object categories. During task-1 inference, the model
is expected to detect all known and unknown object cate-
gories. Then, in the subsequent task, the model is trained
with new object categories in our novel semi-supervised in-
cremental learning setting where we have annotations only
for a partial set of training data. Here, the objective is to
learn new object categories using labeled and unlabeled data
without forgetting the task-1 categories. To this end, we use
a detached network whose weights are fixed during our in-
cremental learning and an identical current network where
the network weights are updated. We learn the current net-
work (by taking the detached network as a reference) using
labeled and unlabeled data, followed by fine-tuning the cur-
rent network using available labeled data. Next, we intro-
duce our object query-guided unknown-labeling scheme.

3.2 Object Query Guided Pseudo-Labeling
As discussed, we need to accurately detect unknown objects
out of the known set of classes in open-world object detec-
tion. Here, the model is expected to transfer its known object
detection knowledge to detect unknown objects. Our base-
line utilizes a single-scale pseudo-labeling scheme which
is a simple heuristic approach with a naive way of aver-
aging Resnet features for pseudo-labeling unknowns. We
aim to utilize learnable properties intrinsic to the deformable
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Figure 3: Overall architecture of our Semi-Supervised Open-World object detection Transformer (SS-OWFormer) framework.
It comprises a backbone network, transformer-based deformable encoder-decoder, object query-guided pseudo-labeling, box
prediction head, novelty classification, and objectness branches. The focus of our design is: (i) the introduction of a object query-
guided pseudo-labeling (orange box at bottom row) that captures information from both transformer encoder and decoder for
pseudo-labeling unknown objects. Object queries from the decoder are modulated with the multi-scale encoder features to
obtain multi-scale spatial maps which are pooled at predicted box locations to obtain confidence scores for the unknown
pseudo-labeling. (ii) The introduction of a novel semi-supervised learning pipeline (→) for leveraging unlabelled data during
incremental learning of a new set of object classes. In our semi-supervised incremental learning setting, the SS-OWFormer
(current model) is trained along with its detached (frozen) copy (blue box on top row) together with a mapping network (G).
The mapping network (G) projects the object queries from the current network to the detached network. Moreover, we use
original and augmented images for the alignment of object query embeddings (z).

transformer architecture from encoder features and decoder
queries. This is found to be more suitable for the object-
ness confidence levels to be used for pseudo-labeling. Let
F = {E3,E4,E5} be multi-scale encoder features and yk =
[oxk, o

y
k, hk, wk] be a box proposal predicted for a given ob-

ject query embedding. Let Ei ∈ RHi×Wi×D be the encoder
feature map at scale i and M queries Qj ∈ RM×D be the
unmatched object queries at the decoder. Then, we modulate
the encoder features with a transposed matrix multiplication
to obtain query-modulated feature maps Fi ∈ RHi×Wi×M .
This query-modulated feature map results in better scoring
for objectness since it leverages object-specific information
from decoder queries along with encoder features. Then, we
perform multi-scale box pooling over these maps Fi at pre-
dicted box locations of respective object queries. Our multi-
scale box pooling performs spatial averaging over these spa-
tial maps Fi to obtain objectness scores sk corresponding
to bounding boxes. For instance, the objectness score for a
bounding box (b) can be calculated as,

n∑
i=0

Si(b) =
1

hb · wb

n∑
i=0

Fi

=
1

hb · wb

n∑
i=0

Ei ·
M−K∑
j=0

QT
j

(1)

These objectness scores are used to select the top k boxes
which are then used as pseudo-labels to train the novelty
classifier and objectness branches. The regression branch
in the prediction head takes M object query embeddings
from the decoder and predicts M box proposals. The bipar-
tite matching loss in the decoder selects K queries (from
M total queries) as positive matches for the known classes
in the supervised setting.

3.3 Semi-supervised Open-world Learning
Previous open-world object detection works assume that all
incoming data for novel classes are labeled while in a real-
istic scenario, it might prove to be costly. However, in our
semi-supervised open-world object detection formulation,
we employ semi-supervised learning for incremental learn-
ing. So, in our challenging setting, the model has to learn
to detect novel object categories by using a limited amount
of partially annotated data along with unlabeled data for the
novel classes and detecting unknown objects, without for-
getting previously learned categories.

As discussed in Sec.3.1, we introduce a subset of object
categories to the model through subsequent tasks. For the
first task, the model is trained like a standard OW object
detector, and a set of classes K1 = {C1, C2, ...Cn} are in-
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troduced. Then for the subsequent tasks, semi-supervised
learning is leveraged for the limited availability of annota-
tions. Using a detached copy of the model from the previous
task, M̄pre, the current model Mcur is trained on labeled
and unlabeled data with a feature-aligning strategy.

For semi-supervised learning using the next progressive
dataset Dt+1, we employ strong augmentations such as
color-jitter, random greyscaling, and blurring to obtain aug-
mented data Dt+1

a = {Ia}. The augmentations here are
selected such that they do not change the box positions in
input images, hence better suitable for semi-supervised ob-
ject detection. Furthermore, we do not use augmentations
such as rotation, flipping, translation, cropping, etc that are
likely to alter the feature representation in augmented im-
ages. We use a detached model M̄pre whose weights are
fixed, a current model Mcur with learnable weights, and
a mapping network G that maps the current model object
queries to the detached model object queries. Here, a copy
of the current model with fixed weights is used as the de-
tached model M̄pre. This detached model does not receive
any gradient and remains detached during training.

For an image Ii from Dt+1, and its augmented version
Iai from Dt+1

a , we extract object query features using the
current and detached models. i.e, We use the current model
and obtain original image object query embedding feature
z = Mcur(Ii) and augmented image query embedding,
za = Mcur(I

a
i ). Similarly, the detached model is used to

obtain the embedding z̄a = M̄pre(I
a
i ). Then, our mapping

network G maps za to z̄a instead of enforcing za to be simi-
lar to z̄a as that may adversely affect the learning in the dis-
tillation loss LD. We perform feature alignment to bring the
object queries G (za) and z̄a together by employing a feature
alignment loss LF . Here, we measure the cross-correlation
matrix (Zbontar et al. 2021) between input embeddings and
try to bring the object queries closer. The loss also helps to
reduce the redundancy between embeddings and makes the
representations robust to noise. In addition, the same loss is
used to make the model invariant to augmentation, which in
turn may help the object query representations z invariant
to the state of the model. Then, the current model Mcur is
trained using the following loss:

Lcur = LF (za, z) + LD (za, z̄a)

= LF (za, z) + LF (G (za) , z̄a)
(2)

3.4 OWOD in Satellite Images
Different from the OW-DETR that predicts axis-parallel
bounding boxes in natural images, for satellite images we
adapt our baseline framework to predict oriented bounding
boxes along object directions for a more generalizable ap-
proach. For oriented object detection, we introduce an ad-
ditional angle prediction head in OW-DETR and its stan-
dard bounding box prediction heads. Our Object Query
Guided Pseudo-Labeling scheme is also found to be suit-
able for the challenges presented in satellite imagery such
as large-scale variations, high object density, heavy back-
ground clutter, and a large number of object instances in
satellite images. Moreover, the dependence on human or-
acles for open-world object detection in satellite imagery

Figure 4: Qualitative results showing the detection perfor-
mance on MS COCO examples. From the top row, the un-
known classes are learned to be marked as a known category
in the subsequent tasks as shown in the bottom row.

Figure 5: Qualitative results on satellite images with oriented
bounding boxes. Oriented bounding boxes in blue depict un-
known detections on the categories of roundabout, soccer
field, and storage tanks in the images respectively. While
other colors mark known categories of small-vehicle, swim-
ming pool, and ship.

is highly problematic because of the requirement of a
high number of dense-oriented bounding box annotations
per image. Thereby, a semi-supervised open-world learning
setting can prove beneficial.

3.5 Training and Inference
Training: The overall loss formulation for the network can
be written as:

L = Lc + Lr + αLo + Lcur (3)

where Lc, Lr and αLo respectively denote classifica-
tion, bounding box regression, foreground objectness (class-
agnostic) loss terms while Lcur stands for the loss from
semi-supervised incremental learning from eq. 2.

The proposed framework follows multi-stage training.
The first task is trained in a fully supervised manner us-
ing Lc, Lr, Lo. Then, the subsequent tasks follow the fea-
ture alignment strategy using an additional Lcur loss. A
detached model and a current model are trained on aug-
mented unannotated data together with a mapping network
G on top to bring the embeddings closer in latent space
using feature-alignment.
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Method
Task2 Task3 Task4

U-Recall mAP U-Recall mAP mAP
Prev Cur Both Prev Cur Both Prev Cur Both

ORE-EBUI 2.9 52.7 26 39.4 3.9 38.2 12.7 29.7 29.6 12.4 25.3
OW-DETR 6.2 53.6 33.5 42.9 5.7 38.3 15.8 30.8 31.4 17.1 27.8
OW-DETR (50%) 6.94 50.53 19.28 34.91 7.64 32.7 9.13 24.85 24.08 5.74 19.49
SS-OWFormer (50%) 10.56 52.04 26.35 39.2 13.16 39.46 13.63 30.85 29.97 11.48 25.35
OW-DETR (25%) 5.03 49.19 15.64 32.42 6.94 31.02 9.13 23.72 22.9 6.39 18.77
SS-OWFormer (25%) 10.47 52.21 21.16 36.68 12.22 36.4 10.83 27.87 26.91 8.72 22.36
OW-DETR (10%) 4.83 47.8 12.36 30.08 8.24 30.65 6.14 22.48 21.23 4.78 17.11
SS-OWFormer (10%) 10.19 53.61 16.44 35.02 12.13 35.21 8.11 26.18 26.17 5.33 20.96

Table 1: State-of-the-art comparison for the open-world object detection (OWOD) problem on natural images using MS COCO
split of (Joseph et al. 2021). The comparison is presented in terms of unknown recall (U-Recall) and the previously known
(Prev), current known (Cur) and Overall (both) AP for all tasks. U-Recall is not reported for task-4 since all classes are known.
Our SS-OWFormer with just 10% labeled data outperforms the SOTA OW-DETR with 50% labeled data on all tasks.

ORE - EBUI

OW-DETR 

Ours

0 10 20 30 40 50 60 70

U-Recall mAP

Figure 6: State-of-the-art comparison for OWOD Task-1.
U-Recall reports the performance of the model in detect-
ing unknown classes and mAP evaluates the performance
of known classes. Owing to object query-guided pseudo-
labeling our framework SS-OWFormer outperforms SOTA
OW-DETR in terms of U-Recall and mAP.

Inference: The object queries for a test image I are ob-
tained and the model predicts their labels from Kt+1 classes
along with a bounding box. A top-k selection with the high-
est scores is used for OWOD detection.

4 Experiments
Datasets: We evaluate our SS-OWOD framework on MS-
COCO (Lin et al. 2014), Pascal VOC (Everingham et al.
2010), DOTA (Xia et al. 2018) and Objects365 (Shao
et al. 2019) for OWOD problem. Non-overlapping tasks
{T1, T2, ..., Tt, ...} are formed from classes such that a
class in Tλ is not introduced till t = λ is reached as
introduced in (Joseph et al. 2021). Our novel satellite
OWOD split is prepared from DOTA based on the num-
ber of instances per image to ensure the corresponding
representation of all categories.
Evaluation Metrics: The standard mean average precision
(mAP) is the metric for known classes. However, mAP can-
not be utilized as a fair metric to evaluate unknown detection
since all possible unknowns are not labeled and can be more
than given classes to be encountered in the next set of tasks.
Therefore, we use average recall as a metric to test unknown
object detection, as in (Bansal et al. 2018; Lu et al. 2016)
under a similar context.
Implementation Details: The transformer architecture is a

Method U-Recall mAP
baseline 6.17 58.53
+ Enc feature 8.06 58.56
SS-OWFormer 12.26 59.85
SS-OWFormer(Max) 11.25 59.51
SS-OWFormer(Mean) 12.26 59.85

Table 2: Ablation analysis of the impact on performance
with various design choices for pseudo-labeling. The bottom
section shows design choices for the selection of objections
scores.

Model Evaluation mAP U-Recall

Baseline Task-1 64.9 2.5
Task-2 68.1 -

SS-OWFormer Task-1 66.7 7.6
Task-2 70.9 -

Table 3: Comparison between the baseline and our SS-
OWFormer on the proposed satellite OWOD splits. The
comparison is shown in terms of mAP and unknown recall.
The unknown recall metric assesses the model’s ability to
capture unknown object instances. While using full task-2
data, SS-OWFormer improves 5.1% in unknown recall over
the baseline without compromising overall mAP.

version of Deformable DETR (Zhu et al. 2020). Multi-scale
feature maps are taken from ImageNet pre-trained ResNet50
(He et al. 2016; Zhang et al. 2022). Number of queries is set
to M = 250 to account for the high number of instances
in satellite images, while the threshold for the selection of
pseudo-labels is set to top-10. Training is carried out for 50
epochs using ADAM optimizer (Kingma and Ba 2014) with
weight decay (AdamW) and learning rate set to 10−4.

4.1 State-of-the-art Comparison
We show a comparison with previous works (Joseph et al.
2021; Gupta et al. 2022) in OWOD for splits on MS COCO
in Tab.1. The qualitative results can be seen in Fig.4. The
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Partial
Annotation

SSL mAP

Overall Previously
Known

Current
Known

100% ✓ 70.9 77.1 61.6

75% ✗ 65.2 74.8 50.9
✓ 69.04 76.2 58.3

50% ✗ 63 74.5 45.8
✓ 68.06 75.1 57.5

Table 4: Comparison of results with and without semi-
supervised learning on proposed satellite OWOD splits.
This demonstrates our semi-supervised incremental learn-
ing strategy at different proportions of partially annotated
data with a steady improvement over baseline under similar
settings. The semi-supervised learning pipeline enables us
to take advantage of the unannotated data while maintaining
the performance on previously known classes.

comparison is made in terms of known class mAP and
unknown class recall (U-Recall). U-Recall quantifies the
model’s capacity to retrieve unknown object instances in
the OWOD setting. It should be noted that, since all classes
are known in task-4, U-Recall cannot be reported. For a fair
comparison, we omit ORE’s energy-based unknown identi-
fier (EBUI) since that relies on a held-out validation set. Our
contributions prove useful in a fully supervised setting for
task-1 as depicted above in Fig.6. Compared to the state-of-
the-art method OW-DETR, our SS-OWFormer with merely
10% achieves an absolute gain of up to 5% in unknown re-
call for task-2 and task-3 owing to the object query-guided
pseudo-labeling. Furthermore, our SS-OWFormer with just
10% labeled data outperforms state-of-the-art OW-DETR
trained with 50% labeled data in terms of mAP for all the
tasks, while SS-OWFormer with 50% labeled data stands
comparable to fully supervised state-of-the-art OW-DETR.
This poses SS-OWFormer as closer to a realistic solution by
overcoming the requirement of fully supervised incremental
learning for the OWOD problem.

4.2 Ablation Studies
Tab. 2 shows improvements made in performance with dif-
ferent components. Just using encoder features for pseudo-
labeling instead of backbone features gives a 2% improve-
ment in Unknown Recall over the baseline. Our proposed
object query-guided pseudo-labeling helps to gain another
4.2% in Unknown Recall and reach 12.26 by utilizing de-
coder queries finally providing a relative gain of nearly
doubling over the baseline in terms of Unknown Recall.
Other design choice trials for the pseudo-labeling scheme
include taking the mean of and maximum among the ob-
jectness scores. Mean is currently used in the proposed
SS-OWFormer framework, while taking maximum causes
a slight drop to unknown recall as it falls to 11.25.

4.3 Experiments on Satellite Images
Tab. 3 reports unknown recall (U-recall) for task 1 super-
vised training which assesses the model’s capability to cap-

CJ GB GR PS SL U-Recall mAP
✗ ✗ ✗ ✓ ✓ 9.57 37.68
✓ ✓ ✓ ✓ ✓ 10.03 38.13
✓ ✗ ✗ ✗ ✗ 10.06 38.71
✗ ✓ ✓ ✗ ✗ 10.11 38.89
✓ ✓ ✓ ✗ ✗ 10.56 39.20

Table 5: Performance comparison when using different com-
binations of augmentation techniques applied together. The
augmentations are abbreviated as CJ - Color Jitter, GB -
Gaussian Blur, GR - Greyscale, PS - Posterize, and SL - So-
larize. All the experiments are run using a fixed seed of 42
for Task 2 50% labeled data.

ture unknown objects for the OWOD-S split. The qualita-
tive results for satellite images can be seen in Fig.5. Our
baseline achieves an unknown recall of 2.5 on Task-1, with
an mAP of 64.9 on our OWOD-S task-1 benchmark. On
the same task, SS-OWFormer achieves an unknown recall
of 7.6 and 66.7 mAP and an mAP of 70.9 for task-2. The
object query-guided pseudo-labeling scheme feeds into the
novelty classification and objectness branches which helps
build a better separation of unknown objects from knowns
and background in the satellite images. Tab.4 shows a com-
prehensive comparison of our semi-supervised incremental
learning strategy at different proportions of labeled and un-
labeled data with a steady improvement over baseline un-
der similar settings. This consistent improvement shown un-
der the limited annotation availability setting emphasizes the
importance of proposed contributions in a close to realistic
satellite OWOD scenario without drastic forgetting of previ-
ously known classes.

4.4 Augmentation Techniques
Tab. 5 shows performance comparison when using differ-
ent combinations of augmentation techniques. We use color
jitter, gaussian blur, random greyscale, posterizing, and so-
larizing as augmentations for the semi-supervised open-
world learning pipeline. From our experiments, we ob-
serve that posterizing and solarizing degrade the overall
performance of the model as they are not well suited for
our problem setting.

4.5 Incremental Object Detection
As shown in Tab. 7 our SS-OWFormer performs favourably
compared to previous works on incremental object detec-
tion (iOD) task. iOD experiments are performed on Pascal
VOC (Everingham et al. 2010) benchmark on the 10 + 10
class setting as proposed in (Joseph et al. 2021). Our SS-
OWFormer achieves 65.2 mAP while using only 50% la-
beled data in the incremental learning setting compared with
ORE and OW-DETR.

4.6 Objects365 Benchmark
Tab. 6 compares our SS-OWFormer with OW-DETR on the
Objects365 (Shao et al. 2019) benchmark. Experiments on
Objects365 with 365 object categories learned incrementally
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Method Task 1 Task 2 Task 3 Task 4 Task 5
UR mAP UR mAP UR mAP UR mAP mAP

OW-DETR 13.6 21.2 17.8 18.6 12.7 16.7 17.8 16.3 15.8
Ours (50%) 16.7 23.3 21.6 18.1 14.9 15.9 18.7 15.4 15.1

Table 6: Comparison over the proposed OWOD splits on Objects365 dataset. Our splits derived from a subset of Objects365,
comprise 100k images and five different tasks. Task-1 has 85 categories, while Tasks-2:5 have 70 categories each. To our
knowledge, we are the first to report OWOD results on Objects365, and our method performs favorably compared to OW-
DETR (Gupta et al. 2022)

Method Avg of 10
Base classes

Avg of 10
Novel classes mAP

ORE 60.37 68.79 64.5
OW-DETR 63.48 67.88 65.7
Ours (50%) 63.85 66.53 65.2

Table 7: Incremental detection results on PASCAL VOC
(10+10 setting) as in (Joseph et al. 2021) averaged over base,
novel classes & overall mAP.

in a semi-supervised manner shows the effectiveness of our
approach in a close to realistic setting. Our method consis-
tently improves over the baseline OW-DETR while using
50% labeled data and to the best our knowledge we are the
first to report results on Objects365 in the Open-world object
detection paradigm.

5 Relation to Prior Art
Semi-supervised and incremental object detection have been
active research areas in computer vision, and recent works
have achieved promising results. For semi-supervised ob-
ject detection, methods such as S4L (Zhai et al. 2019) and
FixMatch (Sohn et al. 2020) have been proposed to lever-
age unlabeled data by exploring consistency regularization
techniques. S4L incorporates self-supervised learning with
semi-supervised learning and achieved state-of-the-art per-
formance on various datasets. FixMatch utilizes a mix of
labeled and unlabeled data, achieving competitive results
with fully supervised approaches. Other approaches like (Li
et al. 2019; Qiao et al. 2023) introduce meta-learning to fur-
ther enhance performance. For incremental object detection,
methods like COCO-FUNIT (Saito, Saenko, and Liu 2020),
iCaRL (Rebuffi et al. 2017), and NCM (Ristin et al. 2014)
have been proposed to incrementally update the object de-
tector model with new classes. COCO-FUNIT utilizes do-
main adaptation techniques for incremental learning, while
iCaRL and NCM utilize exemplar-based methods for incre-
mental feature learning. Other approaches like (Lee, Kim,
and Yoon 2021; Kirsch, van Amersfoort, and Gal 2019;
Sinha, Ebrahimi, and Darrell 2019; Yoo and Kweon 2019)
utilize active learning and discriminative features to further
enhance performance.

Open-world object detection in natural images recently
gained popularity due to its applicability in real-world sce-
narios. ORE (Joseph et al. 2021) introduces an open-world
object detector based on the two-stage Faster R-CNN (Ren
et al. 2015). Since unknown objects are not annotated for

training in the open-world paradigm, ORE utilizes an auto-
labeling step to obtain a set of pseudo-unknowns for train-
ing. The OW-DETR (Gupta et al. 2022) introduces an end-
to-end transformer-based framework for open-world ob-
ject detection with attention-driven pseudo-labeling, nov-
elty classification, and an objectness branch to triumph
over the OWOD challenges faced by ORE. Methods like
(Saito, Saenko, and Liu 2020; Rebuffi et al. 2017; Ristin
et al. 2014; Perez-Rua et al. 2020) have been proposed to
incrementally update the object detector model with new
classes. OW-DETR achieved state-of-the-art performance
on open-world object detection on the MS COCO bench-
mark. Localizing objects in satellite imagery(Xia et al. 2018;
Waqas Zamir et al. 2019; Cheng et al. 2022) is a challeng-
ing task(Aleissaee et al. 2022; Van Etten 2018; Gong et al.
2022). The state-of-the-art results on DOTA (Xia et al. 2018)
dataset is achieved by (Wang et al. 2022) by adapting the
standard vision transformer to remote sensing domain us-
ing rotated window attention. To the best of our knowledge,
open-world object detection has been focused on natural im-
ages and we are the first to propose an open-world object
detection problem for satellite images.

6 Conclusion
We present SS-OWFormer, a framework aiming to reduce
reliance on external oracles in the OWOD problem. SS-
OWFormer comprises object query-guided pseudo-labeling
to overcome limitations faced by heuristic approaches fol-
lowed in previous works. We further explore a semi-
supervised open-world object detection framework and in-
troduce an OWOD-S split on DOTA. Experiments reveal the
benefits of our contributions, leading to improvements for
both known and unknown classes. Lastly, we validate our
contributions in natural and remote sensing domains, achiev-
ing state-of-the-art OWOD performance.

Ethics Statement
In alignment with the AAAI Ethics Policy, we address the
ethical dimensions of our work on Semi-Supervised Open-
World Object Detection. We have conscientiously credited
the data sources and other open source works on which SS-
OWFormer is built upon.The open-world object detection
problem is an intriguing real-world scenario that gradually
learns additional objects. However, there may be circum-
stances in which a certain object or fine-grained category
must not be identified because of privacy or legal issues,
whether in satellite images or otherwise. Moreover, although
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the proposed SS-OWFormer can incrementally learn new
object categories, it does not have an explicit mechanism to
forget some of the previously seen categories. Developing
open-world object detectors with explicit forgetting mech-
anisms will be an interesting future research direction. Our
commitment to transparency is evident through the availabil-
ity of open-source resources, and we value collaboration and
accountability within the research community. In recogniz-
ing the broader societal impact of our research, we pledge to
uphold ethical standards in the development and deployment
of our model and its applications.
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